An Overview on Resource Allocation Techniques for Multi-User MIMO Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthogonal Frequency Division Multiple Access : Is It the Multiple Access System of the Future? Srikanth S., Kumaran V
Orthogonal Frequency Division Multiple Access : Is it the Multiple Access System of the Future? Srikanth S., Kumaran V. , Manikandan C., Murugesapandian AU-KBC Research center, Anna University, Chennai, India Email: [email protected] Abstract There is significant interest worldwide in the development of technologies for broadband cellular wireless (BCW) systems. One of the key technologies which is becoming the de- facto technology for use in BCW systems is the orthogonal frequency division multiple access (OFDMA) scheme. In this tutorial article, we discuss the reasons for the popularity of OFDMA and outline some of the important concepts which are used in OFDMA as applied to BCW systems. We shall use the IEEE 802.16 based WiMAX standards for highlighting some of the significant ideas in the practical use of OFDMA systems. 1. Introduction Broadband Cellular Wireless (BCW) systems are expected to be rolled out in the near future to satisfy demands from various segments. As demand for mobile services continuous to grow worldwide system vendors and cellular operators have noticed the enormous popularity of 2nd generation mobile cellular systems and are keen to extend this trend to BCW systems. Several challenges exist in the development and deployment of BCW systems and research work addressing these challenges is ongoing in several labs around the world. The orthogonal frequency division multiple access (OFDMA) based systems are being adopted for use in different flavors of BCW systems [1]. The IEEE 802.16d and 802.16e standards which are popularly known by the industry forum name WiMAX are being considered for BCW systems and are the first standards to use the OFDMA technique [2]. -
Joint Access Point Placement and Power-Channel-Resource-Unit Assignment for 802.11Ax-Based Dense Wifi with Qos Requirements
Joint Access Point Placement and Power-Channel-Resource-Unit Assignment for 802.11ax-Based Dense WiFi with QoS Requirements Shuwei Qiu, Xiaowen Chu, Yiu-Wing Leung, Joseph Kee Yin Ng Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong fcsswqiu, chxw, ywleung, [email protected] Abstract—IEEE 802.11ax is a promising standard for the 2.4 and 5 GHz bands, which means that we have more non- next-generation WiFi network, which uses orthogonal frequency overlapping channels to choose from to reduce the interference division multiple access (OFDMA) to segregate the wireless between neighboring APs. In short, deploying 802.11ax-based spectrum into time-frequency resource units (RUs). In this paper, we aim at designing an 802.11ax-based dense WiFi network dense WiFi network is both crucial and urgent. There are two to provide WiFi services to a large number of users within a main factors that affect the network performance. The first given area with the following objectives: (1) to minimize the one is the AP placement. The second one is resource (such as number of access points (APs); (2) to fulfil the users’ throughput power, channel, and RU, etc.) assignment for the APs/stations. requirement; and (3) to be resistant to AP failures. We formulate Furthermore, users demand continuous WiFi services even the above into a joint AP placement and power-channel-RU assignment optimization problem, which is NP-hard. To tackle under AP’s failures [4]. Unfortunately, there is little research this problem, we first derive an analytical model to estimate each on joint AP placement and resource assignment for 802.11ax- user’s throughput under the mechanism of OFDMA and a widely based dense WiFi network with quality of service (QoS) used interference model. -
Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems
