Msc Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Msc Chemistry Subject Chemistry Paper No and Title Paper-9, Organic Chemistry-III (Reaction Mechanism-2) Module No and Title Module-23, Elimination Reactions: E1 and E2 mechanisms- Part-II Module Tag CHE_P9_M23 CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Regio-Chemical Aspects of E1 And E2 Eliminations: Orientation of the Double Bond 3.1 Regiochemistry of E1 elimination 3.2 Regiochemistry of E2 elimination 4. Stereochemical aspects of E1 and E2 Elimination Mechanisms 4.1 Stereochemistry of E1 elimination 4.2 Stereochemistry of E2 elimination 5. E2 elimination in cyclohexane rings 6. Summary CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II 1. Learning Outcomes After studying this module, you shall be able to Know what is meant by elimination reactions Perceive factors favouring elimination over substitution Learn about the types of elimination reactions Differentiate between the E1 and E2 mechanism Identify set of conditions responsible for E1 or E2 mechanism 2. Introduction The E1 and E2 eliminations present a fair degree of regioselectivity and stereo-selectivity which are governed by their mechanistic aspects. Before proceeding to a detailed discussion on these aspects, let us recall the main features of E1 and E2 eliminations as shown in table-1. E1 elimination E2 elimination Rate = k [substrate] Rate = k [substrate][Base] unimolecular Bimolecular Leaving group first departs and Concerted process; both the groups carbocation is formed from which (proton and leaving group) are removal of H takes place eliminated simultaneously. Preferred in 3o >2o >1o substrates No such preference No strong base required Stronger and bulky base in high concentration is required Strongly dependent on leaving group. Hydroxyl can never be a leaving group Hydroxyl can be converted to a better for E2 elimination leaving group via protonation by use of an acid No stereochemical requirement The leaving group must be trans to the Hydrogen involved 3. Regio-Chemical Aspects of E1 And E2 Eliminations: Orientation of the Double Bond During elimination reaction, a double bond is generated. So, one is concerned with the regiochemistry i.e., the production of structural isomers which have the double bond in different positions. Elimination reactions may be either regiospecific or regioselective. Regiospecific elimination reactions produce only one isomer of an alkene. Regioselective elimination reactions, on the other hand, produce several different isomers, but give one isomer in major quantity than the others. This, in turn, depends on whether the reaction prefers to eliminate only one particular β-hydrogen or a mixture of β-hydrogens. CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II If an elimination reaction produces the more highly substituted alkene, the reaction is said to follow the Saytzeff rule. On the other hand, if the elimination reaction forms the less substituted alkene, the reaction is said to follow the Hofmann rule. A number of factors including the nature of substrate, the leaving group, reaction conditions etc. determine what rule a given reaction may follow. 3.1 Regiochemistry of E1 elimination E1 eliminations are regioselective and generate the alkene that has the more substituents, as the major product. Thus, the E1 reactions follow Saytzeff rule. This is due to the fact that in E1 eliminations, leaving group departs to produce first a carbocation. Thus the direction of the double bond is determined almost entirely by the relative stabilities of the olefins produced via elimination. The major product is the alkene that has the more substituents, because this alkene is the more stable of the two possible products. For example, 2-bromo-3-methylbutane undergoes E1 elimination to yield two alkene products viz. 3-methyl-1-butene and 2-methyl-2-butene. The major product is 2-methyl-2-butene because there are three alkyl substituents attached to the carbon—carbon double bond. ‘More substituted alkene is more stable’ does not necessarily explain why it is the one that forms faster. For this, we need to have a look on the transition state leading to the two alkenes. In the carbocation there is hyperconjugation involving each β-hydrogen. Since the hyperconjugation structures possess some double-bond character, the interaction with hydrogen is greatest at more highly substituted carbons; that is, there will be greater weakening of C−H bonds and more double-bond character at more highly substituted carbon atoms. This structural effect in the carbocation intermediate governs the direction of elimination and leads to the preferential formation of the more highly substituted alkene. More stable transition state is lower in energy, and results in faster formation of more substituted alkene, i.e. it