Latest Publications

Total Page:16

File Type:pdf, Size:1020Kb

Latest Publications InterPro InterPro Team Sep 10, 2021 ABOUT INTERPRO 1 About InterPro 1 2 Citing InterPro 3 2.1 Latest publications............................................3 2.2 All previous publications.........................................3 3 InterPro tutorials & Webinars7 3.1 Tutorials.................................................7 3.2 Webinars.................................................7 4 Upcoming courses and webinars9 4.1 Structural bioinformatics course (virtual)................................9 5 Previous courses 11 5.1 Structural bioinformatics course (virtual)................................ 11 5.2 Bioinformatics Resources for Protein Biology.............................. 11 6 InterPro Entries : essential information 13 6.1 InterPro entry types........................................... 13 6.2 Other entry and page types........................................ 14 6.3 Entry relationships............................................ 14 6.4 Overlapping entries........................................... 14 7 InterPro website banner 15 7.1 Navigation banner and menu....................................... 15 8 InterPro homepage 17 8.1 InterPro resource overview........................................ 18 8.2 Search box................................................ 18 8.3 Data.................................................... 19 8.4 News and information.......................................... 22 9 How to search the InterPro website? 23 9.1 Quick search............................................... 23 9.2 Sequence search............................................. 23 9.3 Text search................................................ 26 9.4 Domain architecture search....................................... 26 9.5 Using Browse feature to search and filter InterPro............................ 27 10 Protein sequence viewer 35 i 11 Browsing entries in the InterPro website 39 11.1 InterPro entry page............................................ 40 11.2 Member database page.......................................... 43 11.3 Protein entry page............................................ 48 11.4 Structure entry page........................................... 50 11.5 Taxonomy entry page.......................................... 50 11.6 Proteome entry page........................................... 50 11.7 Set entry page.............................................. 53 12 How to download InterPro data? 55 12.1 Download page.............................................. 55 12.2 Export button............................................... 55 12.3 Your downloads............................................. 55 12.4 InterPro Application Programming Interface (API)........................... 57 13 Release notes 59 13.1 General information........................................... 59 13.2 Other statistics.............................................. 59 14 Frequently Asked Questions (FAQs) 63 14.1 General Questions............................................ 63 14.2 Sequence searches (InterProScan).................................... 65 14.3 Web Interface............................................... 66 14.4 Application Programming Interface (API)................................ 67 14.5 Troubleshooting............................................. 68 14.6 Additional help.............................................. 68 15 InterProScan 69 15.1 Documentation.............................................. 69 15.2 Web services............................................... 69 15.3 Web based tools............................................. 69 15.4 Source code............................................... 70 15.5 Previous releases............................................. 70 15.6 License.................................................. 70 15.7 Follow us & reporting bugs....................................... 70 16 InterPro consortium member databases 71 16.1 CATH-Gene3D.............................................. 71 16.2 CDD................................................... 71 16.3 HAMAP................................................. 72 16.4 MobiDB Lite............................................... 72 16.5 PANTHER................................................ 72 16.6 Pfam................................................... 72 16.7 PIRSF.................................................. 73 16.8 PRINTS................................................. 