MRG15 Is Required for Pre-Mrna Splicing and Spermatogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ptbp2 Represses Adult-Specific Splicing to Regulate the Generation of Neuronal Precursors in the Embryonic Brain
Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain Donny D. Licatalosi,1,4 Masato Yano,1,5 John J. Fak,1 Aldo Mele,1 Sarah E. Grabinski,2 Chaolin Zhang,1 and Robert B. Darnell1,3,6 1Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York 10065, USA; 2Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA; 3Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA Two polypyrimidine tract RNA-binding proteins (PTBs), one near-ubiquitously expressed (Ptbp1) and another highly tissue-restricted (Ptbp2), regulate RNA in interrelated but incompletely understood ways. Ptbp1, a splicing regulator, is replaced in the brain and differentiated neuronal cell lines by Ptbp2. To define the roles of Ptbp2 in the nervous system, we generated two independent Ptbp2-null strains, unexpectedly revealing that Ptbp2 is expressed in neuronal progenitors and is essential for postnatal survival. A HITS-CLIP (high-throughput sequencing cross- linking immunoprecipitation)-generated map of reproducible Ptbp2–RNA interactions in the developing mouse neocortex, combined with results from splicing-sensitive microarrays, demonstrated that the major action of Ptbp2 is to inhibit adult-specific alternative exons by binding pyrimidine-rich sequences upstream of and/or within them. These regulated exons are present in mRNAs encoding proteins associated with control of cell fate, proliferation, and the actin cytoskeleton, suggesting a role for Ptbp2 in neurogenesis. Indeed, neuronal progenitors in the Ptbp2-null brain exhibited an aberrant polarity and were associated with regions of premature neurogenesis and reduced progenitor pools. -
Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. -
The PTB Interacting Protein Raver1 Regulates A-Tropomyosin Alternative Splicing
The EMBO Journal Vol. 22 No. 23 pp. 6356±6364, 2003 The PTB interacting protein raver1 regulates a-tropomyosin alternative splicing Natalia Gromak, Alexis Rideau, alternative splicing, can be achieved by activation or Justine Southby, A.D.J.Scadden, inhibition (Smith and ValcaÂrcel, 2000; Caceres and Clare Gooding, Stefan HuÈ ttelmaier1, Kornblihtt, 2002). Spliceosome assembly can be assisted Robert H.Singer1 and by additional interactions of `SR' splicing factors with Christopher W.J.Smith2 splicing enhancer sequences, which are commonly found within exons (Blencowe, 2000; Cartegni et al., 2002). SR Department of Biochemistry, University of Cambridge, 80 Tennis proteins have a number of distinct roles in splicing and 1 Court Road, Cambridge CB2 1GA, UK and Department of Anatomy have been characterized as both constitutive and alterna- & Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA tive splicing factors (Manley and Tacke, 1996; Graveley, 2000). A number of negative regulators have been 2 Corresponding author identi®ed, many of which are members of the hetero- e-mail: [email protected] geneous nuclear ribonucleoprotein (hnRNP) family Regulated switching of the mutually exclusive exons 2 (Krecic and Swanson, 1999; Smith and ValcaÂrcel, 2000; and3ofa-tropomyosin (TM) involves repression of Dreyfuss et al., 2002). These proteins contain RNA- exon 3 in smooth muscle cells. Polypyrimidine tract- binding domains as well as various accessory domains, but binding protein (PTB) is necessary but not suf®cient they do not contain the arginine-serine rich domains for regulation of TM splicing. Raver1 was identi®ed in characteristic of the SR family. -
Gene Regulation and Speciation in House Mice
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Gene regulation and speciation in house mice Katya L. Mack,1 Polly Campbell,2 and Michael W. Nachman1 1Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720-3160, USA; 2Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was charac- terized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found ex- tensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive se- lection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. -
The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail. -
Androgen Receptor Function Is Required in Sertoli Cells for the Terminal Differentiation of Haploid Spermatids Robert W
