The Philosophy of Arithmetic

Total Page:16

File Type:pdf, Size:1020Kb

The Philosophy of Arithmetic This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. http://books.google.com 35 1225 42875 85 722516141251 36|1296 46656 86 7396 636056' 1369| 50653 1 87 7569 658503| 38 1444 54872 88 7744 681472 39 1521 59319 89 7921 704969] 4016001 64000 90 3100 729000 41 1681 68921 9l|8281 753571 4211 64' 74088l 92|8464 778688 43 1849 7950 8649 ;0435 44! 1936 85184 8836 830584 4512025 91125 95 9025 857375 46 21161 973361 96 9216 884756 472209103823 97 9409 912673 48 2301 110592 98 9604 941192 49 2401 117649 99 980 970299 50 2500 1 -J 5000 THE PHILOSOPHY OF ARITHMETIC; EXHIBITING A PROGRESSIVE VIEW or THE THEORY AND PRACTICE OF CALCULATION, WITH AN ENLARGED TABLE OF THE PRODUCTS OF NUMBERS- UNDER ONE HUNDRED. BY JOHN LESLIE, F. R. S. E. PROFESSOR OF MATHEMATICS IN THE UNIVERSITY. OF EDINBURGH. EDINBURGH: Printed by Abernethy % Walker, FOR ARCHIBALD CONSTABLE AND COMPANY, EDINBURGH ; AND LONGMAN, HURST, REES, ORME, AND BROWN LONDON. 1817- QA PREFACE. I now discharge my promise, by the publication of a volume, in which Arithmetic is deduced from its principles, and treated as a branch of liberal education. The object proposed was not merely to teach the rules of calculation, but to train the young student to the invaluable habit of close and patient investigation. I have therefore pre ferred the analytical mode of advancing, and have pursued a route entirely different from 1 hat which is followed by the common treatises of arithmetic. In seeking to unfold the natural progress of dis covery, I have traced the science of numbers, through the succession of ages, from its early germs, till it acquired the strength and expansion of full maturity. This species of history, combin ing sohd instruction with curious details, cannot fail to engage the attention of inquisitive readers. If the execution of this little work, which is the result of very considerable research, should at all correspond with the importance of its design, it may supply a capital defect in our systems of pu- 974 IV PREFACE. blic instruction. A great portion of the materials which compose it has already been given to the world, through the wide circulation of the Supple ment to the Encyclopaedia Britannica ; but the distinct and improved form in which it now ap pears is alone suited for general use. Some per sons will perhaps complain that it takes a wider scope than might answer all the common objects of tuition. But there is yet no royal road to knowledge, and whatever is acquired without ef fort becomes quickly effaced from the memory. Nothing indeed can be more fallacious than to ex pect any solid or lasting advantage from the sub stitution of a concise and mechanical procedure. The time required for the study of this treatise could scarcely be more beneficially employed, since it will not only rivet in the mind of the pupil the theory and enlarged practice of calculation, but invigorate, by proper exercise, his reasoning faculties, and consequently prepare him either for entering the labyrinths of business, or engaging in the higher pursuits of science. College op Edinburgh,! 15th October 1817. J INTRODUCTION. X he idea of number, though not the most easily ac quired, remounts to the earliest epochs of society, and must be nearly coeval with the formation of language. The very savage, who draws from the practice of fishing or hunt ing a precarious support for himself and family, is eager, on his return home, to count over the produce of his toil some exertions. But the leader of a troop is obliged to carry farther his skill in numeration. He prepares to at tack a rival tribe, by marshalling his followers ; and, af ter the bloody conflict is over, he reckons up the slain, and marks his unhappy and devoted captives. If the numbers were small, they could easily be represented by very portable emblems, by round pebbles, by dwarf-shells, by fine nuts, by hard grains, by small beans, or by knots tied on a string. But to express the larger numbers, it became necessary, for the sake of distinctness, to place those little objects or counters in regular rows, which the eye could comprehend at a single glance ; as, in the actual telling of money, it would soon have become customary to dispose the rude counters, in two, three, four, or more B INTRODUCTION. ranks, according as circumstances might suggest. The at tention of the reckoner would then be less distracted, rest ing chiefly on the number of marks presented by each se parate TOW. Language insensibly moulds itself to our wants. But it was impossible to furnish a name for each particular num ber : No