Of the Białowieża Forest (Ne Poland)

Total Page:16

File Type:pdf, Size:1020Kb

Of the Białowieża Forest (Ne Poland) Polish Botanical Journal 60(2): 217–292, 2015 DOI: 10.1515/pbj-2015-0034 AN ANNOTATED AND ILLUSTRATED CATALOGUE OF POLYPORES (AGARICOMYCETES) OF THE BIAŁOWIEŻA FOREST (NE POLAND) Dariusz Karasiński1 & Marek Wołkowycki Abstract. The Białowieża Forest (BF) is one of the best-preserved lowland deciduous and mixed forest complexes in Europe, rich in diverse fungi. This paper summarizes what is known about the poroid fungi of the Polish part of the Białowieża Forest, based on literature data, a re-examination of herbarium materials, and the authors’ studies from 1990–2014. An annotated catalogue of polypores recorded in the forest is presented, including 80 genera with 210 species. All literature and herbarium records are enumerated, and 160 species are illustrated with color pictures. Fourteen species previously reported in the literature have uncertain status because they lack voucher specimens and were not confirmed in recent field studies.Antrodiella subradula (Pilát) Niemelä & Miettinen, previously known from Asia, is reported for the first time from Europe. Fourteen species are newly reported from the Białowieża Forest (mainly from Białowieża National Park), including 8 species with first records in Poland (Antrodia hyalina Spirin, Miettinen & Kotir., Antrodia infirma Renvall & Niemelä, Antrodiella subradula, Junghuhnia fimbriatella (Peck) Ryvarden, Postia folliculocystidiata (Kotl. & Vampola) Niemelä & Vampola, Postia minusculoides (Pilát ex Pilát) Boulet, Skeletocutis chrysella Niemelä, Skeletocutis papyracea A. David), and 6 species reported previously from other localities in Poland [Antrodiella faginea Vampola & Pouzar, Dichomitus campestris (Quél.) Domański & Orlicz, Loweomyces fractipes (Berk. & M. A. Curtis) Jülich, Oxyporus latemarginatus (Durieu & Mont.) Donk, Perenniporia narymica (Pilát) Pouzar, Phellinus nigricans (Fr.) P. Karst.]. Several very rare European polypores already reported from the Białowieża Forest in the 20th century, such as Antrodia albobrunnea (Romell) Ryvarden, Antrodiella foliaceodentata (Nikol.) Gilb. & Ryvarden, Buglossoporus pulvinus (Pers.) Donk, Dichomitus albidofuscus (Domański) Domański and Gelatoporia subvermispora (Pilát) Niemelä, were found at new localities, confirming their continuous occurrence in this forest. Key words: Basidiomycota, Biosphere Reserve, fungal diversity, Poland, poroid fungi, primeval forests, UNESCO World Heritage Site Dariusz Karasiński, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Marek Wołkowycki, Białystok University of Technology, Faculty of Forestry in Hajnówka, Piłsudskiego 8, 17-200 Hajnówka, Poland Introduction The Białowieża Forest (BF) is one of the best pre- and covers an area of 646 km2, including 105 km2 served lowland deciduous and mixed forest com- protected since 1921 as the Białowieża National plexes in Europe (Faliński 1986; Peterken 1996; Park (BNP) and ca 120 km2 protected as a forest Jędrzejewska & Jędrzejewski 1998). It is reported reserve (Faliński 2002; Okołów 2012). Białowieża as an example of a European non-fragmented National Park was declared a Biosphere Reserve virgin forest community (e.g., Parviainen 2005) or in 1977 and in 1979 was designated a UNESCO as a remnant of culturally modified ancient forest World Heritage Site (Okołów 2002, 2009). Since (e.g., Bobiec 2012). The whole forest complex 2005 the Biosphere Reserve has been expanded to covers an area of 1250 km2 and is located at the cover the whole Polish part of the Białowieża Forest border between Poland and Belarus. The Polish part (Okołów 2012). Glaciofluvial sands, gravels and lies between 52°39′–52°48′N and 23°34′–23°38′E clays built the flat, undulating plain on which the forest is situated at 135–190 m a.s.l. (Kwiatkowski 1 Corresponding author 1994). The local climate has both continental and Unauthentifiziert | Heruntergeladen 01.09.19 04:59 UTC 218 POLISH BOTANICAL JOURNAL 60(2). 