Sedimentary Rocks of the English Coast, Eastern Ellsworth Land

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Rocks of the English Coast, Eastern Ellsworth Land The channel-fill deposits at Mount Benkert appear to represent British Antarctic Survey. 1981. British antarctic territory geologic map, Sheet fluviatile sedimentary rocks derived from hyaloclastites; the 4, Alexander Island: BAS 500G Series, 1:500,000. Cambridge: British huge channel forms that compose the main outcrop, the associ- Antarctic Survey. ated mesoscopic internal bedding forms of cut-and-fill struc- Burn, R.W., and M.R.A. Thomson. 1981. Late Cenozoic tillites associ- tures, graded bedding and crossbedding, and the association ated with interglacial volcanic rocks, Lesser Antarctica. In Ml. with nonpillowed basalt flows suggest that these rocks are of Hambrey, and W.B. Harland (Eds.), Pre-Pleistocene tillites: A record of Cambridge: Cambridge University Press. subaerial origin. The geochemically immature composition and Earths glacial history. the angularity of the grains that compose the deposit indicate a LeMasurier, W. E., and EA. Wade. 1976. Volcanic history in Marie Byrd very close source area. Vesicular basaltic dikes as much as 4 Land: Implications with regard to southern hemisphere tectonic re- meters thick are abundant in the central and eastern part of the constructions. In 0. Gonzalez-Ferran (Ed.), Andean and antarctic vol- Rome: International Association of Volcanology mountain; most are vertical and trend east to northeast. canology problems. and Chemistry of the Earths Interior. The authors thank the fellow members of the English Coast expedition, K.S. Kellogg, T.S. Laudon, D.J. Lidke, P.D. Rowley, Renner, R.G.B., B.J. Dikstra, and J.L. Martin. 1982. Aeromagnetic sur- and W.R. Vennum, for their help in collecting the field data. veys over the Antarctic Peninsula. In C. Craddock (Ed.), Antarctic This work was supported by National Science Foundation grant geosciences. Madison: University of Wisconsin Press. DPP 83-18183. Rowley, PD., K.S. Kellogg, and W.R. Vennum. 1985. Geologic studies in the English Coast, eastern Ellsworth Land, Antarctica. Antarctic Journal of the U.S., 20(5). References Vennum, W.R., and T.S. Laudon. In press. Igneous petrology of the Merrick Mountains, eastern Ellsworth Land, Antarctica. In P.D. Baker, P.E. 1976. Volcanism and plate tectonics in the Antarctic Penin- Rowley and W.R. Vennum (Eds.), Studies of the geology and mineral sula and Scotia Arc. In 0. Gonzalez-Ferran (Ed.), Andean and antarctic resources of the southern Antarctic Peninsula and eastern Ellsworth Land, volcanology problems. Rome: International Association of Volcanology Antarctica. (U.S. Geological Survey Professional Paper 1170.) Wash- and Chemistry of the Earths Interior. ington, D.C.: U.S. Government Printing Office. basaltic volcanic and volcaniclastic rocks of probable Late Sedimentary rocks of the English Cenozoic age. The Mesozoic plutonic and volcanic rocks, and Coast, eastern Ellsworth Land, the Cenozoic volcanic rocks are described elsewhere (Rowley, Antarctica Kellogg, and Vennum, Antarctic Journal, this issue; ONeill and Thomson, Antarctic Journal, this issue). Plant fossils discussed in this report were studied and classified by Theodore Delevoryas and Carole T. Gee. T.S. LAUDON Small outcrops of sedimentary rocks occur at nine localities in the English Coast (figure 1). They make up Henkle Peak and Department of Geology two other small nunataks, unofficially called "Erehwon" and University of Wisconsin at Oshkosh "Sobaco"; they occur interbedded with volcanic rocks at Mount Oshkosh, Wisconsin 54901 Peterson, Mount Rex, Marshall Nunatak, Mount Southern, an Mount Harry; and they are intruded by plutonic rocks a D.J. LIDKE FitzGerald Bluffs. The sedimentary rocks have been struc turally deformed and most have northwesterly strikes an U.S. Geological Survey southwesterly dips. Stratigraphic correlation between outcrop Denver, Colorado 80225 is not possible on the basis of field criteria. All of the sedimentary rocks appear to have been deposited i and C.T. GEE T. DELEVORYAS terrestrial environments. At Mount Peterson, interbedded re sandstone, siltstone, and boulder conglomerate are probab Department of Botany part of an ancient alluvial fan. Deltaic or coastal swamp enviroi- University of Texas at Austin Austin, Texas 78713 ments seem to be represented by fine-grained sandstone