Explorer's Gazette
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antarctic Primer
Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state. -
Thurston Island
RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological -
Planet Action Global Projects Help Protect Environment Technology&More Technology&Morewelcome to the Latest Issue of Technology&More!
technology&more technology&more A Publication for Geospatial Professionals • Issue 2013-1 technology&more European Central Bank’s New Headquarters Double Tower Challenges Surveyors Measuring Mountains Planet Action Global Projects Help Protect Environment technology&more technology&moreWelcome to the Latest Issue of Technology&more! technology&moreDear Readers, Whether the construction of a • India pg. 10 tunnel in the depths of the San Studying Seismic Activity Francisco Bay or the quest to measure the world's highest peaks, this issue of Technology&more highlights some of the most innovative projects (and adventures) our • Korea pg. 14 customers are involved in Surveying Ships around the globe. You’ll read about measuring mountains Chris Gibson: Vice President in Antarctica and Nepal; construction surveying for the European Central Bank’s new headquarters in Germany; studying seismic activity in India; surveying for shipbuilding in Korea; protecting • U.S. pg. 16 the environment in France, Mexico and Chile; and many Northstar Surveys other projects. Each issue of Technology&more seeks to showcase projects around the world that demonstrate the enhanced productivity that can be gained through the use of Trimble® technology. As always, we hope that one or more of the • China pg. 18 articles will provide useful ideas and information that will Lunar Test benefit you and your business today—and tomorrow. You’ll also find our new “Day in the Life” feature in this issue. Profiling a geospatial professional on the cutting-edge of their industry, this issue spotlights Rich Freese, PLS, of Published by: Northstar Surveys in Southern California. Watch for more Trimble Engineering & Construction profiles in future issues. -
Tectonic and Oceanographic Controls on Abbot Ice Shelf
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 7, 5509–5540, 2013 Open Access www.the-cryosphere-discuss.net/7/5509/2013/ The Cryosphere TCD doi:10.5194/tcd-7-5509-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 7, 5509–5540, 2013 This discussion paper is/has been under review for the journal The Cryosphere (TC). Tectonic and Please refer to the corresponding final paper in TC if available. oceanographic controls on Abbot Ice Tectonic and oceanographic controls on Shelf Abbot Ice Shelf thickness and stability J. R. Cochran et al. J. R. Cochran, S. S. Jacobs, K. J. Tinto, and R. E. Bell Title Page Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA Abstract Introduction Received: 29 October 2013 – Accepted: 10 November 2013 – Published: 19 November 2013 Conclusions References Correspondence to: J. R. Cochran ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Tables Figures J I J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 5509 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Ice shelves play key roles in stabilizing Antarctica’s ice sheets and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry 7, 5509–5540, 2013 are important for assessing ocean–ice interactions and modeling ice response to cli- 5 mate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces Tectonic and large volumes of meltwater but is in overall mass balance unlike other ice shelves in oceanographic the region that are losing mass. -
Latady Formation
ied consist of a north-northwest-trending set of major folds A total distance of 15,700 kilometers was flown in 78.5 hours with subordinate thrusts. The existence of previously unrec- using all the fuel available. Four lines were flown at maximum ognized major folds was determined from detailed study of range of the aircraft to the Bryan Coast and Pine Island Glacier, minor-fold geometry as well as reinterpretation of some Cre- four lines at maximum range over the Ronne Ice Shelf towards taceous stratigraphic boundaries. The folds involve Upper Jur- the Antarctic Peninsula, and two lines covering local features assic through Upper Cretaceous rocks, while Tertiary