invention could supply such a multitude of words as would be required, and no memory could ever retain them. The only practical mode of proceeding, was to have recourse, as on other occasions, to the powers of classifi cation. By conceiving the individuals of a mass to be dis tributed into successive ranks and divisions, a few compo nent terms might be made sufficient to express the whole. We may discern around us traces of the progress of nu meration, through all its gradations. The earliest and simplest mode of reckoning was bf pairs, arising naturally from the circumstance of both hands being employed in it, for the sake of expedition. It is now familiar among sportsmen, who use the names of brace and couple, words that signify pairing or yoking.— To count by threes was another step, though not practised to an equal extent. It has been preserved, however, by the same class of men, under the term leash, meaning the strings by which three dogs and no more can be held at once in the hand. — The numbering by fours, has had a more extensive appli cation : It was evidently suggested by the custom of taking, in the rapid tale of objects, a pair in each hand. Our fishermen, who generally count in this way, call every double pair of herrings, for instance, a throw or cast and the term warp, which, from its German origin, has exact ly the same import, is employed to denote four, in various articles of trade. INTRODUCTION. 3 These simple arrangements would, on their first appli cation, carry the power of reckoning but a very little way. To express larger numbers, it became necessary to renew the process of classification j and the ordinary steps by which language ascends from particular to general objects, might point out the right path of proceeding. A collec tion of individuals forms a species ; a cluster of species makes a genus ; a bundle of genera composes an order ; a group of orders constitutes a class ; and an aggregation of classes may complete a kingdom. Such is the method indispensably required in framing the successive distribu tion of the almost unbounded subjects of Natural History. In following out the classification of numbers, it seemed easy .and natural, after the first step had been made, to re peat the same procedure. If a heap of pebbles were dis- * posed in certain rows, it would evidently facilitate their enumeration, to break down each of those rows into simi lar parcels, and thus carry forward the successive subdivi sion till it stopped. The heap, so analysed by a series of par titions, might then be expressed with a very few low num bers, capable of being distinctly retained. The particular system adopted for this decomposition would soon become clothed in terms borrowed from the vernacular idiom. Let us endeavour to trace the steps by which a child or a savage, prompted by native curiosity, would proceed in classing, for instance, twenty-three similar objects. — 1. He might be conceived to arrange them by succes sive pairs. Selecting twenty-three of the smallest shells or grains he could find, he might dis pose these in two rows, containing each eleven counters, and one over. Having thus reduced the number to eleven, he might sub 4. INTRODUCTION. divide this again, by representing only one of the rows, with shells twice as large as before: He would consequently obtain two rows of • • • • • ^ Jive each, with an excess of one. Instead of these shells, were he to employ shells of a double size, it would be sufficient to denote one of the rows, 9 m or to dispose it into two rows. These rows con- • • • tain each only two counters, with one remaining. Again, by adopting counters of a double size, the last row % might be represented by one pair, each contain- 9 ing only two marks exactly. These again could be deno ted by a single counter, of twice the former di- ^ mensions. — Hence the number twenty-three, as decomposed by repeated pairing, would be denoted by one counter of the fifth order, one of the third, one ^ of the second, and another of the first. # • 2. Again, suppose a person should attempt to represent the same number, by triple rows of shells or counters. He would first have seven of the smallest shells in each row, with an excess of two. Then, expressing one of the rows by shells of three times the size or value, • • it would be again resolved into three * ^ rows, each containing two counters, with an excess of one. But these rows might be repre- % sented by two counters of triple size ; % and here the decomposition stops. The number twen ty-three is thus expressed, on the sys tem of triplication, by two counters of ^ ^ the third order, one of the second, and * two of the first.
