Genetics and Retinal Degeneration: Challenges in Optogenetic Therapy and Indentifying Pathogenic Variants

Total Page:16

File Type:pdf, Size:1020Kb

Genetics and Retinal Degeneration: Challenges in Optogenetic Therapy and Indentifying Pathogenic Variants University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Genetics And Retinal Degeneration: Challenges In Optogenetic Therapy And Indentifying Pathogenic Variants Laura Mary Bryant University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Genetics Commons, and the Ophthalmology Commons Recommended Citation Bryant, Laura Mary, "Genetics And Retinal Degeneration: Challenges In Optogenetic Therapy And Indentifying Pathogenic Variants" (2017). Publicly Accessible Penn Dissertations. 2988. https://repository.upenn.edu/edissertations/2988 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2988 For more information, please contact [email protected]. Genetics And Retinal Degeneration: Challenges In Optogenetic Therapy And Indentifying Pathogenic Variants Abstract Inherited retinal degenerative diseases are one of the leading causes of childhood blindness. While over 200 causative genes have been identified, many cases still have an unknown underlying genetic cause. With the advent of next generation sequencing (NGS), it should be possible to identify the genetic cause in almost every case, provided enough relatives are willing to participate. However, the massive amount of data generated by NGS can make identifying the pathogenic variant challenging. It is necessary to filter the data in order to create a manageable candidate list, but overly strict filtering or erroneous assumptions can result in filtering out the pathogenic ariant.v Identifying the genetic cause of retinal degeneration in each patient will allow us to better identify candidate genes for gene therapy and bring us a step closer to precision medicine. Here we developed an efficient screening system to find candidate mutations with minimal assumptions to avoid screening out pathogenic variants and better identify good candidates for novel gene discovery. Out of an initial cohort of 69 patients we identify the pathogenic variant(s) in 44 of them and identified 11 subjects as good candidates for novel gene discovery. We also need a broad treatment for retinal degeneration to help those who have mutations in genes that are poor candidates for gene therapy or who have an unknown genetic cause. We tested the efficacy of using the GRM6 minimal promoter as a bipolar cell specific promoter to express channelrhodopsin in bipolar cells after photoreceptor degeneration to make the bipolar cells directly respond to light. Surprisingly, we found that unlike in the wildtype mouse retina, the GRM6 promoter is not bipolar cell specific in multiple mouse models of retinal degeneration. This suggests that the genetic profiles of the cells in the inner retina change during retinal degeneration. Understanding these fundamental changes in cell specific gene expression during retinal degenerative processes will be critical in order to develop effective therapeutic strategies for late stage retinal degeneration. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Neuroscience First Advisor Jean Bennett Keywords GRM6, PRPF31, Retinal Degeneration, SEMA4A, Whole Exome Sequencing Subject Categories Genetics | Ophthalmology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2988 GENETICS AND RETINAL DEGENERATION: CHALLENGES IN OPTOGENETIC THERAPY AND INDENTIFYING PATHOGENIC VARIANTS Laura M. Bryant A DISSERTATION in Neuroscience Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2017 Supervisor of Dissertation ______________________ Jean Bennett M.D., Ph.D. Professor of Ophthalmology Graduate Group Chairperson _______________________ Joshua I. Gold, PhD Professor of Neuroscience Dissertation Committee Kenneth S. Shindler M.D., Ph.D., Associate Professor of Ophthalmology Valder Arruda M.D., Ph.D., Associate Professor of Pediatrics Claire H. Mitchell, Ph.D., Associate Professor of Anatomy & Cell Biology Marcella Devoto Ph.D., Professor of Pediatrics at the Children's Hospital of Philadelphia (external member) ABSTRACT GENES AND RETINAL DEGENERATION: CHALLENGES IN OPTOGENETICS THERAPY AND IDENTIFYING PATHOGENIC VARIANTS Laura M. Bryant Jean Bennett M.D., Ph.D. Inherited retinal degenerative diseases are one of the leading causes of childhood blindness. While over 200 causative genes have been identified, many cases still have an unknown underlying genetic cause. With the advent of next generation sequencing (NGS), it should be possible to identify the genetic cause in almost every case, provided enough relatives are willing to participate. However, the massive amount of data generated by NGS can make identifying the pathogenic variant challenging. It is necessary to filter the data in order to create a manageable candidate list, but overly strict filtering or erroneous assumptions