Homozygosity Mapping of Consanguineous Families with Leber S Congenital Amaurosis

Total Page:16

File Type:pdf, Size:1020Kb

Homozygosity Mapping of Consanguineous Families with Leber S Congenital Amaurosis Int.J.Curr.Microbiol.App.Sci (2015) 4(11): 573-586 ISSN: 2319-7706 Volume 4 Number 11 (2015) pp. 573-586 http://www.ijcmas.com Original Research Article Homozygosity Mapping of Consanguineous Families with Leber s Congenital Amaurosis Abid Ali Shah1*, Kamal Abbasi2 1LAB of GENOMICS, Department of Biochemistry, Faculty of Biological Sciences, Quaid I - Azam University, Islamabad, Pakistan 2Department of Biochemistry, Faculty of Health Sciences, Hazara University, Dhodial Mansehra, Khyber Pukhtunkwa, Pakistan *Corresponding author A B S T R A C T The human eye is a complex organ and is extremely important for vision related functions. Leber congenital amaurosis (LCA) is clinically and genetically heterogeneous disease with autosomal recessive pattern of inheritance and is characterized by severe vision loss present at birth or early childhood. Up to now K e y w o r d s 19 genes have been identified in pathogenic course of LCA, but mutations of few genes are more frequent than others. Interestingly, some of the known LCA genes Homozygosity also cause retinitis pigments and cilia related disorders, which creates extreme Mapping, clinical heterogeneity and poses problems for accurate diagnosis. Two Pakistani Leber families (A and B) with clinical signs like visual impairment since childhood, congenital abnormal movement of eye, flat electroretinogram and abnormal retinal appearance amaurosis, were included in this study. Additionally, affected individuals of both families Autosomal present oculodigital sign, keratoconus and cataract, which are indicators of recessive segregation of LCA phenotype in both families. Both families were subjected to inheritance, candidate gene analysis to test the involvement of currently known LCA genes. Genotyping, One family (A) did not show homozygosity shared by affected individuals for the Linkage all known candidate genes. However, family B revealed homozygosity at RPE65 analysis, genes for two markers, but when typed with additional markers the pattern did not DNA last further. Further analysis showed linkage in a region having spermatogenesis sequencing associated protein 7 (SPATA7; MIM 609868) gene. This region was homozygous in all affected individuals for six markers on chromosome 14 and region contained SPATA7 gene. The exact function of SPATA7 gene is unknown, but studies have shown its role in vesicular transport. The gene is sequenced for the exons which were extensively documented to have mutations in earlier literature, but DNA sequencing did not show any pathogenic variation in all 12 exons of SPATA7 gene. The future identification of pathogenic variation in family A and B require genome wide analysis and next generation technologies respectively. 573 Introduction cones for phototopic vision. The cones are active in bright illumination, whereas the The human eye is a complex organ and by in rods are active in dim illumination (Pearring large most important part of the human et al., 2013). A tiny portion of the retina is body. Eye genesis normally starts at three left behind which is called blind spot. Here week embryo and is developed from all the retinal blood vessels and optic nerve three germinal layers (ectoderm, endoderm separate from retina. Natural blind spot are and mesoderm). The first three years of life completely void of rods and cones so there are important for eye development as is no vision in that spot (Frank and Stephen, tremendous growth occurs during these 2001). years. Normal vision is essential for the growth and development of the visual cortex Retinal diseases in this phase of development. It is normally agreed upon that visual acuity and capacity Retina has numerous cell types and have a develops at first early three years of life high metabolic rate among its tissues so new (Fredrick, 2004). mutation in different proteins of retina leads to the disruption of different physiological Photoreceptors as well functional characteristics and ultimately leads to its deterioration. Special kind of cells is located in retina Hereditary diseases are arranged or which is responsible for detecting light, classified according to observable called photoreceptors. There are two types differences. It includes dystrophies which of photoreceptors. Rods are more abundant has a devastating effect on central retina and in number than cones which are less in then on peripheral retina. The former number. The rods are stretched long and includes age related macular degeneration tube like while cones are small, broad and (ARMD), cone rod degeneration (CORD) pointed. Rods and cones are dispersed in which affect middle retina and leads to unusual numbers throughout the human eye vision