Recommended publications
  • Squaring, Cubing, and Cube Rooting Arthur T
    Squaring, Cubing, and Cube Rooting Arthur T. Benjamin Arthur T. Benjamin ([email protected]) has taught at Harvey Mudd College since 1989, after earning his Ph.D. from Johns Hopkins in Mathematical Sciences. He has served MAA as past editor of Math Horizons and the Spectrum Book Series, has written two books for MAA, and served as Polya Lecturer from 2006 to 2008. He frequently performs as a mathemagician, a term popularized by Martin Gardner. I still recall the thrill and simultaneous disappointment I felt when I first read Math- ematical Carnival [4] by Martin Gardner. I was thrilled because, as my high school teacher had told me, mathematics was presented there in a playful way that I had never seen before. I was disappointed because Gardner quoted a formula that I thought I had “invented” a few years earlier. I have always had a passion for mental calculation, and the formula (1) below appears in Gardner’s chapter on “Lightning Calculators.” It was used by the mathematician A. C. Aitken to square large numbers mentally. Squaring Aitken took advantage of the following algebraic identity. A2 (A d)(A d) d2. (1) = − + + Naturally, this formula works for any value of d, but we should choose d to be the distance to a number close to A that is easy to multiply. Examples. To square the number 23, we let d 3 to get = 232 20 26 32 520 9 529. = × + = + = To square 48, let d 2 to get = 482 50 46 22 2300 4 2304. = × + = + = With just a little practice, it’s possible to square any two-digit number in a matter of seconds.
    [Show full text]
  • Divisibility Rules by James D
    DIVISIBILITY RULES BY JAMES D. NICKEL Up to this point in our study, we have explored addition, subtraction, and multiplication of whole num- bers. Recall that, on average, out of every 100 arithmetical problems you encounter 70 will require addition, 20 will require multiplication, 5 will require subtraction, and 5 will require division. Although least used, di- vision is a part of everyday life. Parents, in providing inheritances for their children, generally seek to divide the estate equally between their children. When four people play with a deck of 52 cards, they seek to divide the cards equally to each player. We are now ready to explore the nature of division and, to speak truthfully, division is one of the hard- est processes for a student to master because it is the most complicated of all the arithmetical operations. Note what was said about it in 1600: Division is esteemed one of the busiest operations of Arithmetick, and such as requireth a mynde not wandering, or setled uppon other matters.1 So, we shall tread this division ground lightly before we start digging. We shall provide a few lessons of “interlude” first that I think you will find very enjoyable. The ancient Greeks of the Classical era (ca. 600–300 BC) were fascinated with the structure of number, especially the natural numbers. For the = 2 = 1 philosophers of this period, the study of the structure of natural numbers = 4 = 3 was a favorite “thought” hobby. We have already seen one example of this in the classification of even and odd numbers.
    [Show full text]
  • Abstract of Counting Systems of Papua New Guinea and Oceania
    Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources.
    [Show full text]
  • Cool Math Essay May 2013: DIVISIBILITY
    WILD COOL MATH! CURIOUS MATHEMATICS FOR FUN AND JOY MAY 2013 PROMOTIONAL CORNER: PUZZLER: Here’s a delight for dividing Have you an event, a workshop, a website, by nine. To compute 12401÷ 9 , for some materials you would like to share with example, just read form left to right and the world? Let me know! If the work is about record partial sums. The partial sums give deep and joyous and real mathematical the quotient and the remainder! doing I would be delighted to mention it here. *** Are you in the DC/Maryland are looking for an exciting, rich and challenging summer- course experience for students? The Institute for Academic Challenge is offering a really cool course on The puzzle is: Why does this work? Combinatorics, August 12-23. Check out www.academicchallenge.org/classes.html . COMMENT: If we didn’t carry digits in our arithmetic system, this method would always hold. For instance, 3282÷ 9 = 3|5|13remainder 15 is mathematically correct! © James Tanton 2013 26+ 78 = 104! That is, DIVIDING BY 97 6 AND OTHER SUCH QUANTITIES 1378÷ 98 = 14 . 98 Quick! What’s 602÷ 97 ? Qu ery : Look at the picture on the left. Can Well… you use it to see that 602÷ 103 equals 6 602 is basically 600 , with a remainder of −16 , a negative 97 is essentially 100 , and −16 remainder? So 602÷ 103 = 6 . What is 600÷ 100 = 6 . 103 approximate decimal value of this? So 602÷ 97 is basically 6 . How far off is this answer? What is 598÷ 103 ? A picture of 602 dots shows that each COMMENT : If x= y and z= y , then group of 100 is off from being a group of surely it is true that x= z .