Research article 459 Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids Robert W. Holdcraft and Robert E. Braun* University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA 98195, USA *Author for correspondence (e-mail: [email protected]) Accepted 20 October 2003 Development 131, 459-467 Published by The Company of Biologists 2004 doi:10.1242/dev.00957 Summary Androgen receptor function is required for male embryonic and their release from the seminiferous epithelium is AR sexual differentiation, pubertal development and the dependent and maximally sensitive to AR depletion within regulation of spermatogenesis in mammals. During the testis. Cell-specific disruption of Ar in Sertoli cells of spermatogenesis, this requirement is thought to be hypomorphic animals further shows that progression of mediated by Sertoli cells and its genetic and late-round spermatids to elongating steps is sensitive to loss pharmacological disruption is manifested in spermatocytes of Sertoli cell AR function, but that progression through as meiotic arrest. Through studies of a hypomorphic and meiosis and early-round spermatid differentiation are conditional allele of the androgen receptor (Ar) gene, we surprisingly unaffected. have uncovered a dual post-meiotic requirement for androgen receptor activity during male germ cell Supplemental data available online differentiation. Observations in Ar hypomorphic animals demonstrate that terminal differentiation of spermatids Key words: Androgen receptor, Sertoli, Spermatogenesis, Mouse Introduction function from that resulting from the abdominal positioning Androgen receptor (AR) function is essential in males for of the testes. Mice homozygous for a mutation in the proper sexual differentiation and for the maintenance of normal gonadotrophin releasing hormone gene (Gnrh), which have spermatogenesis. -
Considerations for Feature Selection Using Gene Pairs and Applications
Moody et al. BMC Medical Genomics 2020, 13(Suppl 10):148 https://doi.org/10.1186/s12920-020-00778-x RESEARCH Open Access Considerations for feature selection using gene pairs and applications in large-scale dataset integration, novel oncogene discovery, and interpretable cancer screening Laura Moody1, Hong Chen1,2 and Yuan-Xiang Pan1,2,3* From The 18th Asia Pacific Bioinformatics Conference Seoul, Korea. 18-20 August 2020 Abstract Background: Advancements in transcriptomic profiling have led to the emergence of new challenges regarding data integration and interpretability. Variability between measurement platforms makes it difficult to compare between cohorts, and large numbers of gene features have encouraged the use black box methods that are not easily translated into biologically and clinically meaningful findings. We propose that gene rankings and algorithms that rely on relative expression within gene pairs can address such obstacles. Methods: We implemented an innovative process to evaluate the performance of five feature selection methods on simulated gene-pair data. Along with TSP, we consider other methods that retain more information in their score calculations, including the magnitude of gene expression change as well as within-class variation. Tree-based rule extraction was also applied to serum microRNA (miRNA) pairs in order to devise a noninvasive screening tool for pancreatic and ovarian cancer. Results: Gene pair data were simulated using different types of signal and noise. Pairs were filtered using feature selection approaches, including top-scoring pairs (TSP), absolute differences between gene ranks, and Fisher scores. Methods that retain more information, such as the magnitude of expression change and within-class variance, yielded higher classification accuracy using a random forest model. -
Entropy Based Analysis of Vertebrate Sperm Protamines Sequences: Evidence of Potential Dityrosine and Cysteine-Tyrosine Cross-Linking in Sperm Protamines Christian D
Powell et al. BMC Genomics (2020) 21:277 https://doi.org/10.1186/s12864-020-6681-2 RESEARCH ARTICLE Open Access Entropy based analysis of vertebrate sperm protamines sequences: evidence of potential dityrosine and cysteine-tyrosine cross-linking in sperm protamines Christian D. Powell1,2,DanielC.Kirchoff1, Jason E. DeRouchey1 and Hunter N. B. Moseley2,3,4* Abstract Background: Spermatogenesis is the process by which germ cells develop into spermatozoa in the testis. Sperm protamines are small, arginine-rich nuclear proteins which replace somatic histones during spermatogenesis, allowing a hypercondensed DNA state that leads to a smaller nucleus and facilitating sperm head formation. In eutherian mammals, the protamine-DNA complex is achieved through a combination of intra- and intermolecular cysteine cross-linking and possibly histidine-cysteine zinc ion binding. Most metatherian sperm protamines lack cysteine but perform the same function. This lack of dicysteine cross-linking has made the mechanism behind metatherian protamines folding unclear. Results: Protamine sequences from UniProt’s databases were pulled down and sorted into homologous groups. Multiple sequence alignments were then generated and a gap weighted relative entropy score calculated for each position. For the eutherian alignments, the cysteine containing positions were the most highly conserved. For the metatherian alignment, the tyrosine containing positions were the most highly conserved and corresponded to the cysteine positions in the eutherian alignment. Conclusions: High conservation indicates likely functionally/structurally important residues at these positions in the metatherian protamines and the correspondence with cysteine positions within the eutherian alignment implies a similarity in function. One possible explanation is that the metatherian protamine structure relies upon dityrosine cross-linking between these highly conserved tyrosines. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