loss while the later affect outer with rods more in number than cones. Cones boundary of retina which consists of retinitis are covering the central portion while rods pigmentosa, congenital stationary night are mainly located in the outer segments of blindness (Musarella, 2001). LCA is caused the retina. Just in the central portion of the by both peripheral and central retinal retina there is a small cup or pit like abnormalities leading to colossal loss of depression called fovea or macula, which is vision. Most of the congenital eye disorders responsible for most of vision as has a 100% are bilateral and their mode of inheritance visual sharpness or acuity. Mostly cones are can be autosomal recessive or dominant. present in fovea and are devoid of rods. Sometimes it can be of mitochondrial or X High resolution images are formed when linked in nature. light falls on the fovea portion of the eye (Provis et al., 2013). A famous figure of international repute Theodar Leber discovered a disease from A marked difference in structure occurs not German School of ophthalmology which only between rods and cones, but also was characterized by extreme vision loss between their functions. Rods are more since birth and was found in the offspring of adapted for function in dim light and are healthy individuals. In the coming years he responsible for scotopic vision whereas and others renowned eye specialists noted 574 occurrence of this disease in consanguineous schools across the globe (Marlhens et al., families. Symptoms of the disease were 1997). Advancements in the realms of decreased or nearly extinguished response to human genetics have brought this disease to light reflex, rolling eye movement, but a new horizon, with screening mutations in fundus was of normal architecture at birth approximately 70% of all the LCA showing signs of retinitis pigmentosa. Leber individuals (Perrault et al., 1999). congenital amaurosis has been wrongly diagnosed for cortical blindness because of Genes and loci the normal appearance of fundus at the beginning. It was noticed six years later in a Molecular genetics of LCA the has been report related to infant blindness in which thoroughly explained for the last decade thus the disease was defined as Congenital creating new insights from the research into blindness with extinguished ERG with a Leber congenital amaurosis. So far 19 genes fine appearance of fundus, but often have been implicated in the pathogenic followed by ocular malfunctions such as cause of LCA and these nineteen genes are keratoconus. concerned with different diverse functions of the retina. The LCA genes are GUCY2D Mapping of LCA genes: the dawn of (LCA1), RPE65 (LCA2), SPATA7 (LCA3), linkage era AIPL1 (LCA4), LCA5 (LCA5), RPGRIP1 (LCA6), CRX (LCA7), CRB1 (LCA8), Shomi Bhattacharya was the first who NMNAT1 (LCA9), CEP290 (LCA10), mapped a gene responsible for X linked IMPDH1 (LCA11), RD3 (LCA12), RDH12 Retinitis Pigmentosa on the short arm of the (LCA13), LRAT (LCA14), TULP1 X chromosome (Bhattacharya et al., 1984). (LCA15), KCNJ13 (LCA16), IQCB1 and Later, Peter Humprhies et al. (1990) mapped MERTK (Stockton et al., 1998; Dharmaraj et a gene responsible for autosomal dominant al., 2000; Keen et al., 2003; Perrault et al., RP on a chromosome 3. A ray of hope came 2003). with the new Homozygosity mapping technique which was applied for extended as LCA, despite being relatively clinically and well as closely related families afflicting genetically heterogeneous disease, has been with LCA. Many families of North Africans well studied over the last years. roots were taken and were scanned for Understanding the genetics has also homozygosity mapping via new markers improved lately with mutation in 19 genes called microsatellite markers spanning a now identified for this disease. Analysis of 10 cM region. Subsequently, this the phenotype and establishing a methodology was used to identify the LCA relationship with the genotype remains a locus, LCA1 (Camuzat, 1995, 1996). challenge. The study is based on families with LCA showing autosomal recessive LCA is a collection of congenital retinal inheritance. Candidate genes which are dystrophies manifested by severe vision loss known to be involved in disease are first nystagmus, roving eyes and other checked. The purpose of the study was to retinopathies. The vulnerability of getting investigate the molecular basis of such LCA globally is three out of every 100, 000 disorders whose clinical examination often approximately (Perrault et al., 1996). LCA leads to an imprecise and poor diagnosis. has a significant impact and is responsible Our study is, therefore, important to explore for 20% of all the children attending blind the novel genes and mutations involved in 575 different ocular anomalies as well as and affected individuals, including their growing awareness
Recommended publications