can result in filtering out the pathogenic variant. Identifying the genetic cause of retinal degeneration in each patient will allow us to better identify candidate genes for gene therapy and bring us a step closer to precision medicine. Here we developed an efficient screening system to find candidate mutations with minimal assumptions to avoid screening out pathogenic variants and better identify good candidates for novel gene discovery. Out of an initial cohort of 69 patients we identify the pathogenic variant(s) in 44 of them and identified 11 subjects as good candidates for novel gene discovery. ii We also need a broad treatment for retinal degeneration to help those who have mutations in genes that are poor candidates for gene therapy or who have an unknown genetic cause. We tested the efficacy of using the GRM6 minimal promoter as a bipolar cell specific promoter to express channelrhodopsin in bipolar cells after photoreceptor degeneration to make the bipolar cells directly respond to light. Surprisingly, we found that unlike in the wildtype mouse retina, the GRM6 promoter is not bipolar cell specific in multiple mouse models of retinal degeneration. This suggests that the genetic profiles of the cells in the inner retina change during retinal degeneration. Understanding these fundamental changes in cell specific gene expression during retinal degenerative processes will be critical in order to develop effective therapeutic strategies for late stage retinal degeneration. iii Table of Contents Abstract…………………………………………………………………………...………i List of Tables…………………………………………………………………………..…iv List of Figures…………………………………………………………………………….v Chapter 1: Introduction………………………………………………………….…….…1 Chapter 2: Prescreening Whole Exome Sequencing Results from Patients with Retinal Degeneration for Variants in Genes Associated with Retinal Degeneration…………….25 Chapter 3: Identification of a novel pathogenic missense mutation in PRPF31 using whole exome sequencing ……………………………………………………………..…71 Chapter 4: On variants and disease-causing mutations: Case studies of a SEMA4A variant identified in inherited blindness………………………………………………….87 Chapter 5: Loss of ON-bipolar cell specific expression from the GRM6 and TRPM1 promoters during retinal degeneration………………………………………………...…94 Chapter 6: General Conclusions and Future Directions ……………………………….117 iv List of Tables Table 2-1: Breakdown of diagnoses included in this study……………………………...47 Table 2-2: Pathogenic and probable pathogenic variants in known disease causing genes identified in subjects in this study……………………………………………………48-53 Table 2-3: Heterozygous variants identified in subjects with recessive disease...............54 Table 2-4: Additional heterozygous variants of uncertain significance found in this study………………………………………………………………………………......55-59 Table 2-5: Multiple compound heterozygous mutations were identified in a subject with multiplex retinitis pigmentosa……………………………………………………………60 Table 5-1: Specific mutations and course of retinal degeneration in mouse lines used in this study………………………………………………………………..……………...107 v List of Figures Figure 2-1: Final outcome of initial screening for variants in genes associated with retinal degeneration……………………………………………………………………...46 Figure 3-1: Clinical features and molecular data for PRPF31 family…………………...81 Figure 3-2: Localization of PRPF31WT and PRPF31L197P in ARPE19 cells as measured by immunofluorescence for the HA tag………………………………………………….83 Figure 4-1: Family Pedigrees and clinical findings……………………………………...92 Figure 5-1: Expression profile of the 4xGRM6-SV40-CaTCH-eGFP construct in WT and rd1 mice……………………………………………………………………..………….108 Figure 5-2: Comparison of young and old rd1 mice 6 weeks after injection with the 4xGRM6-SV40- EGFP in AAV8BP2…………………………………………………..109 Figure 5-3: Variable expression is seen in the neural retina in different sections within the same eye……………………………………………………………………………...…110 Figure 5-4: 4xGRM6-SV40- EGFP expression in various mouse models of retinal degeneration…………………………………………………………………………….111 Figure 5-5: TRPM1 promoter driven expression in WT and rd1 mice and crd1 dog retinal explant cultures…………………………………………………………………………112 Figure 5-6: Comparison of tropism of different AAV capsids in rd1 mice…………….113 vi Chapter 1: Introduction Phenotype and genotype variability in inherited retinal degeneration Hereditary retinal degeneration causes blindness independent of environmental factors, with disease onset often occurring during childhood. This includes non-syndromic forms like Stargardt
Recommended publications
  • Genetic Heterogeneity of Usher Syndrome Type II