73 16.9 PROSITE profiles............................................ 73 16.10 SFLD................................................... 73 16.11 SMART.................................................. 73 16.12 SUPERFAMILY............................................. 74 16.13 TIGRFAMs................................................ 74 17 InterPro team 75 17.1 Previous contributors........................................... 75 18 Funding 77 ii 19 Privacy 79 20 Literature references 81 iii iv CHAPTER ONE ABOUT INTERPRO InterPro is a resource that provides functional analysis of protein sequences by classifying them into families and predicting the presence of domains and important sites. To classify proteins in this way, InterPro uses predictive models, known as signatures, provided by several collaborating databases (referred to as member databases) that collectively make up the InterPro consortium. A key value of InterPro is that it combines protein signatures from these member databases into a single searchable resource, capitalising on their individual strengths to produce a powerful integrated database and diagnostic tool. We add further value to InterPro entries by providing detailed functional annotation as well as adding relevant GO terms that enable automatic annotation of millions of GO terms across the protein sequence databases. InterPro integrates signatures from the following 13 member databases: CATH, CDD, HAMAP, MobiDB Lite, Pan- ther, Pfam, PIRSF, PRINTS, Prosite, SFLD, SMART, SUPERFAMILY AND TIGRfams (the InterPro consortium section gives further information about the individual databases). The member databases use a variety of different methods to classify proteins. Each of the databases has a particular focus (e.g. protein domains defined from structure, or full length protein families with shared function). We strive to integrate the signatures from the member databases into InterPro entries and to identify where different member database entries are the same entity. You can use the InterPro website to obtain information about individual protein families, domains, important sites, perform a sequence search or browse through InterPro annotations. We have designed the website to be intuitive for new users meaning it is not essential to read this documentation. However, in the following sections you will find a wealth of specialised and powerful features that can be easily overlooked. You may also want to check out our list of training materials and webinars. InterPro is updated approximately every 8 weeks. The release notes page contains information about what has changed in each release. All information in InterPro is freely available. You can download InterPro data for local analyses from the Download page, or use the InterPro API. Find out more about the project by exploring the latest papers. 1 InterPro 2 Chapter 1. About InterPro CHAPTER TWO CITING INTERPRO 2.1 Latest publications If you find InterPro useful for your research, please cite the following publications: 2.1.1 InterPro The InterPro protein families and domains database: 20 years on Matthias Blum, Hsin-Yu Chang, Sara Chuguransky, Tiago Grego, Swaathi Kandasaamy, Alex Mitchell, Gift Nuka, Typhaine Paysan-Lafosse, Matloob Qureshi, Shriya Raj, Lorna Richardson, Gustavo A Salazar, Lowri Williams, Peer Bork, Alan Bridge, Julian Gough, Daniel H Haft, Ivica Letunic, Aron Marchler-Bauer, Huaiyu Mi, Darren A Natale, Marco Necci, Christine A Orengo, Arun P Pan- durangan, Catherine Rivoire, Christian J A Sigrist, Ian Sillitoe, Narmada Thanki, Paul D Thomas, Silvio C E Tosatto, Cathy H Wu, Alex Bateman, Robert D Finn Nucleic Acids Research (2020), gkaa977, PMID: 33156333 2.1.2 InterProScan InterProScan 5: genome-scale protein function classification Philip Jones, David Binns, Hsin-Yu Chang, Matthew Fraser, Weizhong Li, Craig McAnulla, Hamish McWilliam, John Maslen, Alex Mitchell, Gift Nuka, Sebastien Pesseat, Antony F. Quinn, Amaia Sangrador-Vegas, Maxim Scheremetjew, Siew-Yit Yong, Rodrigo Lopez, Sarah Hunter Bioin- formatics (2014), PMID: 24451626 2.2 All previous publications InterPro in 2019: improving coverage, classification and access to protein sequence annotations Alex L Mitchell, Teresa K Attwood, Patricia C Babbitt, Matthias Blum, Peer Bork, Alan Bridge, Shoshana D Brown, Hsin-Yu Chang, Sara El-Gebali, Matthew I Fraser, Julian Gough, David R Haft, Hongzhan Huang, Ivica Letunic, Rodrigo Lopez, Au- rélien Luciani, Fabio Madeira, Aron Marchler-Bauer, Huaiyu Mi, Darren A Natale, Marco Necci, Gift Nuka, Christine Orengo, Arun P Pandurangan, Typhaine Paysan-Lafosse, Sebastien Pesseat, Simon C Potter, Matloob A Qureshi, Neil D Rawlings, Nicole Redaschi, Lorna J Richardson, Catherine Rivoire, Gustavo A Salazar, Amaia Sangrador-Vegas, Christian J A Sigrist, Ian Sillitoe, Granger G Sutton, Narmada Thanki, Paul D Thomas, Silvio C E Tosatto, Siew-Yit Yong, Robert D Finn Nucleic Acids Research (2019) Database Issue 47:D351–D360, PMID: 30398656 InterPro in 2017 — beyond protein family and domain annotations Robert D. Finn, Teresa K. Attwood, Patricia C. Bab- bitt, Alex Bateman, Peer Bork, Alan J. Bridge, Hsin-Yu Chang, Zsuzsanna