con- taming Glossopteris leaves at "Erehwon" Nunatak, and by car- bonaceous conglomerate and sandstone, containing abundant Sixteen small nunataks or nunatak groups scattered over conifer wood, bark, and leaves, at Henkle Peak. Conspicuously more than 16,000 square kilometers of the English Coast of the crossbedded, metamorphosed quartz sandstone units at Bellingshausen Sea in eastern Ellsworth Land were examined FitzGerald Bluffs and at "Sobaco" Nunatak probably were de- for the first time during the 1984 - 1985 field season (figure 1). posited in fluvial environments. Other outcrops of sedimentary These nunataks are the westernmost exposures of the southern rocks constitute relatively minor portions of predominantly Antarctic Peninsula structural province. They are made up of volcanic sequences. sedimentary rocks of Late Paleozoic and Early Mesozoic age, The only fossils found on the English Coast are land plants. volcanic and plutonic rocks of probable Mesozoic age, and Leaves from "Erehwon" Nunatak (figure 2) belong to one or 38 ANTARCTIC JOURNAL more species of Glossopteris of Permian age (possibly extending into the Triassic). Bark, wood, and leaves from Henkle Peak include leafy twigs of Elatocladus sp. (figure 3) probably of Jurassic age. Figure 3. Fossil plant material including leafy twig of Elatoc!adus from Henkle Peak. Previously described Mesozoic rock units from the southern Antarctic Peninsula and Alexander Island were all formed in magmatic arc-related environments (Rowley et al. 1983). The LeMay Group on central Alexander Island contains accreted lower slope sediments and fore-arc basin deposits ranging in age at least from Triassic to Middle Cretaceous (Burn 1984). The Latady Formation of Middle and Late Jurassic age, which is the only sedimentary rock unit exposed in the Orville and Lassiter Coasts, contains predominantly marine back-arc basin deposits that intertongue with terrestrial volcanic and sedimentary rocks (not shown on figure 1) in Palmer Land, near the axis of the Figure 1. Geologic sketch map of southern Palmer Land, eastern Antarctic Peninsula (Laudon etal. 1983). The Fossil Bluff Forma- Ellsworth Land, and Alexander Island showing approximate dis- tion on eastern Alexander Island is composed of volcanogenic tribution of sedimentary rock units, and locations of nunataks men- fore-arc basin deposits of Late Jurassic and Early Cretaceous age tioned in text. ("Li.Ju. - L.K." denotes "Upper Jurassic to Lower (Thomson 1982). Cretaceous." "U. + M. Jurassic" denotes "Upper and Middle Sedimentary rocks at Henkle Peak contain Elatocladus-bear- Jurassic: "M.Cr. - Tr denotes "Middle Cretaceous to Triassic." ing strata, and they probably are lateral equivalents of terrestrial "KM" denotes "Kilometer.") facies of the Latady Formation. Sedimentary rocks exposed north and west of Henkle Peak seem to differ significantly from the Latady Formation in lithology, age, provenance, or environ- ment of deposition. Glossopteris-bearing sandstone at "Ereh- won" Nunatak is significantly older than the oldest previously dated rock from the southern Antarctic Peninsula, which is an ammonite-bearing sandstone of Middle Jurassic (Bajocian) age (Quilty 1970) from the Behrendt Mountains. Metamorphosed quartz sandstone at FitzGerald Bluffs and at "Sobaco" Nunatak appears to be of cratonic provenance, in marked contrast to the Latady Formation, the LeMay Group, and the Fossil Bluff For- mation, which are predominantly of volcanic-arc provenance. A probable alluvial fan deposit at Mount Peterson contains a variety of boulders of volcanic, plutonic, and sedimentary rocks. It is overlain by volcanic rocks and probably was deposi- ted near a fault scarp or topographic rise. At Marshall Nunatak, volcanic conglomerate contains boulders of a variety of vol- canic, plutonic, and sedimentary rocks. The presence of terrestrial sedimentary rocks, some of Late Paleozoic or Triassic age, some of apparent cratonic provenance, and some apparently deposited near fault scarps or topographic rises and volcanic centers, suggests that the English Coast may have been located on or near the Pacific Coast of southern Gondwana during, or immediately prior to, the inception of the Figure 2. Glossopteris leaf from "Erehwon" Nunatak. Gondwana breakup during the Triassic. This interpretation is 1985 REVIEW 39 consistent with a growing body of evidence supporting the Daiziel, I.W.D., and D.H. Elliott. 