    J7Med Genet 1996;33:753-757 753 Genetic heterogeneity of Usher syndrome type II in a Dutch population J Med Genet: first published as 10.1136/jmg.33.9.753 on 1 September 1996. Downloaded from S Pieke-Dahl, A van Aarem, A Dobin, C W R J Cremers, W J Kimberling Abstract In 1959, Hallgren' laid the foundation for the The Usher syndromes are a group ofauto- clinical definition of US in a study of 172 US somal recessive disorders characterised patients from Sweden. Hallgren' showed sig- by retinitis pigmentosa (RP) with con- nificant phenotypic heterogeneity of US by genital, stable (non-progressive) sen- describing two clinically distinct forms, Usher sorineural hearing loss. Profound deaf- syndrome type I and Usher syndrome type II. ness, RP, and no vestibular responses are Profound congenital deafness, RP, and absent features of Usher type I, whereas moder- vestibular responses was defined as Usher I, ate to severe hearing loss and RP with while those exhibiting a congenital moderate to normal vestibular function describe severe hearing loss, RP, and no associated ves- Usher type II. The gene responsible for tibular problems was defined as Usher II.2 3 most cases ofUsher II, USH2a, is on chro- Although the existence of a type of US with mosome 1q41; at least one other Usher II progressive hearing loss had been proposed,4 gene (as yet unlinked) is known to exist. there was no firm genetic evidence for a Usher III presents with a progressive separate Usher III phenotype until a group of hearing loss that can mimic the audiomet- Finnish families with a phenotype of progres- ric profile seen in Usher II.
    [Show full text]
  • The USH2A C.2299Delg Mutation: Dating Its Common Origin in a Southern European Population
    European Journal of Human Genetics (2010) 18, 788–793 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 www.nature.com/ejhg ARTICLE The USH2A c.2299delG mutation: dating its common origin in a Southern European population Elena Aller1,2, Lise Larrieu3, Teresa Jaijo1,2, David Baux3, Carmen Espino´s2, Fernando Gonza´lez-Candelas4,5,6, Carmen Na´jera7, Francesc Palau2,8, Mireille Claustres3,9,10, Anne-Franc¸oise Roux3,9 and Jose´ M Milla´n*,1,2 Usher syndrome type II is the most common form of Usher syndrome. USH2A is the main responsible gene of the three known to be disease causing. It encodes two isoforms of the protein usherin. This protein is part of an interactome that has an essential role in the development and function of inner ear hair cells and photoreceptors. The gene contains 72 exons spanning over a region of 800 kb. Although numerous mutations have been described, the c.2299delG mutation is the most prevalent in several populations. Its ancestral origin was previously suggested after the identification of a common core haplotype restricted to 250 kb in the 5¢ region that encodes the short usherin isoform. By extending the haplotype analysis over the 800 kb region of the USH2A gene with a total of 14 intragenic single nucleotide polymorphisms, we have been able to define 10 different c.2299delG haplotypes, showing high variability but preserving the previously described core haplotype. An exhaustive c.2299delG/control haplotype study suggests that the major source of variability in the USH2A gene is recombination. Furthermore, we have evidenced twice the amount of recombination hotspots located in the 500 kb region that covers the 3¢ end of the gene, explaining the higher variability observed in this region when compared with the 250 kb of the 5¢ region.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Mutation Screening of the USH2A Gene in Retinitis Pigmentosa and USHER Patients in a Han Chinese Population
    Eye (2018) 32:1608–1614 https://doi.org/10.1038/s41433-018-0130-3 ARTICLE Mutation screening of the USH2A gene in retinitis pigmentosa and USHER patients in a Han Chinese population 1,2,3 1 1 1 4 1,2,3 Lulin Huang ● Yao Mao ● Jiyun Yang ● Yuanfeng Li ● Yang Li ● Zhenglin Yang Received: 12 October 2016 / Revised: 1 January 2018 / Accepted: 25 April 2018 / Published online: 13 June 2018 © The Author(s) 2018. This article is published with open access Abstract Objectives USH2A encodes for usherin, a basement membrane protein in the inner ear and retina. USH2A can cause retinitis pigmentosa (RP) with or without hearing loss. The aim of this study was to detect USH2A mutations in a Chinese cohort of 75 small RP families and 10 Usher syndrome families. Methods We performed a direct Sanger sequencing analysis of the USH2A gene to identify mutations for this cohort. Results We identified a total of eight mutations in four of the 75 small RP families (5.3%) and two mutations in one of the 10 Usher families (10%); all families were detected to have compound heterozygous mutations. In families with non- syndromic RP, we identified the compound heterozygous mutations p.Pro4818Leuand p.Leu2395Hisfs*19 in family No. 1234567890();,: 1234567890();,: 19114, p.Arg4493His and p.His1677Glnfs*15 in family No.19162, c.8559-2A > G and p.Arg1549* in family No.19123 and p.Ser5060Pro and p.Arg34Leufs*41 in family No.19178. We also identified the heterozygous mutations p.Arg3719His and p.Cys934Trp in family No.19124, which was the Usher syndrome family.
