Evidence from Discrepancies Between GPS Velocities and Rigid-Plate

Total Page:16

File Type:pdf, Size:1020Kb

Evidence from Discrepancies Between GPS Velocities and Rigid-Plate GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 10, 10.1029/2001GL013391, 2002 Deformation of convergent plates: Evidence from discrepancies between GPS velocities and rigid-plate motions Youqing Yang and Mian Liu Department of Geological Sciences, University of Missouri, Columbia, MO, USA. Received 8 May 2001; revised 24 October 2001; accepted 14 November 2001; published 30 May 2002. [1] Systematic discrepancies between the Global Positioning at the plate boundary, causing the coastal region to move System (GPS) site velocities and those predicted by plate-motion 30–40 mm yrÀ1 eastward with respect to stable South America models across the Andes, the Himalayan-Tibetan plateau, and the [Leffler et al., 1997]. The GPS velocity drops gradually over the Taiwan orogen delineate diffuse plate-boundary deformation and 1000-km wide Andean orogen, indicating a crustal shortening significant intraplate deformation, even in the presumably rigid pattern significantly different from that reflected in geological record [Liu et al., 2000]. oceanic plates. The relationship between the GPS velocities and the [4] The deformation of these convergent plates can be better predictions of plate-motion models is illustrated using a simple illustrated by comparing the GPS site velocities with the predic- timescale-dependent mechanical model of plate convergence. A tions of plate-motion models (Figure 1b). The comparison is simple stiffness number (f), based on the difference between the within the same reference frame of a fixed stable South America. predictions of plate-motion models and the GPS velocity near plate For each GPS site the corresponding rigid-plate velocity was boundaries, provides a convenient measure of the ‘‘plate-like’’ calculated from the Nuvel-1A model [DeMets et al., 1994] because behavior of convergent plates and strain partitioning between of the large area spanned by the GPS sites. The Nuvel-1A intraplate and interplate deformation. INDEX TERMS: 8102 velocities are identical along the small circle around the Euler Tectonophysics: Continental contractional orogenic belts; 8158: pole for the Nazca-South America relative motion (Figure 1a), Evolution of the Earth: Plate motions—present and recent (3040) whereas along the EISL-BRAZ profile the Nuvel-1A velocities deviate <1% from that along the small circle. So the contrasts between the GPS and Nuvel-1A velocities in Figure 1a reflect 1. Introduction primarily the difference between active crustal deformation and the prediction of plate-motion models. The plate boundary is marked [2] The basic tenet of the plate tectonics theory is that tectonic by the sharp drop of GPS velocity at the trench and diffuse plates are rigid and crustal deformation is concentrated within deformation across the Andes. Note that at all four sites on the narrowly defined plate boundaries. Studies in the past decades have Nazca plate the GPS velocity is consistently lower than the proven this tenet to be essentially valid in most places, especially Nuvel-1A predictions. Because the Nuvel-1A model was based for oceanic plates. One of the most satisfying tests is the general on marine magnetic anomalies averaged over the past 3 Myr, the agreement between the Global Positioning System (GPS) velocities lower GPS velocities were explained as indications of a slowing of and the prediction of rigid-plate motion models at many parts of plate convergence [Norabuena et al., 1999]. This is best shown by the Earth’s surface [Larson et al., 1997; Stein, 1993]. However, it is the 14 mm yrÀ1 difference between the Nuvel-1A and GPS well known that deformation diffuses over broad regions at some velocities at EISL, a GPS site near the spreading center. However, convergent plate boundaries, where the GPS velocities usually the 6mmyrÀ1 drop of the GPS velocity from EISL to ISFE near show a systematical deviation from plate-model predictions the trench may represent intraplate shortening of the Nazca plate, [Larson et al., 1999; Leffler et al., 1997]. Here we use such because these two sites are predicted to have almost identical discrepancies across the Andes, the Himalayan-Tibetan plateau, eastward velocity in the Nuvel-1A model. Similar drop of GPS and the Taiwan orogen to illustrate diffuse plate boundary defor- velocity is found at sites IRCR and GALA but with larger errors. mation in these regions. We investigate the relationship between The corresponding strain rate is up to 7 Â 10À17 sÀ1, comparable instantaneous and long-term averaged plate motions using a simple to that of some continental deformation. Although data from the timescale-dependent mechanical model, and discuss strain parti- Nazca plate may be too sparse to firmly delineate intraplate tioning at plate boundaries using GPS data. deformation, we show below that similar patterns of deformation are observed in other convergent plates. 