is the thermodynamic product. CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II 3.2 Regiochemistry of E2 elimination Most of the E2 reactions, involving good leaving groups (halides, sulfonates etc.) also follow the Saytzeff rule, i.e. lead to a more substituted alkene. This can be attributed to a similar transition state as discussed in the case of E1 elimination. Hence, halides (Br, Cl, I) give more substituted alkene, but E2 elimination of alkyl fluorides results in the least substituted alkene. When a base begins to abstract a proton from an alkyl fluoride, the fluoride ion has less tendency to leave compared to other halide ions as it is a poor leaving group. Therefore negative charge develops on the carbon that is losing the proton, giving the transition state a carbanion character (rather than an alkene character as shown previously) which is stabilized by highly electron-withdrawing fluorine and fewer electron-donating alkyl substituents. This subsequently results in the formation of least-substituted alkene. CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II Similarly, E2 reactions involving other poor leaving groups, particularly those with quaternary ammonium salts, are said to follow the Hofmann rule and give primarily the less-substituted alkene. Moreover, when the proton to be removed is in the sterically more hindered position or when the base used for E2 elimination is a bulky base, exceptions to the Saytzeff rule occur. These situations lead to a high proportion of the less substituted alkene (Hofmann orientation). However, when formation of a double bond can lead to extended conjugation with already present functional groups (C=O or C=C) or aryl ring, then irrespective of the mechanism, the conjugated product only predominates. Similarly, eliminations in bridged cyclic compounds follow the Bredt rule, i.e. irrespective of the mechanism, a double bond never goes to the bridgehead carbon in rings of smaller size. This is simply a consequence of the strain induced by a planar bridgehead carbon, and so having a double bond on a bridgehead would be too unstable. 4. Stereochemical aspects of E1 and E2 Elimination Mechanisms The E1 reaction mechanism is a two-step process that, as with the SN1 mechanism, usually loses all the stereochemical information of the substrate as the reaction proceeds. On the other hand, the E2 mechanism is a concerted mechanism. A concerted reaction usually requires that the substrate have a specific conformation that allows the orbitals of the bonds being broken to overlap the bonds being formed. It is only when the orbitals overlap, the electrons flow smoothly CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II from the breaking bonds to the forming bonds and consequently the reaction takes place. These aspects of elimination reactions are discussed as follows: 4.1 Stereochemistry of E1 eliminations Considering the geometrical isomerism of the E1 elimination product, usually the formation of E- alkene is favoured over the Z-alkene. This is due to the steric factors of the transition states leading to these possible geometries, favouring E-geometry because the substituents can get farther apart from each other. So, E-alkene forms faster. 4.2 Stereochemistry of E2 eliminations As discussed before, E2 elimination requires a stricter stereo-chemical requirement to occur. The alkene is formed by overlap of the C–H σ-bond with the C–X σ* antibonding orbital (X=leaving group). The two orbitals must lie in the same plane for best overlap, and there are two possible conformations for this viz. Hydrogen and leaving-group are either syn-periplanar, or anti- periplanar. Of these two conformations, the anti-coplanar conformation (staggered) is generally more stable. Thus, most E2 eliminations occur when the substrate is in the anti-coplanar conformation. This is also illustrated below: CHEMISTRY PAPER No. 9 : Organic Chemistry-III (Reaction Mechanism-2) Module-23, Elimination Reactions: E1 and E2 mechanisms-Part-II Syn-elimination Anti-elimination Not so efficient overlap between σ C-H Efficient overlap possible between σ C-H bonding and σ* C-LG anti-bonding orbital. bonding and σ* C-LG anti-bonding orbital. Repulsion between the attacking electron- rich base and electron-rich halogen on the No repulsion between the attacking same side of the molecule. electron-rich base and electron-rich halogen on the opposite sides of the molecule. Thus, anti-elimination is faster. However, when the substrate itself is quite rigid and only one proton is available for taking part in elimination as shown in the figure below for the two diastereomers of (1- bromopropane-1,2-diyl)dibenzene, the E2-elimination can be stereo-specific and the reaction outcome will depend upon which diastereomer has been used for the reaction.