energies Review Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems Yoohwa Kang 1 , Sunwoo Lee 2, Songi Gwak 2 , Taekyeong Kim 2 and Donghyeok An 2,* 1 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; [email protected] 2 Department of Computer Engineering, Changwon National University, Changwon 51140, Korea; [email protected] (S.L.); [email protected] (S.G.); infi[email protected] (T.K.) * Correspondence: [email protected]; Tel.: +82-55-213-3814 Abstract: The fourth industrial revolution is accelerating industrial automation. In industrial net- works, manufacturing processes require hard real-time communication where the latency is less than 1ms. Time-sensitive networking (TSN) technology over Ethernet already supports deterministic de- livery for real-time communication. However, TSN technologies over wireless networks are currently in their initial development stage. Therefore, this study presents an overview of TSN research trends in wireless communications. This paper focuses on 5G networks and IEEE 802.11. We summarize standardization trends for TSN in 5G networks and introduce the TSN technologies for 802.11-based WLAN. Then, we introduce the integration scenario of 5GS with WLAN. This study provides insights into wireless communication technologies for wireless TSN. Keywords: time-sensitive networking (TSN); 5G; 802.11; low latency; reliability; industrial automation Citation: Kang, Y.; Lee, S.; Gwak, S.; Kim, T.; An, D. Time-Sensitive Networking Technologies for 1. Introduction Industrial Automation in Wireless Industrial automation is a representative system attracting attention in the fourth Communication Systems. Energies industrial revolution. In the industrial automation system, data and controls are exchanged 2021, 14, 4497. -
Applying Distributed Orthogonal Space Time Block Coding in Cooperative Communication Networks
APPLYING DISTRIBUTED ORTHOGONAL SPACE TIME BLOCK CODING IN COOPERATIVE COMMUNICATION NETWORKS JAMES ADU ANSERE ODION EHIMIAGHE This thesis is presented as part of the Degree of Master of Science in Electrical Engineering with emphasis on Telecommunication Blekinge Institute of Technology April 2012 School of Engineering Department of Electrical Engineering Blekinge Institute of Technology, Sweden Supervisor: Professor Abbas Mohammed ABSTRACT In this research, we investigate cooperative spectrum sensing using distributed orthogonal space time block coding (DOSTBC). Multiple antennas are introduced at the transmitter and the receiver to achieve higher cooperative diversity in the cooperative wireless (CW) networks. The received signals from the primary users (PUs) at the cooperative relays (CRs) are encoded and retransmitted to the cooperative controller (CC), where further decisions are made depending on the information sent from the CRs. The cooperative relaying protocol employed here in CRs is based on decoding forward (DF) technique. The proposed Alamouti scheme in orthogonal space time block code (OSTBC) has been found to enhance detection performance in CW networks. The analyses over independent Rayleigh fading channels are performed by the energy detector. In CW networks the secondary users (SUs) use the available frequency band as the PUs is absent. The SU discontinue using the licensed band and head off as soon as the PU is present. The SUs is more responsive and intelligent in detecting the spectrum holes. The principal aim of the CW network is to use the available holes without causing any interference to the PUs. The CRs are preferably placed close to the PU to detect transmitted signal, with decoding capability the information collected are decoded by CRs using Maximum Likelihood (ML) decoding technique. -
Deepmux: Deep-Learning-Based Channel Sounding and Resource