2. GPS Velocities vs. Plate-Motion Model 2.2. The Himalayan-Tibetan Plateau Predictions [5] The India-Eurasia collision and continued convergence in 2.1. The Andes the past 50–70 Myr have led to the formation of the Hima- [3] The Andean mountain belt has resulted from subduction of layan-Tibetan plateau. The collisional deformation diffused thou- the Nazca plate underneath the South America plate in the past sands of kilometers into the Eurasia plate [Tapponnier and 30 Myr [Isacks, 1988]. The present-day plate convergence and Molnar, 1979]. This is clear from recent GPS measurements the Andean crustal shortening are revealed by recent GPS meas- (Figure 2a). For comparison we converted the GPS velocities urements [Angermann et al., 1999; Leffler et al., 1997; Norabuena from three groups [Chen et al., 2000; Larson et al., 1999; Wang et al., 1999] (Figure 1a). Between site EISL in the Nazca plate and et al., 1999] into those relative to stable Eurasia using the No- sites in stable South America (UEPP and BRAZ) there is Net-Rotation Nuvel-1A (NNR-A) absolute plate motion model 66 mm yrÀ1 convergence. About half of the convergence is [Argus and Gordon, 1991]. Note the diffuse deformation over the consumed by sliding in the subduction zone and the rest is locked Tibetan plateau. [6] Figure 2b shows that the GPS velocities at the interior India (IISC) and Eurasia (IRKT) plates are almost identical to the Nuvel- À1 Copyright 2002 by the American Geophysical Union. 1A predictions. Between these two stations there is 50 mm yr 0094-8276/02/2001GL013391$05.00 N-S convergence, agreeing with the Nuvel-1A model. As the sites 110 - 1 110 - 2 YANG AND LIU: DEFORMATION OF CONVERGENT PLATES on westerly striking planes in central India [Singh et al., 1999] including the 26 Jan. 2001 Gujarat earthquake. 2.3. The Taiwan Orogen [8] The Taiwan orogen is another example of complicated plate boundary deformation. It has resulted from convergence between the Philippine Sea and the Eurasian plates during late Cenozoic. The active mountain building is shown by the recent GPS measure- ments [Yu et al., 1997] (Figure 3). We mapped the GPS velocities onto the Eurasia-fixed reference frame by using the GPS velocity at TAIW (TAPN) [Larson et al., 1999] with respect to stable Eurasia and adding this velocity vector to the rest GPS site. The area covered by the Taiwan GPS network is small (about 2° Â 3°) that a uniform translation may be justifies, and there is no evidence of significant rotation of the Taiwan islands with respect to stable Eurasia. Figure 3 compares the GPS velocities with the Nuvel-1A. At Lanhsu, an island on the Philippine Sea plate, the GPS velocity is almost identical to the Nuvel-1A value. However, as the sites approach the Longitude Valley Fault (LVF), the present-day plate Figure 1. (a) GPS sites velocities relative to stable South America (data are from Angermann et al. [1999] and Norabuena et al. [1998]). The dashed line is a small circle through EISL around the Euler pole for the Nasca-South America relative motion. Along the circle site velocities should have the same magnitude for rigid plates. The solid line shows the location of the profile in (b). (b) Comparison of the GPS velocities (black dots with error bars) with Nuvel-1A model predictions (open circles) along the EISL-BRAZ profile. All Andean GPS sites within 200 km of the profile were projected. The dashed lines fit the Nuvel-1A velocity along the small circle in (a), and the solid line fits the GPS velocities. Only the east velocity component is shown for clarity. approach the Main Boundary Fault (MBF), the discrepancy between the GPS and the Nuvel-1A velocities increases. Across the MBF, the GPS velocity drops from 44 mm yrÀ1 at BIRA at the northern rim of the India plate to 23 mm yrÀ1 at LHAS in southern Tibet, representing 40% of the total N-S contraction between IRKT and IISC. The average strain rate is 1.7 Â 10À15 sÀ1 across the Himalayan front. The rest of the convergence is distributed across the Tibetan plateau and a broad region in central Asia. The nearly linear GPS velocity change over the Tibetan plateau is similar to that over Central Andes (see Figure 1b). Some recent GPS measurements [Freymueller et al., 2000] indicate a more Figure 2. (a) GPS velocities across the India-Eurasia plate smooth velocity drop across both the Himalayas and the Tibetan boundary with respect to stable Eurasia. The dashed line is a small plateau than those shown in Figure 2b. circle around the India-Eurasia Euler pole, along the circle the [7] Besides the broad deformation within the Eurasia plate, Nuvel-1A velocity has the same magnitude. The solid line shows Figure 2b also indicates significant shortening within the India the location of the profile in (b). Nuvel-1A velocities along this plate, the rigid indenter. Between IISC and the northern rim of the profile deviate <2% from that on the small circle.