2015 Atlantic features (Faliński 1986). During the last 2013, 2014). Niemelä (2013) published a manual for 50 years the mean annual temperature was 6.9ºC identification of polypores of the Białowieża Forest, (January mean –3ºC, July mean 18.3ºC), snow including descriptions and a list of species found by cover lasted 92 days on average, and mean an- his team during inventory work in 2008–2012. This nual precipitation was 627 mm (Malzahn et al. manual gives information on 177 poroid species 2009). The Białowieża Forest consists of a mosaic reported from the study area – 142 species found of various forest communities determined by the during the inventory and 35 species from reports in variation of topography, soil and hydrology. Conif- the literature. The literature data are given without erous and mixed coniferous stands dominated by revision of the herbarium materials, which in some Pinus sylvestris L. and Picea abies (L.) H. Karst. cases results in duplication of unverified and some- cover ca 50% of the forest area in the Polish part times wrong information mainly from Domański of the Białowieża Forest. Wet deciduous forest with (records based on misidentified specimens; some Alnus glutinosa Gaertn. and Fraxinus excelsior L. of them corrected here). covers ca 20%, rich mesic deciduous stands with This work summarizes what is known about Quercus robur L., Carpinus betulus L., Tilia cor- the poroid fungi of the Polish part of the Biało- data Mill. and Acer platanoides L. cover 15%, and wieża Forest in the form of an annotated and il- early successional stands with Betula pendula Roth lustrated catalogue. It is based on literature data, and Populus tremula L. cover 13% of the forest a re-examination of some herbarium materials, area (Jędrzejewska & Jędrzejewski 1998). The especially for species whose concept has changed, Białowieża Forest differs from Western European and our studies from 1990–2014. forests in the absence of Fagus sylvatica L. The abundance of Quercus robur differentiates it from Eastern European forests. Picea abies occurs in Material and methods almost every forest community (Pawlaczyk 2009). The original as-yet unpublished material was collected The first published data on the polypores of the in different areas of the Białowieża Forest by the first th Białowieża Forest date to the 19 century (Błoński author in 2005–2014 during a few short collecting trips et al. 1888). Over the last 127 years about 100 publi- in 2005–2008, 2011, 2013 and 2014, and extensive in- cations have included information on these fungi, im- ventory work in 2009–2010 for the ‘Conservation plan plying that the diversity of the polypores of that area for species of macrofungi in the Białowieża National is relatively well known, but poroid species new to Park’ (Karasiński et al. 2010). In total, more than 1100 science are still being described from the Białowieża specimens of polypores were collected and studied. The Forest (Niemelä et al. 2012; Miettinen et al. 2012). material is preserved mainly in the personal reference collection of the first author (abbreviated D.K.), with Our knowledge of polypore diversity has not been duplicates in KRAM F. The second author has collected deliberately summarized for a long time, although polypores in the Białowieża Forest since 1990. The col- some information was included in publications lection includes ca 350 specimens stored in the Herbarium from Stanisław Domański (e.g., Domański 1965, of Marek Wołkowycki (abbreviated H.M.W. M). Other 1967, 1972b; Domański et al. 1967, 1973). Up to specimens examined (ca 150) were obtained from KRA 2013 these publications were the primary source of and mostly from KRAM F-SD (collection of Stanisław knowledge on polypore diversity in the Białowieża Domański in KRAM F, containing mainly polypores col- Forest. Some records of a number of rare poroid lected in the Białowieża Forest in 1955–1970). species given by Stanisław Domański have not been For micromorphological studies, thin freehand confirmed by any subsequent researchers. Recently sections were cut with a razor blade from fresh or dry basidiomata under a Nikon SMZ-2T microscope, some new records of selected poroid species (but mounted in water, 3% aqueous potassium hydroxide mostly common ones) were published based on with 1% aqueous phloxine, and Melzer’s reagent or material collected for fungal exhibits organized 0.1% cotton blue in 60% lactic acid (Kirk et al. 2008), yearly in September by Białowieża National Park and examined under a Nikon Eclipse E-400 microscope (e.g., Szczepkowski et al. 2010, 2011; Gierczyk et al. at magnification up to 1250×. Color photographs were Unauthentifiziert | Heruntergeladen 01.09.19 04:59 UTC D. KARASIŃSKI & M. WOŁKOWYCKI: CATALOGUE OF POLYPORES OF THE BIAŁOWIEŻA FOREST 219 ew Nar Nar Nar 742 ewka Eliaszuki ew 748 746 755 Siemianówka 753 NAREW 751 Makówka 1 760 758 4 766 Lewkowo 764 6 8 771 769 P 767 odrzeczka 14 16 18 775 Belarus Krzywiec 23 25 27 781 Olchówko 777 779 Łosinka 37 39 41 Mikłaszewo 55 48 50 52 Borysówka Narewka Skupowo 59 61 63 65 69 Masiewo 74 76 82 84 96 98 100 105 106 108 110 111 118 120 122 123 124 126 128 130 132 133 134 135 136 Nowosady 147 149 151 153 155 157 158 159 161 163 165 Nowy Kornin 179 181 182 183 185 187 189 193 194 195 197 Czyżyki 210 212 214 216 218 220 221 224 225 226 228 Dubiny Hwoźn Leśna Prawa 243 245 247 249 251 253 254 255 256 257 258 a 260 Nar 261 279 288 272 273 275 277 281 282 ewka 284 285 286 287 289 290 Lutow nia 320 303 305 306 307 311 313 314 315 316 317 318 319 HAJNÓWKA Orłówk