  • Mutation of SPATA7 in a Family with Autosomal Recessive Early-Onset Retinitis Pigmentosa
    JournalofMolecularandGeneticMedicine,2012,Vol6,301-303 RESEARCH LETTER Mutation of SPATA7 in a family with autosomal recessive early-onset retinitis pigmentosa Chitra Kannabiran†*, Lakshmi Palavalli† and Subhadra Jalali‡ † Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India, ‡ Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India. *Correspondence to: Chitra Kannabiran, E-mail: [email protected]; [email protected] Received: 09 November 2012; Revised: 11 December 2012; Accepted: 11 December 2012; Published: 12 December 2012 © Copyright The Author(s): Published by Library Publishing Media. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appro- priately acknowledged with correct citation details. Retinitis pigmentosa (RP) is a form of hereditary retinal The genes that were screened for sequence changes in the degeneration with a high degree of clinical and genetic het- present study included RDH12 and SPATA7. Primers comple- erogeneity. It involves progressive and irreversible degen- mentary to flanking intronic regions of each exon were used eration of retinal photoreceptors, manifests as progressive for PCR amplification of the coding regions of both genes loss of vision with characteristic changes in retinal appear- using appropriate conditions. The PCR-amplified products ance and may eventually lead to complete blindness.
    [Show full text]
  • Screening of SPATA7 in Patients with Leber Congenital Amaurosis and Severe Childhood-Onset Retinal Dystrophy Reveals Disease-Causing Mutations
    Genetics Screening of SPATA7 in Patients with Leber Congenital Amaurosis and Severe Childhood-Onset Retinal Dystrophy Reveals Disease-Causing Mutations Donna S. Mackay,1 Louise A. Ocaka,1 Arundhati Dev Borman,1,2 Panagiotis I. Sergouniotis,1,2 Robert H. Henderson,2 Phillip Moradi,2 Anthony G. Robson,1,2 Dorothy A. Thompson,3,4 Andrew R. Webster,1,2 and Anthony T. Moore1,2 PURPOSE. To investigate the prevalence of sequence variants in loss, but may have some preservation of the photoreceptor the gene SPATA7 in patients with Leber congenital amaurosis structure in the central retina. (Invest Ophthalmol Vis Sci. (LCA) and autosomal recessive, severe, early-onset retinal dys- 2011;52:3032–3038) DOI:10.1167/iovs.10-7025 trophy (EORD) and to delineate the ocular phenotype associ- ated with SPATA7 mutations. eber congenital amaurosis (LCA), first described by The- METHODS. Patients underwent standard ophthalmic evaluation odor Leber in 1869,1 is a generalized retinal dystrophy after providing informed consent. One hundred forty-one DNA L which presents at birth, or soon after, with severe visual samples from patients with LCA and EORD had been analyzed impairment and nystagmus. LCA accounts for 3% to 5% of for mutations by using a microarray, with negative results. One childhood blindness in the developed world and has an inci- additional patient underwent SPATA7 screening due to a re- dence of 2 to 3 per 100,000 live births.2 The clinical features gion of autozygosity surrounding this gene. A further patient include severe visual loss, sluggish pupillary responses, and was screened who had a compatible ocular phenotype.
    [Show full text]
  • A Yeast Bifc-Seq Method for Genome-Wide Interactome Mapping
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.154146; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A yeast BiFC-seq method for genome-wide interactome mapping 2 3 Limin Shang1,a, Yuehui Zhang1,b, Yuchen Liu1,c, Chaozhi Jin1,d, Yanzhi Yuan1,e, 4 Chunyan Tian1,f, Ming Ni2,g, Xiaochen Bo2,h, Li Zhang3,i, Dong Li1,j, Fuchu He1,*,k & 5 Jian Wang1,*,l 6 1State Key Laboratory of Proteomics, Beijing Proteome Research Center, National 7 Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, 8 China; 2Department of Biotechnology, Beijing Institute of Radiation Medicine, 9 Beijing 100850, China; 3Department of Rehabilitation Medicine, Nan Lou; 10 Department of Key Laboratory of Wound Repair and Regeneration of PLA, College 11 of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China; 12 Correspondence should be addressed to F.H. ([email protected]) and J.W. 13 ([email protected]). 14 * Corresponding authors. 15 E-mail:[email protected] (Fuchu He),[email protected] (Jian Wang) 16 a ORCID: 0000-0002-6371-1956. 17 b ORCID: 0000-0001-5257-1671 18 c ORCID: 0000-0003-4691-4951 19 d ORCID: 0000-0002-1477-0255 20 e ORCID: 0000-0002-6576-8112 21 f ORCID: 0000-0003-1589-293X 22 g ORCID: 0000-0001-9465-2787 23 h ORCID: 0000-0003-3490-5812 24 i ORCID: 0000-0002-3477-8860 25 j ORCID: 0000-0002-8680-0468 26 k ORCID: 0000-0002-8571-2351 27 l ORCID: 0000-0002-8116-7691 28 Total word counts:4398 (from “Introduction” to “Conclusions”) 29 Total Keywords: 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.16.154146; this version posted June 17, 2020.