1 DeepMux: Deep-Learning-Based Channel Sounding and Resource Allocation for IEEE 802.11ax Pedram Kheirkhah Sangdeh and Huacheng Zeng Department of Computer Science and Engineering, Michigan State University, East Lansing, MI USA Abstract—MU-MIMO and OFDMA are two key techniques Although OFDMA and MU-MIMO has been well studied in IEEE 802.11ax standard. Although these two techniques have in cellular networks (see Table I), their joint optimization in been intensively studied in cellular networks, their joint optimiza- Wi-Fi networks remains scarce because OFDMA is introduced tion in Wi-Fi networks has been rarely explored as OFDMA was introduced to Wi-Fi networks for the first time in 802.11ax. The to Wi-Fi networks in 802.11ax for the first time. Given that marriage of these two techniques in Wi-Fi networks creates both cellular and Wi-Fi networks have different PHY (physical) opportunities and challenges in the practical design of MAC- and MAC (medium access control) layers, and that base layer protocols and algorithms to optimize airtime overhead, stations (BSs) and APs have very different computational spectral efficiency, and computational complexity. In this pa- power, the MU-MIMO-OFDMA transmission schemes de- per, we present DeepMux, a deep-learning-based MU-MIMO- OFDMA transmission scheme for 802.11ax networks. DeepMux signed for cellular networks may not be suited for Wi-Fi mainly comprises two components: deep-learning-based channel networks, necessitating research efforts to innovate the MU- sounding (DLCS) and deep-learning-based resource allocation MIMO-OFDMA design for 802.11ax networks. Particularly, (DLRA), both of which reside in access points (APs) and impose the MU-MIMO-OFDMA transmission in 802.11ax faces two no computational/communication burden on Wi-Fi clients. -
TR 121 905 V9.4.0 (2010-01) Technical Report
ETSI TR 121 905 V9.4.0 (2010-01) Technical Report Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Vocabulary for 3GPP Specifications (3GPP TR 21.905 version 9.4.0 Release 9) 3GPP TR 21.905 version 9.4.0 Release 9 1 ETSI TR 121 905 V9.4.0 (2010-01) Reference RTR/TSGS-0121905v940 Keywords GSM, LTE, UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
IGG Phdthesis.Pdf
TESI DOCTORAL Títol: ³Adaptive Communications for Next Generation Broadband Wireless Access Systems´ Realitzada per Ismael Gutiérrez González en el Centre Escola Tècnica Superior d¶Enginyeria i Informàtica La Salle C.I.F. G: 59069740 Universitat Ramon Lull Fundació Privada. Rgtre. Fund. Generalitat de Catalunya núm. 472 (28-02-90) (28-02-90) 472 núm. Catalunya de Generalitat Fund. Rgtre. Privada. Fundació Lull Ramon Universitat 59069740 G: C.I.F. i en el Departament ³Departament d¶Electrònica i Comunicacions´ Dirigida per Dr. Joan Lluis Pijoan, Dr. Faouzi Bader C. Claravall, 1-3 08022 Barcelona Tel. 936 022 200 Fax 936 022 249 E-mail: [email protected] www.url.es Adaptive Communications for Next Generation Broadband Wireless Access Systems Ph.D. Thesis Ismael Gutiérrez González Advisors: Dr. Faouzi Bader and Dr. Joan Lluis Pijoan Barcelona, June 2009 II $XWKRU¶VDddress: Ismael Gutiérrez Advanced Technologies Standardization and Regulation (ATSR) Samsung Electronics Research Institute (SERI) Communications House, South Street, Staines, TW18-4QE (UK) Tel. +44 (0) 1784 428600 Ext. 780 Fax: +44 (0) 1784 428610 E-mail: [email protected] and [email protected] Adaptive Communications for Next Generation Broadband Wireless Access Systems III This work has been carried out partly in collaboration with the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC, Spain). Centre Tecnològic de Telecomunicacions de Catalunya Parc Mediterrani de la Tecnologia (PMT) Avda. Canal Olímpic, s/n 08860 ʹ Castelldefels, Barcelona (Spain) IV Adaptive Communications for Next Generation Broadband Wireless Access Systems V A Tania y a toda mi familia, en especial a mis padres Andrés y Carolina. -
Deployment & Scheduling in Wimax with Relays: IEEE802.16J