Recommended publications
  • Five Polypore Species New to India
    CZECH MYCOLOGY 72(2): 151–161, JULY 24, 2020 (ONLINE VERSION, ISSN 1805-1421) Five polypore species new to India 1 2 1 RAMANDEEP KAUR ,GURPREET KAUR ,AVNEET PAL SINGH *, 1 GURPAUL SINGH DHINGRA 1 Department of Botany, Punjabi University, Patiala, IN-147002, Punjab, India 2 Department of Agriculture, Khalsa College, Amritsar, IN-143002, Punjab, India *corresponding author: [email protected] Kaur R., Kaur G., Singh A.P., Dhingra G.S. (2020): Five polypore species new to India. – Czech Mycol. 72(2): 151–161. In continuation of the exploration of the diversity of polyporoid fungi in north-west India, five polypores identified as Antrodia leucaena, A. pulvinascens, Fomitiporia apiahyna, Inocutis ludoviciana and Inonotus venezuelicus are presented as new to India. These species are reported based on material collected from localities in the Sirmaur District (Himachal Pradesh) and Patiala District (Punjab). Descriptions, photographs and line drawings of the new records from India are provided. Key words: Agaricomycetes, Polyporales, Hymenochaetales, white-rot fungi, north-west Himalaya, Punjab. Article history: received 24 April 2020, revised 21 June 2020, accepted 29 June 2020, published on- line 24 July 2020. DOI: https://doi.org/10.33585/cmy.72202 Kaur R., Kaur G., Singh A.P., Dhingra G.S. (2020): Pět druhů chorošů nových pro Indii. – Czech Mycol. 72(2): 151–161. V rámci pokračujícího výzkumu diverzity chorošotvarých hub v severozápadní Indii bylo objeve- no pět druhů, které jsou nové pro Indii: Antrodia leucaena, A. pulvinascens, Fomitiporia apiahyna, Inocutis ludoviciana a Inonotus venezuelicus. Jejich výskyt byl zaznamenán a materiál sebrán na lo- kalitách v okresu Sirmaur (stát Himáčalpradéš) a okresu Patiala (stat Paňdžáb).
    [Show full text]
  • Molecular Phylogeny of Laetiporus and Other Brown Rot Polypore Genera in North America
    Mycologia, 100(3), 2008, pp. 417–430. DOI: 10.3852/07-124R2 # 2008 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular phylogeny of Laetiporus and other brown rot polypore genera in North America Daniel L. Lindner1 Key words: evolution, Fungi, Macrohyporia, Mark T. Banik Polyporaceae, Poria, root rot, sulfur shelf, Wolfiporia U.S.D.A. Forest Service, Madison Field Office of the extensa Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726 INTRODUCTION The genera Laetiporus Murrill, Leptoporus Que´l., Phaeolus (Pat.) Pat., Pycnoporellus Murrill and Wolfi- Abstract: Phylogenetic relationships were investigat- poria Ryvarden & Gilb. contain species that possess ed among North American species of Laetiporus, simple septate hyphae, cause brown rots and produce Leptoporus, Phaeolus, Pycnoporellus and Wolfiporia annual, polyporoid fruiting bodies with hyaline using ITS, nuclear large subunit and mitochondrial spores. These shared morphological and physiologi- small subunit rDNA sequences. Members of these cal characters have been considered important in genera have poroid hymenophores, simple septate traditional polypore taxonomy (e.g. Gilbertson and hyphae and cause brown rots in a variety of substrates. Ryvarden 1986, Gilbertson and Ryvarden 1987, Analyses indicate that Laetiporus and Wolfiporia are Ryvarden 1991). However recent molecular work not monophyletic. All North American Laetiporus indicates that Laetiporus, Phaeolus and Pycnoporellus species formed a well supported monophyletic group fall within the ‘‘Antrodia clade’’ of true polypores (the ‘‘core Laetiporus clade’’ or Laetiporus s.s.) with identified by Hibbett and Donoghue (2001) while the exception of L. persicinus, which showed little Leptoporus and Wolfiporia fall respectively within the affinity for any genus for which sequence data are ‘‘phlebioid’’ and ‘‘core polyporoid’’ clades of true available.