    [Show full text]
  • US 2009/0270267 A1 Akiyama Et Al
    US 20090270267A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0270267 A1 Akiyama et al. (43) Pub. Date: Oct. 29, 2009 (54) COMPOSITION AND METHOD FOR (86). PCT No.: PCT/UP2006/309.177 DAGNOSINGESOPHAGEAL CANCER AND METASTASS OF ESOPHAGEAL CANCER S371 (c)(1), (2), (4) Date: Jan. 8, 2008 (75) Inventors: Hideo Akiyama, Kanagawa (JP); O O Satoko Kozono, Kanagawa (JP); (30) Foreign Application Priority Data 6A yet S. (JP): (JP): May 2, 2005 (JP) ................................. 2005-134530 Sam Nomura, Kanagaway): Sep. 13, 2005 (JP) ................................. 2005-265645 Hitoshi Nobumasa, Shiga (JP); Sep. 13, 2005 (JP) 2005-265678 Yoshinori Tanaka, Kanagawa (JP); O. l. 4UUC ) . Shiori Tomoda, Tokyo (JP); Publication Classification Yutaka Shimada, Kyoto (JP); Gozoh Tsujimoto, Kyoto (JP) (51) Int. Cl. C40B 30/04 (2006.01) Correspondence Address: CI2O I/68 (2006.01) BRCH STEWARTKOLASCH & BRCH GOIN 33/53 (2006.01) PO BOX 747 C40B 40/08 (2006.01) FALLS CHURCH, VA 22040-0747 (US) (52) U.S. Cl. ..................... 506/9; 435/6: 435/7.1:506/17 (73) Assignees: TORAY INDUSTRIES, INC., (57) ABSTRACT Tokyo (JP); Kyoto University, This invention relates to a composition, kit, or DNA chip Kyoto-shi (JP) comprising polynucleotides and antibodies as probes for detecting, determining, or predicting the presence or metasta (21) Appl. No.: 11/919,679 sis of esophageal cancer, and to a method for detecting, deter mining, or predicting the presence or metastasis of esoph (22) PCT Filed: May 2, 2006 ageal cancer using the same. Patent Application Publication Oct. 29, 2009 Sheet 1 of 5 US 2009/0270267 A1 Fig.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss
    cells Review Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss 1, 1, 1 1,2,3 1 Gayle B. Collin y, Navdeep Gogna y, Bo Chang , Nattaya Damkham , Jai Pinkney , Lillian F. Hyde 1, Lisa Stone 1 , Jürgen K. Naggert 1 , Patsy M. Nishina 1,* and Mark P. Krebs 1,* 1 The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; [email protected] (G.B.C.); [email protected] (N.G.); [email protected] (B.C.); [email protected] (N.D.); [email protected] (J.P.); [email protected] (L.F.H.); [email protected] (L.S.); [email protected] (J.K.N.) 2 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand 3 Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand * Correspondence: [email protected] (P.M.N.); [email protected] (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.) These authors contributed equally to this work. y Received: 29 February 2020; Accepted: 7 April 2020; Published: 10 April 2020 Abstract: Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated.
