Deployment & Scheduling in Wimax with Relays: IEEE802.16J
Total Page:16
File Type:pdf, Size:1020Kb
Deployment & scheduling in Wimax with relays : IEEE802.16j Hai Dang Nguyen To cite this version: Hai Dang Nguyen. Deployment & scheduling in Wimax with relays : IEEE802.16j. Networking and Internet Architecture [cs.NI]. Université d’Evry-Val d’Essonne, 2011. English. tel-00878774 HAL Id: tel-00878774 https://tel.archives-ouvertes.fr/tel-00878774 Submitted on 30 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE D'EVRY VAL-D'ESSONNE Laboratoire IBICS THESE` pour obtenir le grade DOCTEUR de l'Universit´ed'Evry Val-d'Essonne Sp´ecialit´e: Informatique pr´esent´eeet soutenue publiquement par Hai Dang NGUYEN Le 01 Juillet 2011 Deployment & Scheduling in Wimax with Relays - IEEE802.16j JURY Directeur : Prof. Nazim AGOULMINE Universit´ed'Evry Val-d'Essonne Rapporteur : Prof. Monique BECKER Telecom Paris Sud Prof. Roch GLITHO Universit´ede Concordia Examinateur : Prof. Miche MAROT Telecom Paris Sud Prof. Jos´eNeuman DE SOUZA Federal University of Ceara Prof. Youssef IRAQI Kurtar University Dr. Quoc-Thinh NGUYEN VUONG France Telecom Abstract Wimax mobile cellular systems are envisioned to provide high data rate multimedia services to users at anytime, anywhere at an affordable cost. The combination of orthogonal division multiple accesses (OFDMA) and relaying in Wimax provide rich opportunities for cost-effective and high performance networks. Wimax standard 802.16j extends not only the co- verage of the cell but also increases the average throughput of the users. Much research of this standard has been published in order to optimize the performance of this network. However, when we reviewed the existing ar- chitectures of Wimax standard 802.16j and assessed their performance, we realized that the throughput of the system could still be enhanced by using a more efficient frequency reuse and scheduling algorithm. In the first part of the thesis, we review the existing standard 802.16j archi- tectures in which the total throughput of system is slightly higher than that in the standard without relay one. To enhance even more the system perfor- mance of this standard, we propose a new architecture built on frequency reuse and sectoring technique. The total throughput increased strongly in our approach compared with to the existing studies. In the second part of the thesis, we study the impact of interference in our relay model. The simulation results showed that the SINR of mobile sta- tions in our approach increase very slightly comparing to the one in Wimax with relay without frequency reuse and sectoring. Therefore the impact of interference is small and can be considered as negligible. We concluded that our proposition still provide a better performance. In the third part of the thesis, we proposed a new radio resource manage- ment approach in downlink in order to guarantee the user's fairness but still maintain a high total throughput. The simulation results showed that there was a trade-off between the fairness-aware and the total throughput of the system. Index Terms : OFDM, OFDMA, AMC, MIMO, Relay Stations, 3G, Wi- Max, 802.16e, 802.16j, 602.16m, LTE, Frame Structure, Path Selection, User Fairness, Cooperative Relay, Relay Placement, Cooperative Relay Sec- toring, Performance Measurement, Frequency Reuse, Clustering, Dimensio- ning, Scheduling, Allocation Resource R´esum´e WiMAX mobile cellulaire syst`emesont pour objective de fournir des ser- vices multim´edias`ahaut d´ebit`an'importe quel moment, n'importe quel endroit avec un prix abordable. La combinaison d'orthogonale acc`esmul- tiples (OFDMA) et le relais en Wimax donnent plusieurs opportunit´espour des r´eseauxmoins co^uteuxet plus performances. La norme Wimax 802.16j ´elargitnon seulement la couverture de la cellule, mais aussi augmente le d´ebitmoyen des utilisateurs. Plusieurs recherches de cette norme ont ´et´e publi´eesafin d'optimiser la performance du r´eseau.Cependant, lorsque nous ´etudionsles architectures existantes du Wimax 802.16j standard et leur ren- dement, nous nous sommes aper¸cusque le d´ebitdu syst`emepourrait ^etre encore am´elior´e`al'aide de la r´eutilisationde fr´equence. Dans la premi`erepartie de ce travail de recherche, nous avons examin´e l'architecture existante de la norme 802.16j. Le d´ebittotal du syst`eme est l´eg`erement plus ´elev´edans ces architectures que dans la norme sans relais. Afin d'am´eliorerle rendement du syst`emede cette