Recommended publications
  • Spacing of Faults at the Scale of the Lithosphere and Localization Instability: 2. Application to the Central Indian Basin Laurent G
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B2, 2111, doi:10.1029/2002JB001924, 2003 Spacing of faults at the scale of the lithosphere and localization instability: 2. Application to the Central Indian Basin Laurent G. J. Monte´si1 and Maria T. Zuber2 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Received 12 April 2002; revised 21 October 2002; accepted 10 December 2002; published 20 February 2003. [1] Tectonic deformation in the Central Indian Basin (CIB) is organized at two spatial scales: long-wavelength (200 km) undulations of the basement and regularly spaced faults. The fault spacing of order 7–11 km is too short to be explained by lithospheric buckling. We show that the localization instability derived by Monte´si and Zuber [2003] provides an explanation for the fault spacing in the CIB. Localization describes how deformation focuses on narrow zones analogous to faults. The localization instability predicts that localized shear zones form a regular pattern with a characteristic spacing as they develop. The theoretical fault spacing is proportional to the depth to which localization occurs. It also depends on the strength profile and on the effective stress exponent, ne, which is a measure of localization efficiency in the brittle crust and upper mantle. The fault spacing in the CIB can be matched by ne À300 if the faults reach the depth of the brittle– ductile transition (BDT) around 40 km or ne À100 if the faults do not penetrate below 10 km. These values of ne are compatible with laboratory data on frictional velocity weakening.
    [Show full text]
  • On the Dynamics of the Juan De Fuca Plate
    Earth and Planetary Science Letters 189 (2001) 115^131 www.elsevier.com/locate/epsl On the dynamics of the Juan de Fuca plate Rob Govers *, Paul Th. Meijer Faculty of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands Received 11 October 2000; received in revised form 17 April 2001; accepted 27 April 2001 Abstract The Juan de Fuca plate is currently fragmenting along the Nootka fault zone in the north, while the Gorda region in the south shows no evidence of fragmentation. This difference is surprising, as both the northern and southern regions are young relative to the central Juan de Fuca plate. We develop stress models for the Juan de Fuca plate to understand this pattern of breakup. Another objective of our study follows from our hypothesis that small plates are partially driven by larger neighbor plates. The transform push force has been proposed to be such a dynamic interaction between the small Juan de Fuca plate and the Pacific plate. We aim to establish the relative importance of transform push for Juan de Fuca dynamics. Balancing torques from plate tectonic forces like slab pull, ridge push and various resistive forces, we first derive two groups of force models: models which require transform push across the Mendocino Transform fault and models which do not. Intraplate stress orientations computed on the basis of the force models are all close to identical. Orientations of predicted stresses are in agreement with observations. Stress magnitudes are sensitive to the force model we use, but as we have no stress magnitude observations we have no means of discriminating between force models.