Recommended publications
  • Elimination Reactions E1, E2, E1cb and Ei
    Elimination Reactions Dr. H. Ghosh Surendranath College, Kol-9 ________________________________________________ E1, E2, E1cB and Ei (pyrolytic syn eliminations); formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity; comparison between substitution and elimination. Substitution Reactions Elimination Reactions Elimination happens when the nucleophile attacks hydrogen instead of carbon Strong Base favor Elimination Bulky Nucleophile/Base favor Elimination High Temperature favors Elimination We know- This equation says that a reaction in which ΔS is positive is more thermodynamically favorable at higher temperature. Eliminations should therefore be favoured at high temperature Keep in Mind---- Mechanism Classification E1 Mechanism- Elimination Unimolecular E1 describes an elimination reaction (E) in which the rate-determining step is unimolecular (1) and does not involve the base. The leaving group leaves in this step, and the proton is removed in a separate second step E2 Mechanism- Elimination Bimolecular E2 describes an elimination (E) that has a bimolecular (2) rate-determining step that must involve the base. Loss of the leaving group is simultaneous with removal of the proton by the base Bulky t-butoxide—ideal for promoting E2 as it’s both bulky and a strong base (pKaH = 18). Other Organic Base used in Elimination Reaction These two bases are amidines—delocalization of one nitrogen’s lone pair on to the other, and the resulting stabilization of the protonated amidinium ion, E1 can occur only with substrates that can ionize to give relatively stable carbocations—tertiary, allylic or benzylic alkyl halides, for example. E1-Elimination Reaction not possible here The role of the leaving group Since the leaving group is involved in the rate-determining step of both E1 and E2, in general, any good leaving group will lead to a fast elimination.
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • Reaction Mechanism
    Reaction Mechanism A detailed sequence of steps for a reaction Reasonable mechanism: 1. Elementary steps sum to the overall reaction 2. Elementary steps are physically reasonable 3. Mechanism is consistent with rate law and other experimental observations (generally found from rate limiting (slow) step(s) A mechanism can be supported but never proven NO2 + CO NO + CO2 2 Observed rate = k [NO2] Deduce a possible and reasonable mechanism NO2 + NO2 NO3 + NO slow NO3 + CO NO2 + CO2 fast Overall, NO2 + CO NO + CO2 Is the rate law for this sequence consistent with observation? Yes Does this prove that this must be what is actually happening? No! NO2 + CO NO + CO2 2 Observed rate = k [NO2] Deduce a possible and reasonable mechanism NO2 + NO2 NO3 + NO slow NO3 + CO NO2 + CO2 fast Overall, NO2 + CO NO + CO2 Is the rate law for this sequence consistent with observation? Yes Does this prove that this must be what is actually happening? No! Note the NO3 intermediate product! Arrhenius Equation Temperature dependence of k kAe E/RTa A = pre-exponential factor Ea= activation energy Now let’s look at the NO2 + CO reaction pathway* (1D). Just what IS a reaction coordinate? NO2 + CO NO + CO2 High barrier TS for step 1 Reactants: Lower barrier TS for step 2 NO2 +NO2 +CO Products Products Bottleneck NO +CO2 NO +CO2 Potential Energy Step 1 Step 2 Reaction Coordinate NO2 + CO NO + CO2 NO22 NO NO 3 NO NO CO NO CO 222In this two-step reaction, there are two barriers, one for each elementary step. The well between the two transition states holds a reactive intermediate.