1982. West Antarctica: Problem child speculation that upper Paleozoic (?) to lower Mesozoic rocks of of Gondwanaland. Tectonics, 1(1), 3 - 19. the Antarctic Peninsula lithospheric plate are part of an An- Hyden, G., and P.W.G. Tanner. 1981. Late Paleozoic-early Mesozoic dean-type mountain belt that was continuous along the Pacific fore-arc basin sedimentary rocks at the Pacific margin in western margin of Gondwana from South America to New Zealand Antarctica. Geologische Rundschau, 70, 529 - 541. prior to the Gondwana breakup (e.g., Hyden and Tanner 1981; Laudon, T.S., M.R.A. Thomson, P.L. Williams, K.L. Milliken, P.D. Dalziel and Elliott 1982; Burn 1984). Rowley, and J.M. Boyles. 1983. The Jurassic Latady Formation, south- We thank the other members of the English Coast field party, ern Antarctic Peninsula. In R.L. Oliver, P.R. James, and J.B. Jago
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Igneous Rocks of Peter I Island Hemisphere Tectonic Reconstructions
    LeMasurier, W. E., and F. A. Wade. In press. Volcanic history in Marie Byrd Land: implications with regard to southern Igneous rocks of Peter I Island hemisphere tectonic reconstructions. In: Proceedings of the International Symposium on Andean and Antarctic Vol- canology Problems, Santiago, Chile (0. Gonzalez-Ferran, edi- tor). Rome, International Association of Volcanology and Chemistry of Earths Interior. THOMAS W. BASTIEN Price, R. C., and S. R. Taylor. 1973. The geochemistry of Dune- Ernest E. Lehmann Associates din Volcano, East Otago, New Zealand: rare earth elements. Minneapolis, Minnesota 55403 Contributions to Mineralogy and Petrology, 40: 195-205. Sun, S. S., and G. N. Hanson. 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle CAMPBELL CRADDOCK sources of alkali basalts and nephelinites. Contributions to Department of Geology and Geophysics Mineralogy and Petrology, 52: 77-106. The University of Wisconsin, Madison Sun, S. S., and G. N. Hanson. 1976. Rare earth element evi- Madison, Wisconsin 53706 dence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology, 54: 139-155. Peter I Island lies in the southeastern Pacific Ocean at 68°50S. 90°40W. about 240 nautical miles off the Eights Coast of West Antarctica. Ris- ing from the continental rise, it is one of the few truly oceanic islands in the region. Few people have been on the island, and little is known of its geology. Thaddeus von Bellingshausen discovered and named the island in 1821, and it was not seen again until sighted by Pierre Charcot in 1910. A Nor- wegian ship dredged some rocks off the west coast in 1927, and persons from the Norvegia achieved the first landing in 1929.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Poleward Propagating Weather Systems in Antarctica
    POLEWARD PROPAGATING WEATHER SYSTEMS IN ANTARCTICA by Jessica A. Staude A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN-MADISON 2007 i Abstract Antarctica has some of the most hazardous weather on Earth. The continent is known for its extreme weather including bitterly cold temperatures and brutal winds. The introduction of satellite coverage over the continent and Southern Ocean for weather research and operational forecasting has provided new insight into the patterns and origins of these harsh conditions. However, forecasting for travel across the continent is still difficult, especially in West Antarctica. In this study satellite imagery is used to determine impact times of weather systems over West Antarctica. Prior gaps in satellite coverage have impeded forecasting abilities, and real time data from automated weather stations (AWS) is limited because of the small number of stations in this region. The creation of Antarctic satellite composite images in 1992 has allowed for a comprehensive compilation of weather data around the continent and surrounding areas from a hemispheric view. In this study, ten years of Antarctic composite satellite images from 1992-2002 are examined for poleward propagating weather systems in West Antarctica. These large scale synoptic events transport clouds onto the continent and affect local weather. These cloud mass systems are counted on a monthly basis, examined for long-term periodicity, and the temporal distribution of the systems is compared against climate indices. Over the 10-year period, Marie Byrd Land had a peak number (11 occurrences) in June, while Ellsworth Land had a peak of 11 occurrences in September.