    [Show full text]
  • On Terms of Generalized Fibonacci Sequences Which Are Powers of Their Indexes
    mathematics Article On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes Pavel Trojovský Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic, [email protected]; Tel.: +42-049-333-2860 Received: 29 June 2019; Accepted: 31 July 2019; Published: 3 August 2019 (k) Abstract: The k-generalized Fibonacci sequence (Fn )n (sometimes also called k-bonacci or k-step Fibonacci sequence), with k ≥ 2, is defined by the values 0, 0, ... , 0, 1 of starting k its terms and such way that each term afterwards is the sum of the k preceding terms. This paper is devoted to the proof of the fact that the (k) t (2) 2 (3) 2 Diophantine equation Fm = m , with t > 1 and m > k + 1, has only solutions F12 = 12 and F9 = 9 . Keywords: k-generalized Fibonacci sequence; Diophantine equation; linear form in logarithms; continued fraction MSC: Primary 11J86; Secondary 11B39. 1. Introduction The well-known Fibonacci sequence (Fn)n≥0 is given by the following recurrence of the second order Fn+2 = Fn+1 + Fn, for n ≥ 0, with the initial terms F0 = 0 and F1 = 1. Fibonacci numbers have a lot of very interesting properties (see e.g., book of Koshy [1]). One of the famous classical problems, which has attracted a attention of many mathematicians during the last thirty years of the twenty century, was the problem of finding perfect powers in the sequence of Fibonacci numbers. Finally in 2006 Bugeaud et al. [2] (Theorem 1), confirmed these expectations, as they showed that 0, 1, 8 and 144 are the only perfect powers in the sequence of Fibonacci numbers.
    [Show full text]
  • Number Systems and Radix Conversion
    Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will be required for PA1. We humans are comfortable with numbers in the decimal system where each po- sition has a weight which is a power of 10: units have a weight of 1 (100), ten’s have 10 (101), etc. Even the fractional apart after the decimal point have a weight that is a (negative) power of ten. So the number 143.25 has a value that is 1 ∗ 102 + 4 ∗ 101 + 3 ∗ 0 −1 −2 2 5 10 + 2 ∗ 10 + 5 ∗ 10 , i.e., 100 + 40 + 3 + 10 + 100 . You can think of this as a polyno- mial with coefficients 1, 4, 3, 2, and 5 (i.e., the polynomial 1x2 + 4x + 3 + 2x−1 + 5x−2+ evaluated at x = 10. There is nothing special about 10 (just that humans evolved with ten fingers). We can use any radix, r, and write a number system with digits that range from 0 to r − 1. If our radix is larger than 10, we will need to invent “new digits”. We will use the letters of the alphabet: the digit A represents 10, B is 11, K is 20, etc. 2 What is the value of a radix-r number? Mathematically, a sequence of digits (the dot to the right of d0 is called the radix point rather than the decimal point), : : : d2d1d0:d−1d−2 ::: represents a number x defined as follows X i x = dir i 2 1 0 −1 −2 = ::: + d2r + d1r + d0r + d−1r + d−2r + ::: 1 Example What is 3 in radix 3? Answer: 0.1.
    [Show full text]
  • Cheat Sheet of SSE/AVX Intrinsics, for Doing Arithmetic Ll F(Int Ind, Int K) { Return Dp[Ind][K]; } on Several Numbers at Once
    University of Bergen Garbage Collectors Davide Pallotti, Jan Soukup, Olav Røthe Bakken NWERC 2017 Nov 8, 2017 UiB template .bashrc .vimrc troubleshoot 1 tan v + tan w Contest (1) Any possible infinite recursion? tan(v + w) = Invalidated pointers or iterators? 1 − tan v tan w template.cpp Are you using too much memory? v + w v − w 15 lines Debug with resubmits (e.g. remapped signals, see Various). sin v + sin w = 2 sin cos #include <bits/stdc++.h> 2 2 using namespace std; Time limit exceeded: v + w v − w Do you have any possible infinite loops? cos v + cos w = 2 cos cos #define rep(i, a, b) for(int i = a; i < (b); ++i) What is the complexity of your algorithm? 2 2 #define trav(a, x) for(auto& a : x) Are you copying a lot of unnecessary data? (References) #define all(x) x.begin(), x.end() How big is the input and output? (consider scanf) (V + W ) tan(v − w)=2 = (V − W ) tan(v + w)=2 #define sz(x) (int)(x).size() Avoid vector, map. (use arrays/unordered_map) typedef long long ll; What do your team mates think about your algorithm? where V; W are lengths of sides opposite angles v; w. typedef pair<int, int> pii; typedef vector<int> vi; Memory limit exceeded: a cos x + b sin x = r cos(x − φ) What is the max amount of memory your algorithm should need? int main() { Are you clearing all datastructures between test cases? a sin x + b cos x = r sin(x + φ) cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); p 2 2 } Mathematics (2) where r = a + b ; φ = atan2(b; a).