    [Show full text]
  • A New Species of Antrodia (Basidiomycota, Polypores) from China
    Mycosphere 8(7): 878–885 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/7/4 Copyright © Guizhou Academy of Agricultural Sciences A new species of Antrodia (Basidiomycota, Polypores) from China Chen YY, Wu F* Institute of Microbiology, Beijing Forestry University, Beijing 100083, China Chen YY, Wu F 2017 –A new species of Antrodia (Basidiomycota, Polypores) from China. Mycosphere 8(7), 878–885, Doi 10.5943/mycosphere/8/7/4 Abstract A new species, Antrodia monomitica sp. nov., is described and illustrated from China based on morphological characters and molecular evidence. It is characterized by producing annual, fragile and nodulose basidiomata, a monomitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores (6–7.5 × 2.3– 3 µm), and causing a typical brown rot. In phylogenetic analysis inferred from ITS and nLSU rDNA sequences, the new species forms a distinct lineage in the Antrodia s. l., and has a close relationship with A. oleracea. Key words – Fomitopsidaceae – phylogenetic analysis – taxonomy – wood-decaying fungi Introduction Antrodia P. Karst., typified with Polyporus serpens Fr. (=Antrodia albida (Fr.) Donk (Donk 1960, Ryvarden 1991), is characterized by a resupinate to effused-reflexed growth habit, white or pale colour of the context, a dimitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled, cylindrical to very narrow ellipsoid basidiospores which are negative in Melzer’s reagent and Cotton Blue, and causing a brown rot (Ryvarden & Melo 2014). Antrodia is a highly heterogeneous genus which is closely related to Fomitopsis P.
    [Show full text]
  • Basidiomycota) in Finland
    Mycosphere 7 (3): 333–357(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/3/7 Copyright © Guizhou Academy of Agricultural Sciences Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland Kunttu P1, Kulju M2, Kekki T3, Pennanen J4, Savola K5, Helo T6 and Kotiranta H7 1University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland 2Biodiversity Unit P.O. Box 3000, FI-90014 University of Oulu, Finland 3Jyväskylä University Museum, Natural History Section, P.O. BOX 35, FI-40014 University of Jyväskylä, Finland 4Pentbyntie 1 A 2, FI-10300 Karjaa, Finland 5The Finnish Association for Nature Conservation, Itälahdenkatu 22 b A, FI-00210 Helsinki, Finland 6Erätie 13 C 19, FI-87200 Kajaani, Finland 7Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland Kunttu P, Kulju M, Kekki T, Pennanen J, Savola K, Helo T, Kotiranta H 2016 – Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland. Mycosphere 7(3), 333–357, Doi 10.5943/mycosphere/7/3/7 Abstract This article contributes the knowledge of Finnish aphyllophoroid funga with nationally or regionally new species, and records of rare species. Ceriporia bresadolae, Clavaria tenuipes and Renatobasidium notabile are presented as new aphyllophoroid species to Finland. Ceriporia bresadolae and R. notabile are globally rare species. The records of Ceriporia aurantiocarnescens, Crustomyces subabruptus, Sistotrema autumnale, Trechispora elongata, and Trechispora silvae- ryae are the second in Finland. New records (or localities) are provided for 33 species with no more than 10 records in Finland. In addition, 76 records of aphyllophoroid species are reported as new to some subzones of the boreal vegetation zone in Finland.