Deployment & scheduling in Wimax with relays : IEEE802.16j Hai Dang Nguyen To cite this version: Hai Dang Nguyen. Deployment & scheduling in Wimax with relays : IEEE802.16j. Networking and Internet Architecture [cs.NI]. Université d’Evry-Val d’Essonne, 2011. English. tel-00878774 HAL Id: tel-00878774 https://tel.archives-ouvertes.fr/tel-00878774 Submitted on 30 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE D'EVRY VAL-D'ESSONNE Laboratoire IBICS THESE` pour obtenir le grade DOCTEUR de l'Universit´ed'Evry Val-d'Essonne Sp´ecialit´e: Informatique pr´esent´eeet soutenue publiquement par Hai Dang NGUYEN Le 01 Juillet 2011 Deployment & Scheduling in Wimax with Relays - IEEE802.16j JURY Directeur : Prof. Nazim AGOULMINE Universit´ed'Evry Val-d'Essonne Rapporteur : Prof. Monique BECKER Telecom Paris Sud Prof. Roch GLITHO Universit´ede Concordia Examinateur : Prof. Miche MAROT Telecom Paris Sud Prof. Jos´eNeuman DE SOUZA Federal University of Ceara Prof. Youssef IRAQI Kurtar University Dr. Quoc-Thinh NGUYEN VUONG France Telecom Abstract Wimax mobile cellular systems are envisioned to provide high data rate multimedia services to users at anytime, anywhere at an affordable cost. -
Download Special Issue
Journal of Electrical and Computer Engineering ESL Design Methodology Guest Editors: Deming Chen, Kiyoung Choi, Philippe Coussy, Yuan Xie, and Zhiru Zhang ESL Design Methodology Journal of Electrical and Computer Engineering ESL Design Methodology Guest Editors: Deming Chen, Kiyoung Choi, Philippe Coussy, Yuan Xie, and Zhiru Zhang Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Electrical and Computer Engineering.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, pro- vided the original work is properly cited. Editorial Board The editorial board of the journal is organized into sections that correspond to the subject areas covered by the journal. Circuits and Systems M. T. Abuelma’atti, Saudi Arabia Yong-Bin Kim, USA Gabriel Robins, USA Ishfaq Ahmad, USA H. Kuntman, Turkey Mohamad Sawan, Canada Dhamin Al-Khalili, Canada Parag K. Lala, USA Raj Senani, India Wael M. Badawy, Canada Shen-Iuan Liu, Taiwan Gianluca Setti, Italy Ivo Barbi, Brazil Bin-Da Liu, Taiwan Jose Silva-Martinez, USA Martin A. Brooke, USA Joao˜ A. Martino, Brazil Nicolas Sklavos, Greece Chip Hong Chang, Singapore Pianki Mazumder, USA Ahmed M. Soliman, Egypt Y. W. Chang, Taiwan Michel Nakhla, Canada Dimitrios Soudris, Greece Tian-Sheuan Chang, Taiwan Sing K. Nguang, New Zealand Charles E. Stroud, USA Tzi-Dar Chiueh, Taiwan Shun-ichiro Ohmi, Japan Ephraim Suhir, USA Henry S. H. Chung, Hong Kong Mohamed A. Osman, USA Hannu Tenhunen, Sweden M. Jamal Deen, Canada Ping Feng Pai, Taiwan George S. Tombras, Greece Ahmed El Wakil, UAE Marcelo A. -
Separable MSE-Based Design of Two-Way Multiple-Relay Cooperative MIMO 5G Networks
sensors Letter Separable MSE-Based Design of Two-Way Multiple-Relay Cooperative MIMO 5G Networks Donatella Darsena 1,2 , Giacinto Gelli 2,3, Ivan Iudice 4 and Francesco Verde 2,3,* 1 Department of Engineering, University of Naples Parthenope, I-80143 Naples, Italy; [email protected] 2 National Inter-University Consortium for Telecommunications (CNIT), I-80125 Naples, Italy; [email protected] 3 Department of Electrical Engineering and Information Technology, University of Naples Federico II, I-80125 Naples, Italy 4 Italian Aerospace Research Centre (CIRA), I-81043 Capua, Italy; [email protected] * Correspondence: [email protected] Received: 26 September 2020; Accepted: 31 October 2020; Published: 4 November 2020 Abstract: While the combination of multi-antenna and relaying techniques has been extensively studied for Long Term Evolution Advanced (LTE-A) and Internet of Things (IoT) applications, it is expected to still play an important role in 5th Generation (5G) networks. However, the expected benefits of these technologies cannot be achieved without a proper system design. In this paper, we consider the problem of jointly optimizing terminal precoders/decoders and relay forwarding matrices on the basis of the sum mean square error (MSE) criterion in multiple-input multiple-output (MIMO) two-way relay systems, where two multi-antenna nodes mutually exchange information via multi-antenna amplify-and-forward relays. This problem is nonconvex and a local optimal solution is typically found by using iterative algorithms based on alternating optimization. We show how the constrained minimization of the sum-MSE can be relaxed to obtain two separated subproblems which, under mild conditions, admit a closed-form solution. -