    [Show full text]
  • Thurston Island
    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
    [Show full text]
  • Argentine and Chilean Claims to British Antarctica. - Bases Established in the South Shetlands
    Keesing's Record of World Events (formerly Keesing's Contemporary Archives), Volume VI-VII, February, 1948 Argentine, Chilean, British, Page 9133 © 1931-2006 Keesing's Worldwide, LLC - All Rights Reserved. Argentine and Chilean Claims to British Antarctica. - Bases established in the South Shetlands. - Chilean President inaugurates Chilean Army Bases on Greenwich Island. - Argentine Naval Demonstration in British Antarctic Waters. - H.M.S. "Nigeria" despatched to Falklands. - British Government Statements. - Argentine-Chilean Agreement on Joint Defence of "Antarctic Rights." - The Byrd and Ronne Antarctic Expeditions. - Australian Antarctic Expedition occupies Heard Islands. The Foreign-Office in London, in statements on Feb. 7 and Feb. 13, announced that Argentina and Chile had rejected British protests, earlier presented in Buenos Aires and Santiago, against the action of those countries in establishing bases in British Antarctic territories. The announcement of Feb. 7 stated that on Dec. 7, 1947, the British Ambassador in Buenos Aires, Sir Reginald Leeper, had presented a Note expressing British "anxiety" at the activities in the Antarctic of an Argentine naval expedition which had visited part of the Falkland Islands Dependencies, including Graham Land, the South Shetlands, and the South Orkneys, and had landed at various points in British territory; that a request had been made for Argentine nationals to evacuate bases established on Deception Island and Gamma Island, in the South Shetlands; that H.M. Government had proposed that the Argentine should submit her claim to Antarctic sovereignty to the International Court of Justice for adjudication; and that on Dec. 23, 1947, a second British Note had been presented expressing surprise at continued violations of British territory and territorial waters by Argentine vessels in the Antarctic.
    [Show full text]
  • Land, West Antarctica, Using Landsat Illlagery
    Annals qfGlaciology 27 1998 © International Glaciological Society Analysis of coastal change in Marie Byrd Land and Ellsworth Land, West Antarctica, using Landsat illlagery JANE G. FERRIGNO,I RICHARD S. WILLIAMS, JR,2 CHRISTINE E. ROSANoVA,3 BAERBEL K. LUCCHITTA,3 CHARLES SWITHINBANK4 I US Geological Survey, 955 National Center, Reston, VA 20192, USA. 2 US Geological Survey, Woods Hole Field Center, 384 Woods Hole Road, Woods Hole, MA 02543, USA. 3 US Geological Survey, 2255 North Gemini Drive, Flagstaff, AZ 86001, USA. 4Scott Polar Research Institute, University qfCambridge, Cambridge CB21ER, England ABSTRACT. The U.S. Geological Survey is using Landsat imagery from the early 1970s and mid- to late 1980sjearl y 1990s to analyze glaciological features, compile a glacier inventory, measure surface velocities of outlet glaciers, ice streams and ice shelves, deter­ mine coastline change and calculate the area and volume of iceberg calving in Antarctica. Ice-surface velocities in Marie Byrd and Ellsworth Land s, West Antarctica, range from the fast-movingThwaites, Pine Island, Land and DeVicq Glaciers to the slower-moving ice shelves. The average ice-front velocity during the time interval of Landsa t imagery, for the faster-moving outlet glaciers, was 2.9 km a- I forThwaites Glacier, 2.4 km a- I for Pine Island Glacier, 2.0 km a- I for Land Glacier and 1.4 km a- I for DeVicq Glacier. Evaluation of coastal change from the early 1970s to the early 1990s shows advance of the floating ice front in some coastal areas and recession in others, with an overall small average advance in the enti re coastal study area, but no major trend towards advance or retreat.