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Popularity of species of polypores which are parasitic upon oaks in coppice oakeries of the South-Western Central Russian Upland in Russian Federation. Alexander Vladimirovich Dunayev*, Valeriy Konstantinovich Tokhtar, Elena Nikolaevna Dunayeva, and Svetlana Viсtorovna Kalugina. Belgorod State National Research University, Pobedy St., 85, Belgorod, 308015, Russia. ABSTRACT The article deals with research of popularity of polypores species (Polyporaceae sensu lato), which are parasitic upon living English oaks Quercus robur L. in coppice oakeries of the South-Western Central Russian Upland in the context of their eco-biological peculiarities. It was demonstrated that the most popular species are those for which an oak is a principal host, not an accidental one. These species also have effective parasitic properties and are able to spread in forest stands, from tree to tree. Keywords: polypores, Quercus robur L., coppice forest stand, obligate parasite, facultative saprotroph, facultative parasite, popularity. *Corresponding author September - October 2014 RJPBCS 5(5) Page No. 1691 ISSN: 0975-8585 INTRODUCTION Polypores Polyporaceae s. l. is a group of basidium fungi which is traditionnaly discriminated on the basis of formal resemblance, including species of wood destroyers, having sessile (or rarer extended) fruit bodies and tube (or labyrinth-like or gill-bearing) hymenophore. Many of them are parasites housing on living trees of forest-making species, or pathogens – agents of root, butt or trunk rot. Rot’s development can lead to attenuation, drying, wind breakage or windfall of stressed trees. On living trees Quercus robur L., which is the main forest-making species of autochthonous forest steppe oakeries in Eastern Europe, in conditions of Central Russian Upland, we can find nearly 10 species of polypores [1-3], belonging to orders Agaricales, Hymenochaetales, Polyporales (class Agaricomicetes, division Basidiomycota [4]).
    [Show full text]
  • Inonotus Obliquus) Mushroom: a Review
    Journal of International Society for Food Bioactives Nutraceuticals and Functional Foods Review J. Food Bioact. 2020;12:9–75 Bioactive compounds and bioactive properties of chaga (Inonotus obliquus) mushroom: a review Han Peng and Fereidoon Shahidi* Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X9 *Corresponding author: Fereidoon Shahidi Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X9. Tel: (709)864-8552; E-mail: [email protected] DOI: 10.31665/JFB.2020.12245 Received: December 04, 2020; Revised received & accepted: December 24, 2020 Citation: Peng, H., and Shahidi, F. (2020). Bioactive compounds and bioactive properties of chaga (Inonotus obliquus) mushroom: a review. J. Food Bioact. 12: 9–75. Abstract Chaga (Inonotus obliquus) is an edible herbal mushroom extensively distributed in the temperate to frigid regions of the Northern hemisphere, especially the Baltic and Siberian areas. Chaga parasites itself on the trunk of various angiosperms, especially birch tree, for decades and grows to be a shapeless black mass. The medicinal/nutraceuti- cal use of chaga mushroom has been recorded in different ancient cultures of Ainu, Khanty, First Nations, and other Indigenous populations. To date, due to its prevalent use as folk medicine/functional food, a plethora of studies on bioactive compounds and corresponding compositional analysis has been conducted in the past 20 years. In this con- tribution, various nutraceutical and pharmaceutical potential, including antioxidant, anti-inflammatory, anti-tumor, immunomodulatory, antimutagenic activity, anti-virus, analgesic, antibacterial, antifungal, anti-hyperglycemic, and anti-hyperuricemia activities/effects, as well as main bioactive compounds including phenolics, terpenoids, polysac- charides, fatty acids, and alkaloids of chaga mushroom have been thoroughly reviewed, and tabulated using a total 171 original articles.
    [Show full text]
  • A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
    Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l.
    [Show full text]
  • New Data on the Occurence of an Element Both
    Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif.