    [Show full text]
  • Composite Numbers That Give Valid RSA Key Pairs for Any Coprime P
    information Article Composite Numbers That Give Valid RSA Key Pairs for Any Coprime p Barry Fagin ID Department of Computer Science, US Air Force Academy, Colorado Springs, CO 80840, USA; [email protected]; Tel.: +1-719-339-4514 Received: 13 August 2018; Accepted: 25 August 2018; Published: 28 August 2018 Abstract: RSA key pairs are normally generated from two large primes p and q. We consider what happens if they are generated from two integers s and r, where r is prime, but unbeknownst to the user, s is not. Under most circumstances, the correctness of encryption and decryption depends on the choice of the public and private exponents e and d. In some cases, specific (s, r) pairs can be found for which encryption and decryption will be correct for any (e, d) exponent pair. Certain s exist, however, for which encryption and decryption are correct for any odd prime r - s. We give necessary and sufficient conditions for s with this property. Keywords: cryptography; abstract algebra; RSA; computer science education; cryptography education MSC: [2010] 11Axx 11T71 1. Notation and Background Consider the RSA public-key cryptosystem and its operations of encryption and decryption [1]. Let (p, q) be primes, n = p ∗ q, f(n) = (p − 1)(q − 1) denote Euler’s totient function and (e, d) the ∗ Z encryption/decryption exponent pair chosen such that ed ≡ 1. Let n = Un be the group of units f(n) Z mod n, and let a 2 Un. Encryption and decryption operations are given by: (ae)d ≡ (aed) ≡ (a1) ≡ a mod n We consider the case of RSA encryption and decryption where at least one of (p, q) is a composite number s.
    [Show full text]
  • Notes on Arithmetic of Some Commutative Rings and Fields October 1993 G.R. Blakley 0
    Notes on Arithmetic of Some Commutative Rings and Fields October 1993 G.R. Blakley 0 INDEX 1. MODULAR ARITHMETIC 11 2. CASTING OUT NINES, TENS AND ELEVENS 21 3. MULTIPLE PRECISION ARITHMETIC 31 4. THE BINARY METHOD OF RAISING A BASE TO A POWER 41 5. A FIRST CUT AT NUMBER THEORY: PRIMES, COMPOSITES, ϕ, λ FERMAT’S, EULER’S AND CARMICHAEL’S THEOREMS 51 6. THE EUCLIDEAN ALGORITHM FOR INTEGERS 61 7. THE ARITHMETIC OF POLYNOMIALS 71 8. THE EUCLIDEAN ALGORITHM FOR POLYNOMIALS. FIRST CUT 81 9. THE ARITHMETIC OF POLYNOMIALS WHOSE COEFFICIENT ARITHMETIC IS MODULO 2 ARITHMETIC 91 10. THE EUCLIDEAN ALGORITHM FOR POLYNOMIALS. SECOND CUT 101 11. FINDING RECIPROCALS MODULO m 111 12. A SECOND CUT AT NUMBER THEORY: THE DISTRIBUTION OF PRIMES 121 13. REDUCIBILITY AND IRREDUCIBILITY 131 14. FIELDS. ESPECIALLY GALOIS FIELDS 141 15. SMART DISPLAYS OF TABLES FOR SMALL GALOIS FIELDS 151 16. GALOIS FIELDS. 161 0 1. MODULAR ARITHMETIC. 9 hours after 8 PM isn’t 17 PM. It’s 5 AM. This is an example of modulo 12 arithmetic. 9 + 8 = 17 = 12 + 5. So we write 9 + 8 5 mod 12. ≡ Definition 11. More generally a b mod m means that b a is a multiple of m.Equiv- ≡ − alently, a b mod m means that b and a leave the same remainder upon division by m. ≡ The expression a b mod m is sometimes abbreviated a b. ≡ ≡m Lemma 11. Congruence modulo a positive integer m has three properties. REFLEXIVE. a, a a mod m ∀ ≡ SYMMETRIC. a, b, a b mod m if b a mod m ∀ ∀ ≡ ≡ TRANSITIVE.