    [Show full text]
  • Ocean Drilling Program Initial Reports Volume
    1. INTRAPLATE DEFORMATION AND BENGAL FAN SEDIMENTATION: BACKGROUND AND OBJECTIVES1 Shipboard Scientific Party2 INTRODUCTION 4. To establish the provenance of the terrigeneous sediments and to use compositional variations to document the tectonic Classical plate tectonics assumes that large lithospheric uplift history of the Himalayas; plates behave as rigid units, with deformation confined primar- 5. To understand the relationship between fault zones, bed- ily to their boundaries. Observational evidence suggests, how- ding planes, and the flow of water deduced from surface heat ever, that the Indian-Australian Plate is not behaving in this flow measurements; manner, but has been subjected to significant internal compres- 6. To investigate the effects of the regional compressive stress sion (Fig. 1). This is evidenced by an unusually large number regime and high heat flow on the physical, hydrological, and of intraplate earthquakes, many with thrust focal mechanisms magnetic properties of the sediment and on the diagenetic pro- (Sykes, 1970; Banghar, 1972; Fitch et al., 1973; Stein and Okal, cess; and 1978; Bergman et al., 1984) and by the inability of plate motion 7. To investigate depositional processes and rates through models to successfully reproduce both spreading rates and direc- time and the growth of the Bengal Fan, by obtaining a section tions along the boundaries of the Indian plate (Minster and Jor- deposited prior to the onset of intraplate deformation. dan, 1978; Wiens et al., 1985). However, the most spectacular and direct evidence for internal deformation in the Indian plate GEOLOGICAL AND GEOPHYSICAL are E-W striking large-scale folds and small high-angle faults in BACKGROUND the wide region between the Central Indian Ridge and the Ninety- The collision between continental India and Eurasia, begin- east Ridge (Eittreim and Ewing, 1972; Weissel et al., 1980).
    [Show full text]
  • Intraplate Deformation Due to Continental Collisions: a Numerical Study of Deformation in a Thin Viscous Sheet
    NASA Technical Memorandum 86235 /• 1 • Intraplate Deformation Due To Continental Collisions: A Numerical Study of Deformation In A Thin Viscous Sheet tNasa-TM-86235) v INTfiaBLaTE DEFORHATIONr DOE ;. tN86-3>2012; TO COHTISENTaJDXCCIIISICHSr A RaflEBICAL > STCIDT ; -••'>:• ... ; .;;•;; i OF DEFOfiaaflONwlN a:,THIN! VISCOUS SHEET ;-.'. .. .• . :" , 27 p CSC^.08E Richard C. Morgan October 1985 NASA 47 ..a. tf tt1 fI NASA Technical Memorandum 86235 /v . f (/' Intraplate Deformation Due To Continental Collisions: A Numerical Study of Deformation In A Thin Viscous Sheet Steven C. Cohen Richard C. Morgan Geodynamics Branch Goddard Space Flight Center Greenbelt, Maryland NASA National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 INTRODUCTION The collision of tectonic plates involving large continental masses can produce significant crustal deformations, not only in the vicinity of the plate boundary, but also well into the interior of the plates. The best studied example of a contemporary continental collision is that involving the Indian and Eurasian plates, but other examples of both contemporary and ancient collisions are well known. The former category includes the collision between the Arabian and Eurasian Plates resulting in deformation in the Zagros Crush Zone, Anatolia, and elsewhere, and the incipient collision between Africa and the European portion of Eurasia. Ancient erogenic zones which display residual evidence of past continental collision include the Appalachian-Caledonian system, the Hercynian System in central Europe, and the Urals (Condie, 1982). Despite the attention given to both the general phenomena involved in continental collisions and to the geotectonics of specific collisions, the mechanical processes are still not well understood. In fact, controversy still exists about the correct kinematic description of the Indian-Eurasian collision.
    [Show full text]
  • Exploring the Theory of Plate Tectonics: the Role of Mantle Lithosphere Structure
    Article text Click here to download Article text GS_Wilson_Heron_et_al_2017_resub_small.doc View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive 1 Exploring the theory of plate tectonics: the role of mantle 2 lithosphere structure 3 Philip J. Heron1,2 *, Russell N. Pysklywec1, and Randell Stephenson3 4 1Department of Earth Sciences, 22 Russell St, University of Toronto, Toronto, Ontario, Canada. 5 2 Now at: Department of Earth Sciences, Durham University, England. 6 3School of Geosciences, University of Aberdeen, Aberdeen, Scotland. 7 * Corresponding author (email: [email protected]). 8 9 Abstract: This review of the role of the mantle lithosphere in plate tectonic processes collates a 10 wide range of recent studies from seismology and numerical modelling. A continually growing 11 catalogue of deep geophysical imaging has illuminated the mantle lithosphere, and with it 12 generated new interpretations of how the lithosphere evolves. Here, we present a review of the 13 current ideas about the role of continental mantle lithosphere in plate tectonic processes. 14 Evidence seems to be growing that scarring in continental mantle lithosphere is rather 15 ubiquitous, which implies a reassessment of the widely-held view that it is inheritance of crustal 16 structure only (rather than the lithosphere as a whole) that is most important in the conventional 17 theory of plate tectonics (e.g., the Wilson Cycle). Recent studies have interpreted mantle 18 lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle 19 and inheritance. We consider the current fundamental questions in the role of the mantle 20 lithosphere in causing tectonic deformation, reviewing recent results alongside highlighting the 21 potential of the deep lithosphere in infiltrating every aspect of plate tectonics processes.