sedi- within and around the Ellsworth Mountains. mentary rocks occur in a monoclinal belt along the eastern The survey delimited the catchment area of Pine Island Gla- edge of the study area. A well-devloped cleavage is present cier and gave valuable information on the nature of the sub- throughout. A structural profile of the transect is being con- ice surface as well as the sub-ice topography itself (Doake and structed. Crabtree, Antarctic Journal, this issue). Wilson also measured detailed stratigraphic sections in the The British Antarctic Survey scientists most closely involved Lower Cretaceous rocks. Together with sedimentologic data with the work are Charles Swithinbank, head of the Earth and petrographic results, these sections will provide a more Sciences Section, Christopher Doake, and Richard Crabtree. detailed understanding of the early evolution of the Magal- Peter Clarkson, Geoffrey Renner, and Michael Thomson par- lanes basin. ticipated in planning the flight program. -
GEOLOGICAL SURVEY RESEARCH 1971 Chapter B
GEOLOGICAL SURVEY RESEARCH 1971 Chapter B GEOLOGICAL SURVEY PROFESSIONAL PAPER 750-8 Scientific notes and summaries of investigations in geology, hydrology, and related fields UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. 0. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director -- For sale by the Superintendent of Documsnh, U.S. Government Printing Office Washington, D.C. 20402 - Price $3.50 GEOLOGIC STUDIES Structural geology Page Structures related to thrust faults in the Stansbury Mountains, Utah, by E. W. Tooker and R. J. Roberts- - - - - - - - - - - - B1 Displacement of the Pocahontas Formation by the Russell Fork fault, southwest Virginia, by K. J. Englund- - - - - - - - - - 13 Paleontology and stratigraphy The Twowells Sandstone Tongue of the Dakota Sandstone and the Tres Hermanos Sandstone as used by Herrick (1900), western New Mexico, by C. H. Dane, E. R. Landis, and W. A. Cobban ........................................ 17 Lisburne Group, Cape Lewis-Niak Creek, northwestern Alaska, by A. K. Armstrong, B. L. Mamet, and J. T. Dutro, Jr- 23 Stratigraphic interpretations of some Cretaceous microfossil floras of.the Middle Atlantic States, by J. A. Wolfe and H. M. Pakiser----------------------------------------------------------------------------------------,-------- 35 Paleocene mollusks from the Gulf of Alaska Tertiary province-A significant new occurrence on the North Pacific rim, by W. 0. Addioottand George Plafker------------------------------------------------------------------------ 48 Two new fossil pollen genera from upper Campanian (Cretaceous) rocks of Montana, by B. D. Tschudy-- - - - - - - - - - - - - 53 Petrology The Landfall Peak Adamellite and regional comparison of petrochemical and age data from the Thurston Island-Eights Coast area, West Antarctica, by A. A. Drake, Jr., R. F. Marvin, T. W. -
The Stratigraphy of the Ohio Range, Antarctica
This dissertation has been 65—1200 microfilmed exactly as received LONG, William Ellis, 1930- THE STRATIGRAPHY OF THE OHIO RANGE, ANTARCTICA. The Ohio State University, Ph.D., 1964 G eology University Microfilms, Inc., Ann Arbor, Michigan THE STRATIGRAPHY OF THE OHIO RANGE, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By William Ellis Long, B.S., Rl.S. The Ohio State University 1964 Approved by A (Miser Department of Geology PLEASE NOTE: Figure pages are not original copy* ' They tend tc "curl11. Filled in the best way possible. University Microfilms, Inc. Frontispiece. The Ohio Range, Antarctica as seen from the summit of ITIt. Glossopteris. The cliffs of the northern escarpment include Schulthess Buttress and Darling Ridge. The flat area above the cliffs is the Buckeye Table. ACKNOWLEDGMENTS The preparation of this paper is aided by the supervision and advice of Dr. R. P. Goldthwait and Dr. J. M. Schopf. Dr. 5. B. Treves provided petrographic advice and Dir. G. A. Doumani provided information con cerning the invertebrate fossils. Invaluable assistance in the fiBld was provided by Mr. L. L. Lackey, Mr. M. D. Higgins, Mr. J. Ricker, and Mr. C. Skinner. Funds for this study were made available by the Office of Antarctic Programs of the National Science Foundation (NSF grants G-13590 and G-17216). The Ohio State Univer sity Research Foundation and Institute of Polar Studies administered the project (OSURF Projects 1132 and 1258). Logistic support in Antarctica was provided by the United States Navy, especially Air Development Squadron VX6. -