Recommended publications
  • Uniprot at EMBL-EBI's Role in CTTV
    Barbara P. Palka, Daniel Gonzalez, Edd Turner, Xavier Watkins, Maria J. Martin, Claire O’Donovan European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK UniProt at EMBL-EBI’s role in CTTV: contributing to improved disease knowledge Introduction The mission of UniProt is to provide the scientific community with a The Centre for Therapeutic Target Validation (CTTV) comprehensive, high quality and freely accessible resource of launched in Dec 2015 a new web platform for life- protein sequence and functional information. science researchers that helps them identify The UniProt Knowledgebase (UniProtKB) is the central hub for the collection of therapeutic targets for new and repurposed medicines. functional information on proteins, with accurate, consistent and rich CTTV is a public-private initiative to generate evidence on the annotation. As much annotation information as possible is added to each validity of therapeutic targets based on genome-scale experiments UniProtKB record and this includes widely accepted biological ontologies, and analysis. CTTV is working to create an R&D framework that classifications and cross-references, and clear indications of the quality of applies to a wide range of human diseases, and is committed to annotation in the form of evidence attribution of experimental and sharing its data openly with the scientific community. CTTV brings computational data. together expertise from four complementary institutions: GSK, Biogen, EMBL-EBI and Wellcome Trust Sanger Institute. UniProt’s disease expert curation Q5VWK5 (IL23R_HUMAN) This section provides information on the disease(s) associated with genetic variations in a given protein. The information is extracted from the scientific literature and diseases that are also described in the OMIM database are represented with a controlled vocabulary.
    [Show full text]
  • Improving the Prediction of Transcription Factor Binding Sites To
    Improving the prediction of transcription factor binding sites to aid the interpretation of non-coding single nucleotide variants. Narayan Jayaram Research Department of Structural and Molecular Biology University College London A thesis submitted to University College London for the degree of Doctor of Philosophy 1 Declaration I, Narayan Jayaram confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Narayan Jayaram 2 Abstract Single nucleotide variants (SNVs) that occur in transcription factor binding sites (TFBSs) can disrupt the binding of transcription factors and alter gene expression which can cause inherited diseases and act as driver SNVs in cancer. The identification of SNVs in TFBSs has historically been challenging given the limited number of experimentally characterised TFBSs. The recent ENCODE project has resulted in the availability of ChIP-Seq data that provides genome wide sets of regions bound by transcription factors. These data have the potential to improve the identification of SNVs in TFBSs. However, as the ChIP-Seq data identify a broader range of DNA in which a transcription factor binds, computational prediction is required to identify the precise TFBS. Prediction of TFBSs involves scanning a DNA sequence with a Position Weight Matrix (PWM) using a pattern matching tool. This thesis focusses on the prediction of TFBSs by: (a) evaluating a set of locally-installable pattern-matching tools and identifying the best performing tool (FIMO), (b) using the ENCODE ChIP-Seq data to evaluate a set of de novo motif discovery tools that are used to derive PWMs which can handle large volumes of data, (c) identifying the best performing tool (rGADEM), (d) using rGADEM to generate a set of PWMs from the ENCODE ChIP-Seq data and (e) by finally checking that the selection of the best pattern matching tool is not unduly influenced by the choice of PWMs.