    [Show full text]
  • Comprehensive Genotyping Reveals RPE65 As the Most Frequently Mutated Gene in Leber Congenital Amaurosis in Denmark
    European Journal of Human Genetics (2016) 24, 1071–1079 & 2016 Macmillan Publishers Limited All rights reserved 1018-4813/16 www.nature.com/ejhg ARTICLE Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark Galuh DN Astuti1,2,3,10, Mette Bertelsen4,5,6,10, Markus N Preising7, Muhammad Ajmal8, Birgit Lorenz7, Sultana MH Faradz3, Raheel Qamar8,9, Rob WJ Collin1,2, Thomas Rosenberg4,6 and Frans PM Cremers*,1,2,8 Leber congenital amaurosis (LCA) represents the most severe form of inherited retinal dystrophies with an onset during the first year of life. Currently, 21 genes are known to be associated with LCA and recurrent mutations have been observed in AIPL1, CEP290, CRB1 and GUCY2D. In addition, sequence analysis of LRAT and RPE65 may be important in view of treatments that are emerging for patients carrying variants in these genes. Screening of the aforementioned variants and genes was performed in 64 Danish LCA probands. Upon the identification of heterozygous variants, Sanger sequencing was performed of the relevant genes to identify the second allele. In combination with prior arrayed primer extension analysis, this led to the identification of two variants in 42 of 86 cases (49%). Remarkably, biallelic RPE65 variants were identified in 16% of the cases, and one novel variant, p.(D110G), was found in seven RPE65 alleles. We also collected all previously published RPE65 variants, identified in 914 alleles of 539 patients with LCA or early-onset retinitis pigmentosa, and deposited them in the RPE65 Leiden Open Variation Database (LOVD). The in silico pathogenicity assessment of the missense and noncanonical splice site variants, as well as an analysis of their frequency in ~ 60 000 control individuals, rendered 864 of the alleles to affect function or probably affect function.
    [Show full text]
  • Genetics and Retinal Degeneration: Challenges in Optogenetic Therapy and Indentifying Pathogenic Variants
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Genetics And Retinal Degeneration: Challenges In Optogenetic Therapy And Indentifying Pathogenic Variants Laura Mary Bryant University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Genetics Commons, and the Ophthalmology Commons Recommended Citation Bryant, Laura Mary, "Genetics And Retinal Degeneration: Challenges In Optogenetic Therapy And Indentifying Pathogenic Variants" (2017). Publicly Accessible Penn Dissertations. 2988. https://repository.upenn.edu/edissertations/2988 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2988 For more information, please contact [email protected]. Genetics And Retinal Degeneration: Challenges In Optogenetic Therapy And Indentifying Pathogenic Variants Abstract Inherited retinal degenerative diseases are one of the leading causes of childhood blindness. While over 200 causative genes have been identified, many cases still have an unknown underlying genetic cause. With the advent of next generation sequencing (NGS), it should be possible to identify the genetic cause in almost every case, provided enough relatives are willing to participate. However, the massive amount of data generated by NGS can make identifying the pathogenic variant challenging. It is necessary to filter the data in order to create a manageable candidate list, but overly strict filtering or erroneous assumptions can result in filtering out the pathogenic ariant.v Identifying the genetic cause of retinal degeneration in each patient will allow us to better identify candidate genes for gene therapy and bring us a step closer to precision medicine. Here we developed an efficient screening system to find candidate mutations with minimal assumptions to avoid screening out pathogenic variants and better identify good candidates for novel gene discovery.
    [Show full text]
  • INTRODUCING a NOVEL METHOD for GENETIC ANALYSIS of AUTISM SPECTRUM DISORDER Sepideh Nouri
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2013 INTRODUCING A NOVEL METHOD FOR GENETIC ANALYSIS OF AUTISM SPECTRUM DISORDER sepideh nouri Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Genomics Commons Recommended Citation nouri, sepideh, "INTRODUCING A NOVEL METHOD FOR GENETIC ANALYSIS OF AUTISM SPECTRUM DISORDER" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 417. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/417 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. INTRODUCING A NOVEL METHOD FOR GENETIC ANALYSIS OF AUTISM SPECTRUM DISORDER by Sepideh Nouri, M.S. APPROVED: Eric Boerwinkle, Ph.D., Supervisor Kim-Anh Do, Ph.D. Alanna Morrison, Ph.D. James Hixson, Ph.D. Paul Scheet, Ph.D. APPROVED: Dean, The University of Texas Graduate School of Biomedical Sciences at Houston INTRODUCING A NOVEL METHOD FOR GENETIC ANALYSIS OF AUTISM SPECTRUM DISORDER A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas M.