    [Show full text]
  • Chapter 14 Chemical Kinetics
    Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate of formation of products and the rate of disappearance of reactants given the balanced chemical equation for the reaction. Understand the form and meaning of a rate law including the ideas of reaction order and rate constant. Determine the rate law and rate constant for a reaction from a series of experiments given the measured rates for various concentrations of reactants. Use the integrated form of a rate law to determine the concentration of a reactant at a given time. Explain how the activation energy affects a rate and be able to use the Arrhenius Equation. Predict a rate law for a reaction having multistep mechanism given the individual steps in the mechanism. Explain how a catalyst works. C (diamond) → C (graphite) DG°rxn = -2.84 kJ spontaneous! C (graphite) + O2 (g) → CO2 (g) DG°rxn = -394.4 kJ spontaneous! 1 Chemical kinetics is the study of how fast chemical reactions occur. Factors that affect rates of reactions: 1) physical state of the reactants. 2) concentration of the reactants. 3) temperature of the reaction. 4) presence or absence of a catalyst. 1) Physical State of the Reactants • The more readily the reactants collide, the more rapidly they react. – Homogeneous reactions are often faster. – Heterogeneous reactions that involve solids are faster if the surface area is increased; i.e., a fine powder reacts faster than a pellet. 2) Concentration • Increasing reactant concentration generally increases reaction rate since there are more molecules/vol., more collisions occur.
    [Show full text]
  • Reaction Kinetics in Organic Reactions
    Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J.
    [Show full text]
  • [3+2]-ANNULATION REACTIONS with NITROALKENES in the SYNTHESIS of AROMATIC FIVE-MEMBERED NITROGEN HETEROCYCLES Vladimir A. Motorn
    237 [3+2] - ANNULATION REACTIONS WIT H NITROALKENES IN THE SYNTHESIS OF AROMATIC FIVE - MEMBERED NITROGEN HETEROCYCLES DOI: http://dx.medra.org/ 10.17374/targets.2020.23.2 37 Vladimir A. Motornov, Sema L. Ioffe, Andrey A. Tabolin * N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia (e - mail: [email protected]) Abstract. [3+2] - A nnulation reactions are widely used for the synthesis of aromatic heterocycles. In recent years they have become attractive for the preparation of medicinally relevant heterocycles due to their broad substrate scope and availability of starting materials . A nnulations with nitroalkenes may lead to different products due to the ability of the nitro - group to act both as activating group and as leaving group. Ultimately this gives rise to the synthesis of multifunctional heterocyclic compounds, including nitro - substituted ones. The present review covers various annulation re actions with nitroalkenes leading to five - membered nitrogen - containing heterocyclic rings. Oxidative annulation, annulation/elimination and self - oxidative annulation pathways are discussed. Contents 1. Introduction 2. Classification of nitroalkene - b ased annulation reactions 3. A nnulations with nitroalkenes in the synthesis of five - membered rings 3.1. Synthesis of pyrroles 3.1.1. Barton - Zard pyrrole synthesis 3.1.2. Annulation with enamines 3.1.3. Annulation with azomethine ylides 3.2. Synthesis of pyrazoles 3.2.1. Nitroalkene - diazo comp o unds [3+2] - cycloadditions 3.2.2. Oxidative annulation of nitroalkenes with hydrazones 3.3. Synthesis of imidazoles and imidazo[1,2 - a]pyridines 3.4. Synthesis of indolizines and related heter ocycles 3.5.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Ketenes 25/01/2014 Part 1
    Baran Group Meeting Hai Dao Ketenes 25/01/2014 Part 1. Introduction Ph Ph n H Pr3N C A brief history Cl C Ph + nPr NHCl Ph O 3 1828: Synthesis of urea = the starting point of modern organic chemistry. O 1901: Wedekind's proposal for the formation of ketene equivalent (confirmed by Staudinger 1911) Wedekind's proposal (1901) 1902: Wolff rearrangement, Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. 2 Wolff adopt a ketene structure in 1912. R 2 hν R R2 1905: First synthesis and characterization of a ketene: in an efford to synthesize radical 2, 1 ROH R C Staudinger has synthesized diphenylketene 3, Staudinger, H. et al., Chem. Ber. 1905, 1735. N2 1 RO CH or Δ C R C R1 1907-8: synthesis and dicussion about structure of the parent ketene, Wilsmore, O O J. Am. Chem. Soc. 1907, 1938; Wilsmore and Stewart Chem. Ber. 1908, 1025; Staudinger and Wolff rearrangement (1902) O Klever Chem. Ber. 1908, 1516. Ph Ph Cl Zn Ph O hot Pt wire Zn Br Cl Cl CH CH2 Ph C C vs. C Br C Ph Ph HO O O O O O O O 1 3 (isolated) 2 Wilsmore's synthesis and proposal (1907-8) Staudinger's synthesis and proposal (1908) wanted to make Staudinger's discovery (1905) Latest books: ketene (Tidwell, 1995), ketene II (Tidwell, 2006), Science of Synthesis, Vol. 23 (2006); Latest review: new direactions in ketene chemistry: the land of opportunity (Tidwell et al., Eur. J. Org. Chem. 2012, 1081). Search for ketenes, Google gave 406,000 (vs.
