polymers Review Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations William E. King, III 1,2 and Gary L. Bowlin 1,* 1 Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
[email protected] 2 Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA * Correspondence:
[email protected]; Tel.: +1-901-678-2670 Abstract: Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the collector, a fiber can be directly written as dictated by preprogrammed geometry. As a result, this precise fiber control results in another dimension of scaffold tailorability for biomedical applications. In this review, biomedically relevant polymers that to date have manufactured fibers by NFES/MEW are explored and the present limitations in direct fiber writing of standardization in published setup details, fiber write throughput, and increased ease in the creation of complex scaffold geometries are discussed. Keywords: near-field electrospinning; melt electrowrite; fiber write; biomedical polymer Citation: King, W.E., III; Bowlin, G.L. Near-Field Electrospinning and Melt 1. Near-Field Electrospinning (NFES)/Melt Electrowriting (MEW): Fiber Writing Electrowriting of Biomedical Intentional build design and material choice are paramount for any successful biomed- Polymers—Progress and Limitations. ical scaffold applications. To date, scaffold manufacturing techniques such as freeze-drying, Polymers 2021, 13, 1097. https:// solvent casting with particle leaching, gas foaming, and traditional electrospinning (TES) doi.org/10.3390/polym13071097 have all been used for tissue engineering (TE), drug delivery, and microelectromechanical systems (MEMS) applications [1].