    [Show full text]
  • Tectonic and Oceanographic Controls on Abbot Ice Shelf
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 7, 5509–5540, 2013 Open Access www.the-cryosphere-discuss.net/7/5509/2013/ The Cryosphere TCD doi:10.5194/tcd-7-5509-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 7, 5509–5540, 2013 This discussion paper is/has been under review for the journal The Cryosphere (TC). Tectonic and Please refer to the corresponding final paper in TC if available. oceanographic controls on Abbot Ice Tectonic and oceanographic controls on Shelf Abbot Ice Shelf thickness and stability J. R. Cochran et al. J. R. Cochran, S. S. Jacobs, K. J. Tinto, and R. E. Bell Title Page Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA Abstract Introduction Received: 29 October 2013 – Accepted: 10 November 2013 – Published: 19 November 2013 Conclusions References Correspondence to: J. R. Cochran ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Tables Figures J I J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 5509 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Ice shelves play key roles in stabilizing Antarctica’s ice sheets and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry 7, 5509–5540, 2013 are important for assessing ocean–ice interactions and modeling ice response to cli- 5 mate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces Tectonic and large volumes of meltwater but is in overall mass balance unlike other ice shelves in oceanographic the region that are losing mass.
    [Show full text]
  • Latady Formation
    ied consist of a north-northwest-trending set of major folds A total distance of 15,700 kilometers was flown in 78.5 hours with subordinate thrusts. The existence of previously unrec- using all the fuel available. Four lines were flown at maximum ognized major folds was determined from detailed study of range of the aircraft to the Bryan Coast and Pine Island Glacier, minor-fold geometry as well as reinterpretation of some Cre- four lines at maximum range over the Ronne Ice Shelf towards taceous stratigraphic boundaries. The folds involve Upper Jur- the Antarctic Peninsula, and two lines covering local features assic through Upper Cretaceous rocks, while Tertiary sedi- within and around the Ellsworth Mountains. mentary rocks occur in a monoclinal belt along the eastern The survey delimited the catchment area of Pine Island Gla- edge of the study area. A well-devloped cleavage is present cier and gave valuable information on the nature of the sub- throughout. A structural profile of the transect is being con- ice surface as well as the sub-ice topography itself (Doake and structed. Crabtree, Antarctic Journal, this issue). Wilson also measured detailed stratigraphic sections in the The British Antarctic Survey scientists most closely involved Lower Cretaceous rocks. Together with sedimentologic data with the work are Charles Swithinbank, head of the Earth and petrographic results, these sections will provide a more Sciences Section, Christopher Doake, and Richard Crabtree. detailed understanding of the early evolution of the Magal- Peter Clarkson, Geoffrey Renner, and Michael Thomson par- lanes basin. ticipated in planning the flight program.
    [Show full text]
  • GEOLOGICAL SURVEY RESEARCH 1971 Chapter B
    GEOLOGICAL SURVEY RESEARCH 1971 Chapter B GEOLOGICAL SURVEY PROFESSIONAL PAPER 750-8 Scientific notes and summaries of investigations in geology, hydrology, and related fields UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. 0. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director -- For sale by the Superintendent of Documsnh, U.S. Government Printing Office Washington, D.C. 20402 - Price $3.50 GEOLOGIC STUDIES Structural geology Page Structures related to thrust faults in the Stansbury Mountains, Utah, by E. W. Tooker and R. J. Roberts- - - - - - - - - - - - B1 Displacement of the Pocahontas Formation by the Russell Fork fault, southwest Virginia, by K. J. Englund- - - - - - - - - - 13 Paleontology and stratigraphy The Twowells Sandstone Tongue of the Dakota Sandstone and the Tres Hermanos Sandstone as used by Herrick (1900), western New Mexico, by C. H. Dane, E. R. Landis, and W. A. Cobban ........................................ 17 Lisburne Group, Cape Lewis-Niak Creek, northwestern Alaska, by A. K. Armstrong, B. L. Mamet, and J. T. Dutro, Jr- 23 Stratigraphic interpretations of some Cretaceous microfossil floras of.the Middle Atlantic States, by J. A. Wolfe and H. M. Pakiser----------------------------------------------------------------------------------------,-------- 35 Paleocene mollusks from the Gulf of Alaska Tertiary province-A significant new occurrence on the North Pacific rim, by W. 0. Addioottand George Plafker------------------------------------------------------------------------ 48 Two new fossil pollen genera from upper Campanian (Cretaceous) rocks of Montana, by B. D. Tschudy-- - - - - - - - - - - - - 53 Petrology The Landfall Peak Adamellite and regional comparison of petrochemical and age data from the Thurston Island-Eights Coast area, West Antarctica, by A. A. Drake, Jr., R. F. Marvin, T. W.