norme, nous avons pro- pos´eune nouvelle architecture de cette norme avec r´eutilisationde fr´equence et de la technique de sectorisation. Le d´ebittotal augmente fortement dans notre approche comparant aux ´etudesexistantes. Dans la deuxi`emepartie, nous avons ´etudi´el'impact de l'interf´erencedans notre mod`elede relais. Les r´esultatsde simulation montrent que les SINR de station mobile augmentent tr`esl´eg`erement. Cet impact d'interf´erenceest assez faible et pourrait ^etren´egligeable.Nous concluons que notre proposi- tion fournit toujours une meilleure performance. Dans la troisi`emepartie, nous avons propos´eune nouvelle approche d'al- location de ressources en liaison descendante afin de garantir les m^emes qualit´esde service pour les utilisateurs en maintenant un haut d´ebitto- tal. Les r´esultatsde simulation montrent qu'il existe un compromis entre l'´equit´ede la qualit´ede service et le d´ebittotal du syst`eme. Mots Cl´es: OFDM, OFDMA, AMC, MIMO, Relay Stations, 3G, WiMax, 802.16e, 802.16j, 602.16m, LTE, Frame Structure, Path Selection, User Fairness, Cooperative Relay, Relay Placement, Cooperative Relay Secto- ring, Performance Measurement, Frequency Reuse, Clustering, Dimensio- ning, Scheduling, Allocation Resource To my parents, my little brother and my fianc´e Acknowledgements In the first place I would like to express my gratitude to my Ph.D. supervi- sor, Prof. Nazim Agoulmine for his supervision, advice, and guidance from the very early stage of this research as well as giving me extraordinary ex- periences through out the work. I am thankful to Prof. Monique BECKER, Prof. Roch GLITHO who did accept to be the reporters of my thesis and to Prof. Miche MAROT, Prof. Jos´eNeuman DE SOUZA, Prof. Youssef IRAQUI and Dr. Quoc-Thinh NGUYEN-VUONG for the time and effort that they invested in judging my work. I am indebted to all my colleagues at IBISC for their support, especially to my LRSM team members : Elyes LEHTIHET, Mehdi NAFA, Hui WANG, Halim ZAIDI, Ismael NENNOUCHE, Khanh Toan TRAN, Vamsi Krishna GONDI, Jos´eBRINGEL FILHO. Many thanks go in particular to my best friends in high school NAME, NAME, NAME, my friends at Ecole Polytechnique Minh Anh TRAN, Ha DAO, Thanh Ha LE, Trung Tu NGUYEN, Ngoc Minh VO, Ngoc Anh VU, Thanh Tung VU, Thuong Van Du TRAN, Dac Trung NGUYEN, Thi Kim Thanh VUONG, Minh Bao LE, Lu Tuan Le, Si Hai MAI, Trung Lap NGUYEN, Thu Hien TO, Minh Quan TRAN, Dinh Ha NGUYEN, Minh Hoang TO, Quang Tien NGO, Hong Loc NGUYEN and Anh Quan NGUYEN for helping me through the difficult times, and for all the emo- tional support, entertainment and caring they provided. I wish you all good luck in your way. I am grateful to my beloved family for their love and support throughout my life. My father, my mother and my little brother were particularly sup- portive. Lastly, and most importantly, I wish to thank Mai Hong for her patience, love and encouragement. For her I dedicate this thesis . Table des mati`eres Table des figures vii Liste des tableaux ix Glossary xi Introduction 1 1 Evolution of Wireless Broadband 7 1.1 Introduction . .7 1.2 Evolution of cellular networks to LTE and LTE advanced . .8 1.2.1 First Generation of cellular network . .9 1.2.2 Second Generation of cellular network . .9 1.2.3 2.5G . .9 1.2.4 3G . 10 1.2.5 LTE, LTE advanced & 4G requirements . 10 1.2.5.1 LTE . 10 1.2.5.2 LTE advanced & 4G requirements . 11 1.3 Background of Wifi IEEE 802.11 . 13 1.4 Background of Wimax IEEE 802.16 . 14 1.5 Wimax vs LTE and Wifi . 15 1.5.1 Wimax vs Wifi . 15 1.5.2 LTE vs Wimax . 16 1.6 Wimax Physical Layer . 18 1.6.1 Orthogonal Frequency Division Multiplexing . 18 1.6.2 OFDM in Wimax . 19 1.6.3 Subchannelization OFDMA . 20 1.6.4 Wimax Frame Structure . 21 1.6.5 Adaptive Modulation and Coding Rate in Wimax . 22 1.7 Summary . 23 2 Wimax Network Quality of Service measurement and Rational of Evo- lution towards Wimax with Relay 25 iii TABLE DES MATIERES` 2.1 Introduction . 25 2.2 Wimax Quality of Service measurement . 25 2.2.1 Related Work . 25 2.2.2 Measurement results . 26 2.2.2.1 Measurement results in LOS . 27 2.2.2.2 Measurment results in NLOS . 27 2.3 Principle and Architecture of Wimax Relay . 30 2.3.1 Introduction . 30 2.3.2 The goals of IEEE 802.16j . 30 2.3.2.1 Fixed Infrastructure . 31 2.3.2.2 In Building Coverage . 31 2.3.2.3 Temporary Coverage . 31 2.3.2.4 Coverage On Mobile Vehicles . 32 2.3.3 Technical overview . 33 2.3.3.1 Relay Modes . 33 2.3.3.2 PHY frame structure modifications .