    [Show full text]
  • Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
    molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Organic Chemistry-I (Nature of Bonding and Stereochemistry
    Subject Chemistry Paper No and Title 1; Organic Chemistry-I (Nature of bonding and Stereochemistry Module No and 25; Regioselectivity Title Module Tag CHE_P1_M25 CHEMISTRY Paper No. 1: Organic Chemistry-I (Nature of bonding and Stereochemistry Module no. 25: Regioselectiveity TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 2.1 Different Examples of Regioselective Reactions 2.1.1 Regioselectivity in Addition Reactions 2.1.2 Addition of HBr to Alkenes 2.1.3 Hydroboration Reaction and Addition of Hydrogen and Bromine to Alkenes 2.1.4 Baeyer Villiger Oxidation 2.1.5 Birch Reduction 2.1.6 Electrophilic Aromatic Substitution 2.1.7 Diels Alder Reaction 2.1.8 Friedal Crafts Reaction 2.1.9 Regioselectivity of Elimination 2.2 How to Determine the Regioselectivity? 3. Summary CHEMISTRY Paper No. 1: Organic Chemistry-I (Nature of bonding and Stereochemistry Module no. 25: Regioselectiveity 1. Learning Outcomes After studying this module, you shall be able to Know what is regioselectivity. Understand the basic difference between regioselectivity and chemoselectivity. Identify the regioselectivity in various reactions. Calculate the regioselectivity for a particular reaction. 2. Introduction 2. What is Regioselectivity? Regioselectivity is known as the preference chemical bond breaking or making in one direction of over all other possible directions. It is certainly applicable to positions which many reagents affect during the course of the reaction. An example to consider is which proton a strong base will abstract from an organic molecule, or where on a substituted benzene ring a further substituent will add. If there occurs a preponderance over which regioisomer will be formed, then that reaction can be termed as regioselective.
    [Show full text]
  • Nucleophilic Substitution and Elimination Reactions
    8 NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS substitution reactions involve the replacement of one atom or group (X) by another (Y): We already have described one very important type of substitution reaction, the halogenation of alkanes (Section 4-4), in which a hydrogen atom is re- placed by a halogen atom (X = H, Y = halogen). The chlorination of 2,2- dimethylpropane is an example: CH3 CH3 I I CH3-C-CH3 + C12 light > CH3-C-CH2Cl + HCI I I Reactions of this type proceed by radical-chain mechanisms in which the bonds are broken and formed by atoms or radicals as reactive intermediates. This 8-1 Classification of Reagents as Electrophiles and Nucleophiles. Acids and Bases mode of bond-breaking, in which one electron goes with R and the other with X, is called homolytic bond cleavage: R 'i: X + Y. - X . + R : Y a homolytic substitution reaction There are a large number of reactions, usually occurring in solution, that do not involve atoms or radicals but rather involve ions. They occur by heterolytic cleavage as opposed to homolytic cleavage of el~ctron-pairbonds. In heterolytic bond cleavage, the electron pair can be considered to go with one or the other of the groups R and X when the bond is broken. As one ex- ample, Y is a group such that it has an unshared electron pair and also is a negative ion. A heterolytic substitution reaction in which the R:X bonding pair goes with X would lead to RY and :X? R~:X+ :YO --' :x@+ R :Y a heterolytic substitution reaction A specific substitution reaction of this type is that of chloromethane with hydroxide ion to form methanol: In this chapter, we shall discuss substitution reactions that proceed by ionic or polar mechanisms' in which the bonds cleave heterolytically.
    [Show full text]