    [Show full text]
  • Mutation of SPATA7 in a Family with Autosomal Recessive Early-Onset Retinitis Pigmentosa
    JournalofMolecularandGeneticMedicine,2012,Vol6,301-303 RESEARCH LETTER Mutation of SPATA7 in a family with autosomal recessive early-onset retinitis pigmentosa Chitra Kannabiran†*, Lakshmi Palavalli† and Subhadra Jalali‡ † Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India, ‡ Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India. *Correspondence to: Chitra Kannabiran, E-mail: [email protected]; [email protected] Received: 09 November 2012; Revised: 11 December 2012; Accepted: 11 December 2012; Published: 12 December 2012 © Copyright The Author(s): Published by Library Publishing Media. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appro- priately acknowledged with correct citation details. Retinitis pigmentosa (RP) is a form of hereditary retinal The genes that were screened for sequence changes in the degeneration with a high degree of clinical and genetic het- present study included RDH12 and SPATA7. Primers comple- erogeneity. It involves progressive and irreversible degen- mentary to flanking intronic regions of each exon were used eration of retinal photoreceptors, manifests as progressive for PCR amplification of the coding regions of both genes loss of vision with characteristic changes in retinal appear- using appropriate conditions. The PCR-amplified products ance and may eventually lead to complete blindness.
    [Show full text]
  • Mouse Mutants As Models for Congenital Retinal Disorders
    Experimental Eye Research 81 (2005) 503–512 www.elsevier.com/locate/yexer Review Mouse mutants as models for congenital retinal disorders Claudia Dalke*, Jochen Graw GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany Received 1 February 2005; accepted in revised form 1 June 2005 Available online 18 July 2005 Abstract Animal models provide a valuable tool for investigating the genetic basis and the pathophysiology of human diseases, and to evaluate therapeutic treatments. To study congenital retinal disorders, mouse mutants have become the most important model organism. Here we review some mouse models, which are related to hereditary disorders (mostly congenital) including retinitis pigmentosa, Leber’s congenital amaurosis, macular disorders and optic atrophy. q 2005 Elsevier Ltd. All rights reserved. Keywords: animal model; retina; mouse; gene mutation; retinal degeneration 1. Introduction Although mouse models are a good tool to investigate retinal disorders, one should keep in mind that the mouse Mice suffering from hereditary eye defects (and in retina is somehow different from a human retina, particular from retinal degenerations) have been collected particularly with respect to the number and distribution of since decades (Keeler, 1924). They allow the study of the photoreceptor cells. The mouse as a nocturnal animal molecular and histological development of retinal degener- has a retina dominated by rods; in contrast, cones are small ations and to characterize the genetic basis underlying in size and represent only 3–5% of the photoreceptors. Mice retinal dysfunction and degeneration. The recent progress of do not form cone-rich areas like the human fovea.
    [Show full text]
  • Functional Annotation of a Full-Length Mouse Cdna Collection
    articles Functional annotation of a full-length mouse cDNA collection The RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium* ...............................................................................................................................* A full list of authors appears at the end of the paper ............................................................................................................................................. The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the ®rst 21,076 cDNAs to be analysed in this project. Here we describe the ®rst RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identi®es new ones. In mammals and higher plants, interpreting the genome sequence is Annotation of cDNAs not straightforward: coding regions are interspersed with noncod- An international meeting was held to facilitate functional annota- ing DNA, and an individual gene may give rise to many gene tion of the cDNA sequences. Participants contributed to the devel- products. Thus, genomic sequence cannot be reliably decoded to opment of a web-based annotation interface that should expedite identify the spectrum of messenger RNAs (the transcriptome) and future annotation of additional clones in the Mouse Gene Encyclo- their corresponding protein products (the proteome). This problem paedia project. We agreed on annotation vocabularies and the is illustrated by the different estimates of the number of human application of Gene Ontology (GO) terms (http://genome.gsc. genes (30,000, 35,000 and 120,000)1±3.