    [Show full text]
  • Earthquake Cycle Deformation and the Moho: Implications for the Rheology of Continental Lithosphere
    Tectonophysics 609 (2013) 504–523 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere Tim J. Wright a,⁎,JohnR.Elliottb, Hua Wang c, Isabelle Ryder d a COMET+, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK b COMET+, Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK c Department of Surveying Engineering, Guangdong University of Technology, Guangzhou, China d School of Environmental Sciences, 4 Brownlow St, University of Liverpool, L69 3GP, UK article info abstract Article history: The last 20 years has seen a dramatic improvement in the quantity and quality of geodetic measurements of the Received 18 June 2012 earthquake loading cycle. In this paper we compile and review these observations and test whether crustal thick- Received in revised form 20 July 2013 ness exerts any control. We found 78 earthquake source mechanisms for continental earthquakes derived from Accepted 22 July 2013 satellite geodesy, 187 estimates of interseismic “locking depth”, and 23 earthquakes (or sequences) for which Available online 6 August 2013 postseismic deformation has been observed. Globally we estimate seismogenic thickness to be 14 ± 5 and 14 ± 7 km from coseismic and interseismic observations respectively. We find that there is no global relation- Keywords: Moho ship between Moho depth and the seismogenic layer thickness determined geodetically. We also found no Crustal deformation clear global relationship between seismogenic thickness and proxies for the temperature structure of the crust. Geodesy This suggests that the effect of temperature, so clear in oceanic lithosphere, is masked in the continents by consid- Continental rheology erable variation in lithology, strain-rate, and/or grain size.
    [Show full text]
  • GPS Measurements of Crustal Deformation in the Baikal-Mongolia Area (1994-2002) : Implications for Current Kinematics of Asia E
    GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002) : Implications for current kinematics of Asia E. Calais, M. Vergnolle, V. San’Kov, A. Lukhnev, A. Miroshnitchenko, S. Amarjargal, Jacques Déverchère To cite this version: E. Calais, M. Vergnolle, V. San’Kov, A. Lukhnev, A. Miroshnitchenko, et al.. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002) : Implications for current kinematics of Asia. Journal of Geophysical Research, American Geophysical Union, 2003, 108 (B10), pp.ETG 14-1. 10.1029/2002JB002373. hal-00406988 HAL Id: hal-00406988 https://hal.archives-ouvertes.fr/hal-00406988 Submitted on 29 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B10, 2501, doi:10.1029/2002JB002373, 2003 GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia Eric Calais,1 Mathilde Vergnolle,2 Vladimir San’kov,3 Andrei Lukhnev,3 Andrei Miroshnitchenko,3 Sharavyn Amarjargal,4 and Jacques De´verche`re5 Received 27 December 2002; revised 5 May 2003; accepted 14 May 2003; published 25 October 2003. [1] We present new geodetic results of crustal velocities over a large part of northern Asia based on GPS measurements in the Baikal rift zone and Mongolia spanning the 1994– 2002 period.