WAGNERJR-THESIS-2018.Pdf
HISTORY OF THE UNITED STATES MILITARY PARTICIPATION IN OPERATION DEEP FREEZE ___________ A Thesis Presented to The Faculty of the Department of History Sam Houston State University ___________ In Partial Fulfillment of the Requirements for the Degree of Master of Arts ___________ by Dale LaForest Wagner Jr. May 2018 HISTORY OF THE UNITED STATES MILITARY PARTICIPATION IN OPERATION DEEP FREEZE by Dale LaForest Wagner Jr. ___________ APPROVED: Nicholas Pappas, PhD Committee Director Jeremiah Dancy, PhD Committee Member James S. Olson, PhD Committee Member Abbey Zink, PhD Dean, College of Humanities and Social Sciences DEDICATION I dedicate my thesis to my wife Mary Beth and daughter Sarah, without whom this would not have been possible. I am forever in your debt for allowing me this opportunity to pursue my dream. I am grateful for my parents, Dale and Mary Wagner, and to my many teachers and professors Benton Cain, Andrew Orr and Jeffrey Littlejohn to name but a few who have pushed me to do my best over the many years of my education. To my friends and church family who have supported me as well, I appreciate all you have done as well. iii ABSTRACT Wagner, Dale L., History of the United States Military Participation in Operation Deep Freeze. Master of Arts (History), May 2018, Sam Houston State University, Huntsville, Texas. In 1955, the longest non-combat military operation in United States history began; it continues to this day. Operation Deep Freeze began in support of the then upcoming International Geophysical Year (IGY), but it went beyond when the U.S. -
A Revised Geochronology of Thurston Island, West Antarctica and Correlations Along the Proto
1 A revised geochronology of Thurston Island, West Antarctica and correlations along the proto- 2 Pacific margin of Gondwana 3 4 5 6 T.R. Riley1, M.J. Flowerdew1,2, R.J. Pankhurst3, P.T. Leat1,4, I.L. Millar3, C.M. Fanning5 & M.J. 7 Whitehouse6 8 9 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 10 2CASP, 181A Huntingdon Road, Cambridge, CB3 0DH, UK 11 3British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 12 4Department of Geology, University of Leicester, Leicester, LE1 7RH, UK 13 5Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia 14 6Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden 15 16 17 18 19 20 21 22 23 24 *Author for correspondence 25 e-mail: [email protected] 26 Tel. 44 (0) 1223 221423 1 27 Abstract 28 The continental margin of Gondwana preserves a record of long-lived magmatism from the Andean 29 Cordillera to Australia. The crustal blocks of West Antarctica form part of this margin, with 30 Palaeozoic – Mesozoic magmatism particularly well preserved in the Antarctic Peninsula and Marie 31 Byrd Land. Magmatic events on the intervening Thurston Island crustal block are poorly defined, 32 which has hindered accurate correlations along the margin. Six samples are dated here using U-Pb 33 geochronology and cover the geological history on Thurston Island. The basement gneisses from 34 Morgan Inlet have a protolith age of 349 ± 2 Ma and correlate closely with the Devonian – 35 Carboniferous magmatism of Marie Byrd Land and New Zealand. -
Ellsworth Mountains, Overview Antarctica Mt
AAC Publications Ellsworth Mountains, Overview Antarctica Mt. Vinson (4,892m) continues to attract large numbers. One hundred and seventy individual climbers reached the summit during the 2012-13 season (a total of 184 successful ascents). Fourteen guides made two or more ascents. Only four clients failed to top out. Neighboring Mt. Shinn (4,660m) received five ascents. American guide Robert Anderson and his clients did the probable first ascent of a 2,880m peak five kilometers south of Vinson base camp. This attractive ice peak forms a pyramidal end to the ridge dividing the Cairns and Tulaczyk glaciers, the unclimbed southern arm of the western ridge of the Vinson Massif. In late December, Antarctic Logistics & Expeditions (ALE) guides Maria Paz “Pachi” Ibarra and Todd Passey led the returning German client Ralf Laier on the first ascents of three