    [Show full text]
  • Aurantiporus Alborubescens (Basidiomycota, Polyporales) – First Record in the Carpathians and Notes on Its Systematic Position
    CZECH MYCOLOGY 66(1): 71–84, JUNE 4, 2014 (ONLINE VERSION, ISSN 1805-1421) Aurantiporus alborubescens (Basidiomycota, Polyporales) – first record in the Carpathians and notes on its systematic position 1 2 3 DANIEL DVOŘÁK ,JAN BĚŤÁK ,MICHAL TOMŠOVSKÝ 1Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic; [email protected] 2Mášova 21, CZ-602 00 Brno, Czech Republic 3Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic Dvořák D., Běťák J., Tomšovský M. (2014): Aurantiporus alborubescens (Basidio- mycota, Polyporales) – first record in the Carpathians and notes on its systematic position. – Czech Mycol. 66(1): 71–84. The authors present the first collection of the rare old-growth forest polypore Aurantiporus alborubescens in the Carpathians, supported by a description of macro- and microscopic features. Its European distribution and ecological demands are discussed. LSU rDNA sequences of the collected material were also analysed and compared with those of A. fissilis and A. croceus as well as some other polyporoid and corticioid species, in order to resolve the phylogenetic placement of the studied species. Based on the results of the molecular analysis, the homogeneity of the genus Aurantiporus Murrill in the sense of Jahn is questioned. Key words: Aurantiporus, phylogeny, old-growth forests, beech forests, indicator species. Dvořák D., Běťák J., Tomšovský M. (2014): Aurantiporus alborubescens (Basidio- mycota, Polyporales) – první nález v Karpatech a poznámky k jeho systematické- mu zařazení. – Czech Mycol. 66(1): 71–84. Autoři prezentují první nález vzácného choroše přirozených lesů, druhu Aurantiporus alboru- bescens, v Karpatech, doprovázený makroskopickým i mikroskopickým popisem.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Relationships Between Wood-Inhabiting Fungal Species
    Silva Fennica 45(5) research articles SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Relationships between Wood-Inhabiting Fungal Species Richness and Habitat Variables in Old-Growth Forest Stands in the Pallas-Yllästunturi National Park, Northern Boreal Finland Inari Ylläsjärvi, Håkan Berglund and Timo Kuuluvainen Ylläsjärvi, I., Berglund, H. & Kuuluvainen, T. 2011. Relationships between wood-inhabiting fungal species richness and habitat variables in old-growth forest stands in the Pallas-Yllästunturi National Park, northern boreal Finland. Silva Fennica 45(5): 995–1013. Indicators for biodiversity are needed for efficient prioritization of forests selected for conservation. We analyzed the relationships between 86 wood-inhabiting fungal (polypore) species richness and 35 habitat variables in 81 northern boreal old-growth forest stands in Finland. Species richness and the number of red-listed species were analyzed separately using generalized linear models. Most species were infrequent in the studied landscape and no species was encountered in all stands. The species richness increased with 1) the volume of coarse woody debris (CWD), 2) the mean DBH of CWD and 3) the basal area of living trees. The number of red-listed species increased along the same gradients, but the effect of basal area was not significant. Polypore species richness was significantly lower on western slopes than on flat topography. On average, species richness was higher on northern and eastern slopes than on western and southern slopes. The results suggest that a combination of habitat variables used as indicators may be useful in selecting forest stands to be set aside for polypore species conservation.
    [Show full text]
  • Programme & Abstracts
    European Council for Conservation of Fungi (European Mycological Association) International Society for Fungal Conservation Ss. Cyril and Methodius University, Skopje Macedonian Mycological Society Ohrid, Republic of Macedonia 1-6 October 2017 PROGRAMME & ABSTRACTS Organizing Committee Prof. Mitko Karadelev [Chair] Assistant Prof. Katerina Rusevska [Congress Secretary] Ms Daniela Mitic-Kopanja [Local Organizer] Ms Kristina Zimbakova [Local Organizer] Prof. Gerhard Kost [Field Trips] Dr Su Gonçalves [Co-chair ECCF, ex officio] Dr Beatrice Senn-Irlet [Co-chair ECCF, ex officio] Dr David Minter [President EMA, ex officio] Scientific support of the meeting: European Council for Conservation of Fungi; IUCN Species Survival Commission (Chytrid, Zygomycete, Downy Mildew and Slime Mould Specialist Group; Cup-fungi, Truffles and Allies Specialist Group; Lichen Specialist Group; Mushroom, Bracket and Puffball Specialist Group; Rust and Smut Specialist Group) and the Macedonian Mycological Society. Financial support of the Meeting: British Mycological Society; Cybertruffle; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ); Regional Rural Development Standing Working Group (SWG) in South-East Europe; Soloprom; Sofija - Printing House and Soloprom Company. European Council for Conservation of Fungi [www.eccf.eu] Established in 1985, the ECCF is the world’s oldest body devoted entirely to conservation of fungi. It aims to promote fungal conservation in Europe by stimulating production of continental-level, national and local red lists, by monitoring changes in and threats to fungal populations, and by drawing those changes and threats to the attention of decision makers, politicians and the public. Since 2003, it has been the conservation wing of the European Mycological Association and, since 2010, the voice of fungal conservation for Europe in the International Society for Fungal Conservation.
    [Show full text]