    [Show full text]
  • Plate Interior Polyphase Fault Systems and Sedimentary Basin Evolution A
    Journal of Asian Earth Sciences xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Full length article Plate interior polyphase fault systems and sedimentary basin evolution: A case study of the East Gobi Basin and East Gobi Fault Zone, southeastern Mongolia ⁎ Matthew J. Heumanna, , Cari L. Johnsonb, Laura E. Webbc a Apache Corporation, 2000 Post Oak Blvd #100, Houston, TX 77056, USA b Geology and Geophysics Department, University of Utah, 115 South 1460 East FASB 383, Salt Lake City, UT 84112, USA c Department of Geology, University of Vermont, 180 Colchester Ave., Burlington, VT 05405, USA ARTICLE INFO ABSTRACT Keywords: Structural interpretation of 2-D seismic reflection data and subsurface-outcrop correlations reveal six distinct Tectonics phases of deformation recorded in the Paleozoic basement rocks and Mesozoic-Cenozoic basin fill of the East Basin analysis Gobi Basin (EGB), southeastern Mongolia. These phases include arc accretion and arc-continent collision in late Strike-slip Paleozoic time, Late Triassic sinistral shear-zone development, Early Jurassic fold and thrust belt style Intracontinental deformation shortening, Middle Jurassic-Lower Cretaceous extension and rift basin development, middle Cretaceous shortening with basin inversion and regional unconformity development, and Late Cretaceous-Oligocene thermal subsidence with renewed Paleogene left-lateral strike slip faulting across the fault zone. The five post-amalgamation deformation phases are localized along the East Gobi Fault Zone, suggesting that preexisting structures and boundary conditions exert fundamental controls on the long term evolution of intracontinental basins such as the EGB. Subsurface geophysical data and outcrop correlations demonstrate that the main subbasins of the EGB contain major differences in basement metamorphic and structural fabrics, basin fill patterns, and distinct Mesozoic-Cenozoic fault generations.
    [Show full text]
  • Intraplate Strike-Slip Deformation Belts
    Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 Intraplate strike-slip deformation belts F. STORTP, R. E. HOLDSWORTH 2 & F. SALVINI 1 1Dipartimento di Scienze Geologiche, Universith "Roma Tre", Largo S. L. Murialdo 1, 1- 00146 Roma, Italy. 2Reactivation Research Group, Department of Geological Sciences, Durham University, Durham DH1 3LE, UK Abstract: Intraplate strike-slip deformation belts are typically steeply-dipping structures that develop in both oceanic and continental lithosphere where they form some of the largest and most spectacular discontinuities found on Earth. In both modern and ancient continental settings, intraplate strike slip deformation belts are of major importance in accommodating horizontal displacements where they additionally form very persistent zones of weakness that substantially influence the rheological behaviour of the lithosphere over very long time periods (up to 1 Ga or more). These deformation zones provide a fundamental geometric, kinematic and dynamic link between the more rigid plate-dominated tectonics of the oceans and the non-rigid, complex behaviour of the continents. During convergence, they help to transfer major displacements deep into the plate interiors. During divergence, they act as transfer zones that segment rifts, passive continental margins and, ultimately, oceanic spreading ridges. Such belts are also of great econ- omic importance, controlling the location of many destructive earthquakes, offshore and onshore hydrocarbon deposits and metalliferous ore deposits. In the oceans, intraplate strike-slip move- ments are relatively minor along transform-related fracture zones, but there are an increasing number of documented examples that may reflect spatial and temporal variations in spreading rate along individual active ridge segments.
    [Show full text]
  • ASIA: Hypercollision Tectonics
    271 Asia: continued collision tectonics Closure of an ocean and subsequent collision of two continents result in an intricate process of thrusting and deformation and a reduction to the cessation of relative convergence between the plates when the buoyancy of the continental crust hinders subduction as a whole into the mantle. Other plates reorganize to take up the motion elsewhere. Like in Oman, the active forces responsible for collision may initiate an oceanic subduction zone at a new continental margin or intraoceanic arc system. Tectonics of Asia shows that the behavior of continents after the collision is complex. The continuing penetration of India into Eurasia drives the growth and evolution of the Tibetan Plateau. The strain is partitioned between shortening absorbed on folds and thrusts and lateral extrusion accommodated on large strike-slip faults. Lateral heterogeneities of crustal strength determine the magnitude and distribution of deformation. Normal faulting expresses coeval east-west extension and north-south shortening in the thick continental crust of Tibet. Plate tectonic setting Due to continuous convergence of the Indian and Eurasian plates, the Himalaya and its adjoining region have been undergoing persistent compression since the beginning of collision 50-70 Ma ago. jpb – Intracontinental deformation in Asia Tectonics-2021 272 Plate movements provided by geophysical methods (namely magnetic anomalies in the Indian Ocean and paleomagnetism, see lecture on Himalaya) indicate over 2000 km intra-continental shortening between stable India and stable Asia since the initial collision. The present-day rate of convergence is about 50 mm/yr. Seismic studies and the rate of southward advance of the foreland basin indicate that only 10 to 25 mm/yr.