peaks: Mt. Allen (3,430m) and Mt. Liptak (3,052m) in the southern Sentinel Range, and Robinson Peak (2,038m) further south in the Heritage Range. Allen was climbed from the south, ending in a difficult corniced ridge, and took two attempts. Liptak had a mixed summit ridge of loose rock, after steep snow and ice on the northern slope. Robinson Peak, a rocky summit in the Pioneer Heights Range, was approached from the west, across the Rennell Glacier, and then climbed by the south ridge, with some technical rock pitches and exposed scrambling. The trio traversed the summit to the northern side, and traveled back around the east to reach their skis on the southern col. Further south, in the Independence Hills, Scott Webster and friends made the first ascent of an elegangt unnamed ice peak north of Beitzel Peak and just south of the famous Minaret Peak, a distinctive rock tower visible to all who flew out of the old ANI base at Patriot Hills. -
Mt. Gardner, Ascent; Mt
New altitude survey; Mt. Craddock, west face; Mt. Gardner, ascent; Mt. Tyree, attempt. As a continuation of previous GPS work on Mt. Shinn (2002), Livingston Island (2003), and the Vinson Massif (2004), another expedition from the Omega Foundation planned to climb and measure Mts. Tyree, Craddock, and Gardner during 2005-06. These mountains were believed to be the second, fourth and fifth highest, respectively, in Antarctica. On November 23 we landed on a previously unvisited glacier west of Mt. Craddock and set up base camp, lower than expected, at 1,455m. During the following days we climbed a small vir gin 1,978m peak to the west (via the east face and north ridge on the 24th; 500m; PD), sledged loads farther up the glacier, and made an advanced base at 2,041m, close beneath the west face of Craddock. All the team climbed the lower slopes of the face and dug a site out of a rock ridge for Camp 1 (3,258m). Steve Chaplin (U.K.) and I spent four nights there in poor weather. December 7 was a brilliant day, and we quickly climbed the 45° snow and ice slopes of the 1,000m upper west face to reach the summit in the eve ning. The climbing was never diffi cult but sustained and sometimes on ice, so a fall would have been serious. The 2,300m route was AD. There are no flat places to put a tent, hence our excavation of the ridge. This was the second ascent of Craddock, first climbed by Conrad Anker and Jay Smith in 1992 by a dif ferent route from the west, accessed from the glacial basin to the north of ours. -
An Improved Bathymetry Compilation for the Bellingshausen Sea, Antarctica, to Inform Ice-Sheet and Ocean Models
The Cryosphere, 5, 95–106, 2011 www.the-cryosphere.net/5/95/2011/ The Cryosphere doi:10.5194/tc-5-95-2011 © Author(s) 2011. CC Attribution 3.0 License. An improved bathymetry compilation for the Bellingshausen Sea, Antarctica, to inform ice-sheet and ocean models A. G. C. Graham1, F. O. Nitsche2, and R. D. Larter1 1Ice Sheets programme, British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 2Lamont Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, New York, 10964, USA Received: 30 September 2010 – Published in The Cryosphere Discuss.: 15 October 2010 Revised: 14 January 2011 – Accepted: 3 February 2011 – Published: 16 February 2011 Abstract. The southern Bellingshausen Sea (SBS) is a ning and acceleration of the WAIS, measure changes to its rapidly-changing part of West Antarctica, where oceanic and glaciers and ice shelves at ocean margins, and estimate the atmospheric warming has led to the recent basal melting impacts of future changes on the environment (including sea and break-up of the Wilkins ice shelf, the dynamic thin- level), with implications for society as a whole (e.g. Over- ning of fringing glaciers, and sea-ice reduction. Accurate peck and Weiss, 2009). sea-floor morphology is vital for understanding the contin- A concerted focus of West Antarctic studies is on the ued effects of each process upon changes within Antarc- southern Bellingshausen Sea (SBS), fed by ice draining tica’s ice sheets. Here we present a new bathymetric grid for the WAIS as well as the adjoining Antarctic Pensinusla the SBS compiled from shipborne multibeam echo-sounder, Ice Sheet, where major changes are already taking place spot-sounding and sub-ice measurements.