    [Show full text]
  • Screening of SPATA7 in Patients with Leber Congenital Amaurosis and Severe Childhood-Onset Retinal Dystrophy Reveals Disease-Causing Mutations
    Genetics Screening of SPATA7 in Patients with Leber Congenital Amaurosis and Severe Childhood-Onset Retinal Dystrophy Reveals Disease-Causing Mutations Donna S. Mackay,1 Louise A. Ocaka,1 Arundhati Dev Borman,1,2 Panagiotis I. Sergouniotis,1,2 Robert H. Henderson,2 Phillip Moradi,2 Anthony G. Robson,1,2 Dorothy A. Thompson,3,4 Andrew R. Webster,1,2 and Anthony T. Moore1,2 PURPOSE. To investigate the prevalence of sequence variants in loss, but may have some preservation of the photoreceptor the gene SPATA7 in patients with Leber congenital amaurosis structure in the central retina. (Invest Ophthalmol Vis Sci. (LCA) and autosomal recessive, severe, early-onset retinal dys- 2011;52:3032–3038) DOI:10.1167/iovs.10-7025 trophy (EORD) and to delineate the ocular phenotype associ- ated with SPATA7 mutations. eber congenital amaurosis (LCA), first described by The- METHODS. Patients underwent standard ophthalmic evaluation odor Leber in 1869,1 is a generalized retinal dystrophy after providing informed consent. One hundred forty-one DNA L which presents at birth, or soon after, with severe visual samples from patients with LCA and EORD had been analyzed impairment and nystagmus. LCA accounts for 3% to 5% of for mutations by using a microarray, with negative results. One childhood blindness in the developed world and has an inci- additional patient underwent SPATA7 screening due to a re- dence of 2 to 3 per 100,000 live births.2 The clinical features gion of autozygosity surrounding this gene. A further patient include severe visual loss, sluggish pupillary responses, and was screened who had a compatible ocular phenotype.
    [Show full text]
  • The USH2A Gene: an Analysis of Ultrasonic Vocalizations in a Mouse Model of Usher Syndrome Type 2
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-1-2018 The USH2A Gene: An Analysis of Ultrasonic Vocalizations in a Mouse Model of Usher Syndrome Type 2 Kiana R. Akhundzadeh [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Behavioral Neurobiology Commons, Biological Psychology Commons, Cognitive Neuroscience Commons, Cognitive Psychology Commons, Developmental Neuroscience Commons, Developmental Psychology Commons, Genetics Commons, Health Psychology Commons, Laboratory and Basic Science Research Commons, Other Neuroscience and Neurobiology Commons, Public Health Education and Promotion Commons, and the Speech and Hearing Science Commons Recommended Citation Akhundzadeh, Kiana R., "The USH2A Gene: An Analysis of Ultrasonic Vocalizations in a Mouse Model of Usher Syndrome Type 2" (2018). Honors Scholar Theses. 637. https://opencommons.uconn.edu/srhonors_theses/637 The USH2A Gene: An Analysis of Ultrasonic Vocalizations in a Mouse Model of Usher Syndrome Type 2 An Honors Thesis By Kiana Akhundzadeh Thesis Supervisor: R. Holly Fitch Graduate Student: Peter Perrino Akhundzadeh 2 Introduction Usher syndrome (USH) is a complex, rare autosomal recessive genetic disorder that is presented in humans and manifests in its most common form as inherited deaf-blindness [1]. The genetic disorder is characterized by variable degrees of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and in some cases, vestibular dysfunction [2]. Usher syndrome has a prevalence of about 1 in 10,000, indicating that it is the most common form of combined deaf-blindness that plagues the human population [1]. The syndrome presents as three clinical types (Usher syndromes type 1, 2 or 3).