    [Show full text]
  • Duodecimalbulletinissue521.Pdf
    The Duodecimal Bulletin THETHE DuodecimalDuodecimal BulletinBulletin Vol. 52z (62d), No. 1 • July 11EEz (2015d) • Volume 52 z (62 d ), Number 1 • Whole Number X 2 z (122 d ) • July 11 Base Annotation Schemes Whole Number EE z (2015 X d ) z (122 ) ISSN 0046-0826d 2d X ETY Volume Five Dozen Two (52z) Number 1 Whole Number Ten Dozen Two ( 2z) CI O The Dozenal Society of America • • O F is a voluntary, nonprofit corporation, organized to S E 0 1 A L conduct research and educate the public in the use X 2 M The DuodecimalDuodecimal A of base twelve in calculations, mathematics, weights DuodecimalDuodecimalDuodecimal 9 3 E N R and measures, and other branches of pure and ap- E 8 4 I Bulletin Z BulletinBulletin C BulletinBulletin 7 5 plied science. BulletinBulletinBulletinBulletin A O 6 D Volume Sixty Two (62 ) Number 1 Whole No. One Hundred Twenty Two (122 ) d • • d S Basic membership is free, but as a nonprofit we de- pend upon the generosity of our members to continue operating. An annual subscription of US$18.00d B Table of Contents C The Duodecimal Bulletin (US$16.00z) entitles the member to delivery of pa- is an official publication of: per copies of The Duodecimal Bulletin. President’s Message by Donald Goodman ....................................................2z Officers The Dozenal Society Editorial: Radically Conventional ..................................3z Board Chair Jay Schiffman of America, Inc. New Members ...........................................................7z 13510 Photo Drive President Donald Goodman Accuracy of Common Roundings Vice President Graham Steele Woodbridge, VA 22193 by Donald Goodman ....................................................8z Secretary Jen Seron Base Annotation Schemes Treasurer Jay Schiffman Founded: 1160z (1944d) by John Volan.........................................................10z Patterns and Palatable Morsels in Duodecimal Official Website: Board of Directors by Prof.
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]
  • Arxiv:1608.06086V1 [Math.NT]
    POWER OF TWO AS SUMS OF THREE PELL NUMBERS JHON J. BRAVO, BERNADETTE FAYE AND FLORIAN LUCA Abstract. In this paper, we find all the solutions of the Diophantine equation a Pℓ +Pm +Pn =2 , in nonnegative integer variables (n,m,ℓ,a) where Pk is the k-th term of the Pell sequence Pn n≥0 given by P0 = 0, P1 = 1 and Pn+1 =2Pn+Pn−1 for all n 1. { } ≥ MSC: 11D45, 11B39; 11A25 Keywords: Diophantine equations, Pell numbers, Linear forms in logarithm, reduction method. 1. Introduction The Pell sequence P is the binary reccurent sequence given by P = 0, P =1 { n}n≥0 0 1 and Pn+1 = 2Pn + Pn−1 for all n 0. There are many papers in the literature dealing with Diophantine equations≥ obtained by asking that members of some fixed binary recurrence sequence be squares, factorials, triangular, or belonging to some other interesting sequence of positive integers. For example, in 2008, A. Peth˝o[18] found all the perfect powers (of exponent larger than 1) in the Pell sequence. His result is the following. Theorem 1 (A. Peth˝o, [18]). The only positive integer solutions (n, q, x) with q 2 of the Diophantine equation ≥ q Pn = x are (n, q, x) = (1, q, 1) and (7, 2, 13). That is, the only perfect powers of exponent larger than 1 in the Pell numbers are 2 P1 =1 and P7 = 13 . The case q = 2 had been treated earlier by Ljunggren [13]. Peth˝o’s result was rediscovered by J. H.
    [Show full text]