Systematic Data-Querying of Large Pediatric Biorepository Identifies Novel Ehlers-Danlos Syndrome Variant Akshatha Desai1, John J
Desai et al. BMC Musculoskeletal Disorders (2016) 17:80 DOI 10.1186/s12891-016-0936-8 RESEARCH ARTICLE Open Access Systematic data-querying of large pediatric biorepository identifies novel Ehlers-Danlos Syndrome variant Akshatha Desai1, John J. Connolly1, Michael March1, Cuiping Hou1, Rosetta Chiavacci1, Cecilia Kim1, Gholson Lyon1, Dexter Hadley1 and Hakon Hakonarson1,2* Abstract Background: Ehlers Danlos Syndrome is a rare form of inherited connective tissue disorder, which primarily affects skin, joints, muscle, and blood cells. The current study aimed at finding the mutation that causing EDS type VII C also known as “Dermatosparaxis” in this family. Methods: Through systematic data querying of the electronic medical records (EMRs) of over 80,000 individuals, we recently identified an EDS family that indicate an autosomal dominant inheritance. The family was consented for genomic analysis of their de-identified data. After a negative screen for known mutations, we performed whole genome sequencing on the male proband, his affected father, and unaffected mother. We filtered the list of non- synonymous variants that are common between the affected individuals. Results: The analysis of non-synonymous variants lead to identifying a novel mutation in the ADAMTSL2 (p. Gly421Ser) gene in the affected individuals. Sanger sequencing confirmed the mutation. Conclusion: Our work is significant not only because it sheds new light on the pathophysiology of EDS for the affected family and the field at large, but also because it demonstrates the utility of unbiased large-scale clinical recruitment in deciphering the genetic etiology of rare mendelian diseases. With unbiased large-scale clinical recruitment we strive to sequence as many rare mendelian diseases as possible, and this work in EDS serves as a successful proof of concept to that effect. -
An Exon That Prevents Transport of a Mature Mrna
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3813–3818, March 1999 Genetics An exon that prevents transport of a mature mRNA MARGARET A. MACMORRIS*, DIEGO A. R. ZORIO*†, AND THOMAS BLUMENTHAL*‡ *Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262; and †Department of Biology, Indiana University, Bloomington, IN 47405 Communicated by William B. Wood III, University of Colorado, Boulder, CO, January 25, 1999 (received for review November 18, 1998) ABSTRACT In Caenorhabditis elegans, pre-mRNA for the recognizes (6). Here we show that uaf-1 exon 3-containing essential splicing factor U2AF65 sometimes is spliced to pro- RNA is not subject to Smg-mediated decay in spite of its duce an RNA that includes an extra 216-bp internal exon, exon containing a PTC. Although it is not yet understood how the 3. Inclusion of exon 3 inserts an in-frame stop codon, yet this components of the pathway act to recognize and degrade RNA is not subject to SMG-mediated RNA surveillance. To aberrant mRNAs, Smg is likely to operate at the site of protein test whether exon 3 causes RNA to remain nuclear and thereby synthesis. Because the yeast homolog of SMG-2, UPF1, has escape decay, we inserted it into the 3* untranslated region of been localized to the cytoplasm at the site of polyribosomes a gfp reporter gene. Although exon 3 did not affect accumu- (7), an mRNA that fails to leave the nucleus might well be lation or processing of the mRNA, it dramatically suppressed unaffected by the Smg pathway. -
Mutation of SPATA7 in a Family with Autosomal Recessive Early-Onset Retinitis Pigmentosa
JournalofMolecularandGeneticMedicine,2012,Vol6,301-303 RESEARCH LETTER Mutation of SPATA7 in a family with autosomal recessive early-onset retinitis pigmentosa Chitra Kannabiran†*, Lakshmi Palavalli† and Subhadra Jalali‡ † Kallam Anji Reddy Molecular Genetics Laboratory, Prof Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India, ‡ Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Banjara Hills, Hyderabad 500034, India. *Correspondence to: Chitra Kannabiran, E-mail: [email protected]; [email protected] Received: 09 November 2012; Revised: 11 December 2012; Accepted: 11 December 2012; Published: 12 December 2012 © Copyright The Author(s): Published by Library Publishing Media. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appro- priately acknowledged with correct citation details. Retinitis pigmentosa (RP) is a form of hereditary retinal The genes that were screened for sequence changes in the degeneration with a high degree of clinical and genetic het- present study included RDH12 and SPATA7. Primers comple- erogeneity. It involves progressive and irreversible degen- mentary to flanking intronic regions of each exon were used eration of retinal photoreceptors, manifests as progressive for PCR amplification of the coding regions of both genes loss of vision with characteristic changes in retinal appear- using appropriate conditions. The PCR-amplified products ance and may eventually lead to complete blindness.