2.4 Ghz/5 Ghz Dual-Band 1X1 Wi-Fi 4 and Bluetooth 5.2 Combo Soc Rev
88W8977_SDS 2.4 GHz/5 GHz Dual-band 1x1 Wi-Fi 4 and Bluetooth 5.2 Combo SoC Rev. 3 — 13 May 2021 Product short data sheet 1 Product overview The 88W8977 System-on-Chip (SoC) is a highly integrated single-chip solution that incorporates both Wi-Fi® (2.4/5 GHz) and Bluetooth® technology. The System-on-Chip (SoC) provides both simultaneous and independent operation of the following: • IEEE 802.11n compliant, 1x1 spatial stream with data rates up to MCS7 (150 Mbps) • Bluetooth 5.2 (includes Bluetooth Low Energy (LE)) The SoC also provides 3-way coexistence for Wi-Fi, Bluetooth, and ZigBee operation, and indoor location and navigation (802.11mc). The internal coexistence arbitration and a Mobile Wireless Systems (MWS) serial transport interface provide the functionality for connecting an external Long Term Evolution (LTE) or ZigBee device. The device also supports a coexistence interface for co-located Bluetooth/Wi-Fi device arbitration. For security, the device supports high performance 802.11i security standards through the implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC- MAC Protocol (CCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), AES/Cipher-Based Message Authentication Code (CMAC), WPA (AES), and Wi-Fi Authentication and Privacy Infrastructure (WAPI) security mechanisms. For video, voice, and multimedia applications, 802.11e Quality of Service (QoS) is supported. The device also features 802.11h Dynamic Frequency Selection (DFS) for detecting radar pulses when operating in the 5 GHz range. Host interfaces include SDIO 3.0 and high-speed UART interfaces for connecting Wi-Fi and Bluetooth technologies to the host processor. -
Linear Precoding and Equalization for Network MIMO with Partial Cooperation Saeed Kaviani, Student Member, IEEE, Osvaldo Simeone, Senior Member, IEEE, Witold A
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 5, JUNE 2012 2083 Linear Precoding and Equalization for Network MIMO With Partial Cooperation Saeed Kaviani, Student Member, IEEE, Osvaldo Simeone, Senior Member, IEEE, Witold A. Krzymien,´ Senior Member, IEEE, and Shlomo Shamai (Shitz), Fellow, IEEE Abstract—A cellular multiple-input–multiple-output (MIMO) network-level interference management appears to be of fun- downlink system is studied, in which each base station (BS) trans- damental importance to overcome this limitation and harness mits to some of the users so that each user receives its intended the gains of MIMO technology. Confirming this point, multicell signal from a subset of the BSs. This scenario is referred to as network MIMO with partial cooperation since only a subset cooperation, which is also known as network MIMO, has been of the BSs is able to coordinate their transmission toward any shown to significantly improve the system performance [3]. user. The focus of this paper is on the optimization of linear Network MIMO involves cooperative transmission by multi- beamforming strategies at the BSs and at the users for network ple base stations (BSs) to each user. Depending on the extent of MIMO with partial cooperation. Individual power constraints at multicell cooperation, network MIMO reduces to a number of the BSs are enforced, along with constraints on the number of streams per user. It is first shown that the system is equivalent to scenarios, ranging from a MIMO broadcast channel (BC) [4] in a MIMO interference channel with generalized linear constraints case of full cooperation among all BSs to a MIMO interference (MIMO-IFC-GC).