    [Show full text]
  • Basics on Bioinformafics Lecture 8
    Basics on bioinforma-cs Lecture 8 Nunzio D’Agostino [email protected]; [email protected] Protein domain: terminology Superfamily: Proteins that have low sequence identity, but whose structural and functional features suggest a common evolutionary origin. Family: Proteins clustered together into families are clearly evolutionarily related (accepted rule: pairwise residue identity between the proteins >30% ). Domain: A domain is defined as a polypeptide chain or a part of polypeptide chain that can be independently fold into a stable tertiary structure. Domains are also units of function and are not unique to the protein products of one gene or one gene family but instead appear in a variety of proteins. Motif: A pattern of amino acids that is conserved across many proteins and confers a particular function to the protein. Site: Is the binding site where catalysis occurs. The structure and chemical properties of the active site allow the recognition and binding of the substrate. 2 Why protein domain identification? By iden*fying domains we can: o classify a new protein as belonging to a specific family o infer func*onality o infer cellular localizaon of a protein 3 Domain representation-patterns Some biologically significant amino acid paerns (mo*fs) can be summarised in the form of regular expressions. A regular expression is a powerful notaonal algebra that describes a string or a set of strings. One can use them whenever he/she wants to find paerns in strings. The standard notaons for describing regular expressions use these convenons: [AS] = A and S allowed. D = D allowed. x = Any symbol.
    [Show full text]
  • Applied Category Theory for Genomics – an Initiative
    Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4].
    [Show full text]
  • Enhanced Representation of Natural Product Metabolism in Uniprotkb
    H OH metabolites OH Article Diverse Taxonomies for Diverse Chemistries: Enhanced Representation of Natural Product Metabolism in UniProtKB Marc Feuermann 1,* , Emmanuel Boutet 1,* , Anne Morgat 1 , Kristian B. Axelsen 1, Parit Bansal 1, Jerven Bolleman 1 , Edouard de Castro 1, Elisabeth Coudert 1, Elisabeth Gasteiger 1,Sébastien Géhant 1, Damien Lieberherr 1, Thierry Lombardot 1,†, Teresa B. Neto 1, Ivo Pedruzzi 1, Sylvain Poux 1, Monica Pozzato 1, Nicole Redaschi 1 , Alan Bridge 1 and on behalf of the UniProt Consortium 1,2,3,4,‡ 1 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; [email protected] (A.M.); [email protected] (K.B.A.); [email protected] (P.B.); [email protected] (J.B.); [email protected] (E.d.C.); [email protected] (E.C.); [email protected] (E.G.); [email protected] (S.G.); [email protected] (D.L.); [email protected] (T.L.); [email protected] (T.B.N.); [email protected] (I.P.); [email protected] (S.P.); [email protected] (M.P.); [email protected] (N.R.); [email protected] (A.B.); [email protected] (U.C.) 2 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK 3 Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE 19711, USA 4 Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NorthWest, Suite 1200, Washington, DC 20007, USA * Correspondence: [email protected] (M.F.); [email protected] (E.B.); Tel.: +41-22-379-58-75 (M.F.); +41-22-379-49-10 (E.B.) † Current address: Centre Informatique, Division Calcul et Soutien à la Recherche, University of Lausanne, CH-1015 Lausanne, Switzerland.
    [Show full text]
  • Sequencing Alignment I Outline: Sequence Alignment
    Sequencing Alignment I Lectures 16 – Nov 21, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022 1 Outline: Sequence Alignment What Why (applications) Comparative genomics DNA sequencing A simple algorithm Complexity analysis A better algorithm: “Dynamic programming” 2 1 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G T C C A A T 3 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G | : | : | | : T C C – A A T 4 2 Sequence Alignment: Why The most basic sequence analysis task First aligning the sequences (or parts of them) and Then deciding whether that alignment is more likely to have occurred because the sequences are related, or just by chance Similar sequences often have similar origin or function New sequence always compared to existing sequences (e.g. using BLAST) 5 Sequence Alignment Example: gene HBB Product: hemoglobin Sickle-cell anaemia causing gene Protein sequence (146 aa) MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG KEFTPPVQAA YQKVVAGVAN ALAHKYH BLAST (Basic Local Alignment Search Tool) The most popular alignment tool Try it! Pick any protein, e.g.