    [Show full text]
  • An Sirna-Based Functional Genomics Screen for the Identification of Regulators of Ciliogenesis and Ciliopathy Genes
    This is a repository copy of An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/88332/ Version: Accepted Version Article: Wheway, G, Schmidts, M, Mans, DA et al. (75 more authors) (2015) An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nature Cell Biology, 17 (8). pp. 1074-1087. ISSN 1465-7392 https://doi.org/10.1038/ncb3201 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes Gabrielle Wheway*1, Miriam Schmidts*2,3,4,5, Dorus A. Mans*3,4, Katarzyna Szymanska*1, Thanh-Minh T. Nguyen*3,4, Hilary Racher6, Ian G. Phelps7, Grischa Toedt8, Julie Kennedy9, Kirsten A. Wunderlich10, Nasrin Sorusch10, Zakia A.
    [Show full text]
  • ABSTRACT Using a Bioinformatics Approach to Identify Genes That
    ABSTRACT Using a bioinformatics approach to identify genes that have possible candidacy of association with retinitis pigmentosa: GeneWeaver Natasha Lie Director: Erich J. Baker, Ph.D. Retinitis pigmentosa (RP) is a retinal degenerative disorder that affects about 1 in 3,000 people. The disease is genetic in cause, and currently there is no cure. The genetic cause of the disease may be contributed to one of several different genes, underscoring the complex genetic underpinnings of this disease. The information required to determine which genes are potentially causative for RP may exist, but it is difficult to determine which genes are most suitable for study because of the immense wealth and breadth of available information. In other words, large-scale heterogeneous species-specific data often obfuscates the true causative genetic background of RP. In this study we describe a method of identifying genes that may contribute to RP using the bioinformatics techniques of graph theory and database utilization. We report a potential ranked list of genes in which disruptions are likely causative of RP. APPROVED BY DIRECTOR OF HONORS THESIS: ___________________________________________________ Dr. Erich Baker, School of Engineering and Computer Science APPROVED BY THE HONORS PROGRAM: ______________________________________________ Dr. Elizabeth Corey, Director DATE: _________________________ USING A BIOINFORMATICS APPROACH TO IDENTIFY GENES THAT HAVE POSSIBLE CANDIDACY OF ASSOCIATION WITH RETINITIS PIGMENTOSA: GENEWEAVER A Thesis Submitted to the
    [Show full text]
  • Part of the SPATA7 Gene in a Consanguineous Israeli Muslim Arab Family
    Molecular Vision 2015; 21:306-315 <http://www.molvis.org/molvis/v21/306> © 2015 Molecular Vision Received 18 July 2014 | Accepted 12 March 2015 | Published 15 March 2015 Novel homozygous large deletion including the 5′ part of the SPATA7 gene in a consanguineous Israeli Muslim Arab family Anja-Kathrin Mayer,1 Muhammad Mahajnah,2,3 Ditta Zobor,4 Michael Bonin,5 Rajech Sharkia,6,7 Bernd Wissinger1 (The second, fifth and last authors contributed equally to this work) 1Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany; 2Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel; 3The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; 4Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany; 5Department of Medical Genetics, Institute for Human Genetics, University of Tuebingen, Tuebingen, Germany; 6The Triangle Regional Research and Development Center, Kfar Qari’, Israel; 7Beit-Berl Academic College, Beit-Berl, Israel Purpose: To identify the genetic defect in a consanguineous Israeli Muslim Arab family with juvenile retinitis pigmen- tosa (RP). Methods: DNA samples were collected from the index patient, her parents, her affected sister, and two non-affected siblings. Genome-wide linkage analysis with 250 K single nucleotide polymorphism (SNP) arrays was performed us- ing DNA from the two affected patients. Owing to consanguinity in the family, we applied homozygosity mapping to identify the disease-causing gene. The candidate gene SPATA7 was screened for mutations with PCR amplifications and direct Sanger sequencing. Results: Following high-density SNP arrays, we identified several homozygous genomic regions one of which included the SPATA7 gene.
    [Show full text]