    [Show full text]
  • Usherin Is Required for Maintenance of Retinal Photoreceptors and Normal Development of Cochlear Hair Cells
    Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells Xiaoqing Liu*, Oleg V. Bulgakov*, Keith N. Darrow†, Basil Pawlyk*, Michael Adamian*, M. Charles Liberman†, and Tiansen Li*‡ *Berman–Gund Laboratory for the Study of Retinal Degenerations and †Eaton–Peabody Laboratory, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved January 18, 2007 (received for review December 11, 2006) Usher syndrome type IIA (USH2A), characterized by progressive pho- USH2A gene in the human genome, expanding the length of coding toreceptor degeneration and congenital moderate hearing loss, is the sequence to 15 kb (15), encoding a putative 600-kDa protein. In most common subtype of Usher syndrome. In this article, we show addition to the greatly expanded size, the recently identified exons that the USH2A protein, also known as usherin, is an exceptionally also were predicted to encode a membrane-spanning segment large (Ϸ600-kDa) matrix protein expressed specifically in retinal followed by an intracellular PDZ-binding domain at the C terminus. photoreceptors and developing cochlear hair cells. In mammalian There have been conflicting reports about usherin tissue distri- photoreceptors, usherin is localized to a spatially restricted mem- bution and subcellular localization (4, 13, 16–18). The putative brane microdomain at the apical inner segment recess that wraps 600-kDa full-length protein never was confirmed from native around the connecting cilia, corresponding to the periciliary ridge tissues, and the function of usherin was poorly understood. It is complex described for amphibian photoreceptors.
    [Show full text]
  • USH2A Gene Usherin
    USH2A gene usherin Normal Function The USH2A gene provides instructions for making a protein called usherin. Usherin is an important component of basement membranes, which are thin, sheet-like structures that separate and support cells in many tissues. Usherin is found in basement membranes in the inner ear and in the retina, which is the layer of light-sensitive tissue at the back of the eye. Although the function of usherin has not been well established, studies suggest that it is part of a group of proteins (a protein complex) that plays an important role in the development and maintenance of cells in the inner ear and retina. The protein complex may also be involved in the function of synapses, which are junctions between nerve cells where cell-to-cell communication occurs. Health Conditions Related to Genetic Changes Retinitis pigmentosa Several dozen mutations in the USH2A gene have been reported to cause retinitis pigmentosa, a vision disorder that causes the light-sensing cells of the retina to gradually deteriorate. USH2A gene mutations are the most common cause of the autosomal recessive form of retinitis pigmentosa, accounting for 10 to 15 percent of all cases. This form of the disorder is described as nonsyndromic, which means that it is not associated with other signs and symptoms as part of a genetic syndrome (such as Usher syndrome, described below). The USH2A gene mutations that cause retinitis pigmentosa change single protein building blocks (amino acids) in the usherin protein. Through a mechanism that is not well understood, these genetic changes lead to the gradual breakdown of specialized light receptor cells called photoreceptors in the retina.
    [Show full text]
  • Truncating Variants Contribute to Hearing Loss and Severe Retinopathy in USH2A-Associated Retinitis Pigmentosa in Japanese Patients
    International Journal of Molecular Sciences Article Truncating Variants Contribute to Hearing Loss and Severe Retinopathy in USH2A-Associated Retinitis Pigmentosa in Japanese Patients Akira Inaba 1,2,3, Akiko Maeda 1,2,*, Akiko Yoshida 1,2, Kanako Kawai 1,2, Yasuhiko Hirami 1,2, Yasuo Kurimoto 1,2, Shinji Kosugi 3 and Masayo Takahashi 1,2 1 Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; [email protected] (A.I.); [email protected] (A.Y.); [email protected] (K.K.); [email protected] (Y.H.); [email protected] (Y.K.); [email protected] (M.T.) 2 Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan 3 Department of Medical Ethics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-(0)78-306-3305 Received: 11 September 2020; Accepted: 19 October 2020; Published: 22 October 2020 Abstract: USH2A is a common causal gene of retinitis pigmentosa (RP), a progressive blinding disease due to retinal degeneration. Genetic alterations in USH2A can lead to two types of RP, non-syndromic and syndromic RP, which is called Usher syndrome, with impairments of vision and hearing. The complexity of the genotype–phenotype correlation in USH2A-associated RP (USH2A-RP) has been reported. Genetic and clinical characterization of USH2A-RP has not been performed in Japanese patients. In this study, genetic analyses were performed using targeted panel sequencing in 525 Japanese RP patients.
    [Show full text]