    [Show full text]
  • The EMBL-European Bioinformatics Institute the Hub for Bioinformatics in Europe
    The EMBL-European Bioinformatics Institute The hub for bioinformatics in Europe Blaise T.F. Alako, PhD [email protected] www.ebi.ac.uk What is EMBL-EBI? • Part of the European Molecular Biology Laboratory • International, non-profit research institute • Europe’s hub for biological data, services and research The European Molecular Biology Laboratory Heidelberg Hamburg Hinxton, Cambridge Basic research Structural biology Bioinformatics Administration Grenoble Monterotondo, Rome EMBO EMBL staff: 1500 people Structural biology Mouse biology >60 nationalities EMBL member states Austria, Belgium, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom Associate member state: Australia Who we are ~500 members of staff ~400 work in services & support >53 nationalities ~120 focus on basic research EMBL-EBI’s mission • Provide freely available data and bioinformatics services to all facets of the scientific community in ways that promote scientific progress • Contribute to the advancement of biology through basic investigator-driven research in bioinformatics • Provide advanced bioinformatics training to scientists at all levels, from PhD students to independent investigators • Help disseminate cutting-edge technologies to industry • Coordinate biological data provision throughout Europe Services Data and tools for molecular life science www.ebi.ac.uk/services Browse our services 9 What services do we provide? Labs around the
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Comparative Analysis of Multiple Sequence Alignment Tools
    I.J. Information Technology and Computer Science, 2018, 8, 24-30 Published Online August 2018 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2018.08.04 Comparative Analysis of Multiple Sequence Alignment Tools Eman M. Mohamed Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected]. Hamdy M. Mousa, Arabi E. keshk Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected], [email protected]. Received: 24 April 2018; Accepted: 07 July 2018; Published: 08 August 2018 Abstract—The perfect alignment between three or more global alignment algorithm built-in dynamic sequences of Protein, RNA or DNA is a very difficult programming technique [1]. This algorithm maximizes task in bioinformatics. There are many techniques for the number of amino acid matches and minimizes the alignment multiple sequences. Many techniques number of required gaps to finds globally optimal maximize speed and do not concern with the accuracy of alignment. Local alignments are more useful for aligning the resulting alignment. Likewise, many techniques sub-regions of the sequences, whereas local alignment maximize accuracy and do not concern with the speed. maximizes sub-regions similarity alignment. One of the Reducing memory and execution time requirements and most known of Local alignment is Smith-Waterman increasing the accuracy of multiple sequence alignment algorithm [2]. on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the Table 1. Pairwise vs. multiple sequence alignment most well-known programs (CLUSTAL-OMEGA, PSA MSA MAFFT, BROBCONS, KALIGN, RETALIGN, and Compare two biological Compare more than two MUSCLE).
    [Show full text]
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Tunca Doğan , Alex Bateman , Maria J. Martin Your Choice
    (—THIS SIDEBAR DOES NOT PRINT—) UniProt Domain Architecture Alignment: A New Approach for Protein Similarity QUICK START (cont.) DESIGN GUIDE Search using InterPro Domain Annotation How to change the template color theme This PowerPoint 2007 template produces a 44”x44” You can easily change the color theme of your poster by going to presentation poster. You can use it to create your research 1 1 1 the DESIGN menu, click on COLORS, and choose the color theme of poster and save valuable time placing titles, subtitles, text, Tunca Doğan , Alex Bateman , Maria J. Martin your choice. You can also create your own color theme. and graphics. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), We provide a series of online tutorials that will guide you Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK through the poster design process and answer your poster Correspondence: [email protected] production questions. To view our template tutorials, go online to PosterPresentations.com and click on HELP DESK. ABSTRACT METHODOLOGY RESULTS & DISCUSSION When you are ready to print your poster, go online to InterPro Domains, DAs and DA Alignment PosterPresentations.com Motivation: Similarity based methods have been widely used in order to Generation of the Domain Architectures: You can also manually change the color of your background by going to VIEW > SLIDE MASTER. After you finish working on the master be infer the properties of genes and gene products containing little or no 1) Collect the hits for each protein from InterPro. Domain annotation coverage Overlap domain hits problem in Need assistance? Call us at 1.510.649.3001 difference b/w domain databases: the InterPro database: sure to go to VIEW > NORMAL to continue working on your poster.
    [Show full text]