    [Show full text]
  • Intraplate Strike-Slip Deformation Belts
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Intraplate strike-slip deformation belts F. STORTP, R. E. HOLDSWORTH 2 & F. SALVINI 1 1Dipartimento di Scienze Geologiche, Universith "Roma Tre", Largo S. L. Murialdo 1, 1- 00146 Roma, Italy. 2Reactivation Research Group, Department of Geological Sciences, Durham University, Durham DH1 3LE, UK Abstract: Intraplate strike-slip deformation belts are typically steeply-dipping structures that develop in both oceanic and continental lithosphere where they form some of the largest and most spectacular discontinuities found on Earth. In both modern and ancient continental settings, intraplate strike slip deformation belts are of major importance in accommodating horizontal displacements where they additionally form very persistent zones of weakness that substantially influence the rheological behaviour of the lithosphere over very long time periods (up to 1 Ga or more). These deformation zones provide a fundamental geometric, kinematic and dynamic link between the more rigid plate-dominated tectonics of the oceans and the non-rigid, complex behaviour of the continents. During convergence, they help to transfer major displacements deep into the plate interiors. During divergence, they act as transfer zones that segment rifts, passive continental margins and, ultimately, oceanic spreading ridges. Such belts are also of great econ- omic importance, controlling the location of many destructive earthquakes, offshore and onshore hydrocarbon deposits and metalliferous ore deposits. In the oceans, intraplate strike-slip move- ments are relatively minor along transform-related fracture zones, but there are an increasing number of documented examples that may reflect spatial and temporal variations in spreading rate along individual active ridge segments.
    [Show full text]
  • Spatio-Temporal Evolution of Intraplate Strike-Slip Faulting: the Neogene-Quaternary Kuh-E-Faghan Fault, Central Iran
    1 Publisher: GSA 2 Journal: GSAB: GSA Bulletin 3 DOI:10.1130/B31266.1 4 5 Space-time evolution of the Neogene–Quaternary Kuh-e-Faghan fault, central Iran 6 GSA Bulletin; Month/Month 2015; v. 1xx; no. X/X; p. 000–000; doi: 10.1130/B31266.1 7 8 9 Spatio-temporal evolution of intraplate strike-slip faulting: the 10 Neogene-Quaternary Kuh-e-Faghan Fault, Central Iran 11 12 Gabriele Calzolari(1), Federico Rossetti(1;*), Marta Della Seta(2), Reza Nozaem (3), Valerio 13 Olivetti(4), Maria Laura Balestrieri(5), Domenico Cosentino(1), Claudio Faccenna(1), 14 Finlay M. Stuart(6), Gianluca Vignaroli(1) 15 16 1Dipartimento di Scienze, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy 17 2Dipartimento di Scienze della Terra, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 18 Rome, Italy 19 3Department of Geology, Imam Khomeini International University, 34149-16818 Qazvin, Iran 20 4Aix-Marseille Université, CNRS, IRD, CEREGE UM34, 13545 Aix en Provence, France. 21 5CNR-Istituto di Geoscienze e Georisorse, Via G. La Pira 4, 50121 Firenze, Italy 22 6Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East 23 Kilbride G75 0QF, UK 24 25 26 27 28 29 30 31 32 33 34 35 (*) Corresponding Author 36 Email: [email protected] 37 Tel: +390657338082 38 Fax: +3957338201 1 39 ABSTRACT 40 Central Iran provides an ideal region to study the long-term morphotectonic response to the 41 nucleation and propagation of intraplate faulting. In this study, a multidisciplinary approach 42 that integrates structural and stratigraphic field investigations with apatite (U+Th)/He (AHe) 43 thermochronometry is used to reconstruct the spatio-temporal evolution of the Kuh-e-Faghan 44 Fault (KFF) in northeastern Central Iran.
    [Show full text]