    [Show full text]
  • 2003 No. 323 ANTARCTICA the Antarctic (Amendment) Regulations
    STATUTORY INSTRUMENTS 2003 No. 323 ANTARCTICA The Antarctic (Amendment) Regulations 2003 Made - - - - - 17th February 2003 Laid before Parliament 18th February 2003 Coming into force - - 11th March 2003 The Secretary of State for Foreign and Commonwealth AVairs, in exercise of his powers under sections 9(1), 25(1) and (3) and 32 of the Antarctic Act 1994(a), and of all other powers enabling him in that behalf, hereby makes the following Regulations: Citation and commencement 1. These Regulations may be cited as the Antarctic (Amendment) Regulations 2003 and shall come into force on 11th March 2003. The Antarctic Regulations 1995(b) (“the principal Regulations”), as amended(c), and these Regulations may be cited together as the Antarctic Regulations 1995 to 2003. Amendment of Schedule 1 to the principal Regulations 2. Schedule 1 to the principal Regulations shall be amended as follows: (a) There shall be added to Schedule 1 the areas listed and described in the Schedule to these Regulations. (b) There shall be deleted from Schedule 1 the area listed and described as “Antarctic Specially Protected Area No. 157 “Cape Royds Historic Site No. 15””. Valerie Amos For the Secretary of State for 17th February 2003 Foreign and Commonwealth AVairs (a) 1994 c. 15. (b) S.I. 1995/490. (c) S.I. 1995/2741, S.I. 1998/1007, S.I. 2000/2147 and S.I. 2002/2054. 1 SCHEDULE Regulation 2 RESTRICTED AREAS Antarctic Specially Protected Area No. 106 Cape Hallett, Northern Victoria Land, Ross Sea Lat. 72)19’S; Long. 170)16’E Cape Hallett is located at the southern end of Moubray Bay, Northern Victoria Land, in the western Ross Sea.
    [Show full text]
  • A Revised Geochronology of Thurston Island, West Antarctica and Correlations Along the Proto
    1 A revised geochronology of Thurston Island, West Antarctica and correlations along the proto- 2 Pacific margin of Gondwana 3 4 5 6 T.R. Riley1, M.J. Flowerdew1,2, R.J. Pankhurst3, P.T. Leat1,4, I.L. Millar3, C.M. Fanning5 & M.J. 7 Whitehouse6 8 9 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 10 2CASP, 181A Huntingdon Road, Cambridge, CB3 0DH, UK 11 3British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 12 4Department of Geology, University of Leicester, Leicester, LE1 7RH, UK 13 5Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia 14 6Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden 15 16 17 18 19 20 21 22 23 24 *Author for correspondence 25 e-mail: [email protected] 26 Tel. 44 (0) 1223 221423 1 27 Abstract 28 The continental margin of Gondwana preserves a record of long-lived magmatism from the Andean 29 Cordillera to Australia. The crustal blocks of West Antarctica form part of this margin, with 30 Palaeozoic – Mesozoic magmatism particularly well preserved in the Antarctic Peninsula and Marie 31 Byrd Land. Magmatic events on the intervening Thurston Island crustal block are poorly defined, 32 which has hindered accurate correlations along the margin. Six samples are dated here using U-Pb 33 geochronology and cover the geological history on Thurston Island. The basement gneisses from 34 Morgan Inlet have a protolith age of 349 ± 2 Ma and correlate closely with the Devonian – 35 Carboniferous magmatism of Marie Byrd Land and New Zealand.
    [Show full text]