Larval Development of the New Zealand Mussel Perna Canaliculus and Effects of Cryopreservation

Total Page:16

File Type:pdf, Size:1020Kb

Larval Development of the New Zealand Mussel Perna Canaliculus and Effects of Cryopreservation Larval development of the New Zealand mussel Perna canaliculus and effects of cryopreservation Adam B. Rusk A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2012 School of Applied Science TABLE OF CONTENTS LIST OF FIGURES ............................................................................................. VI LIST OF TABLES ............................................................................................... XI ATTESTATION OF AUTHORSHIP ................................................................... XII ACKNOWLEDGEMENTS ................................................................................. XIII ABSTRACT ........................................................................................................ XV CHAPTER ONE: General Introduction .............................................................. 1 1.1 INTRODUCTION AND LITERATURE REVIEW ......................................... 2 1.1.1 Mussel biology & ecology ........................................................................ 2 1.1.2 Global & national aquaculture review .................................................... 10 1.1.3 Hatchery rearing of Perna canaliculus .................................................. 13 CHAPTER TWO: Larval Development ............................................................ 16 2.1 ABSTRACT ............................................................................................... 17 2.2 INTRODUCTION AND LITERATURE REVIEW ....................................... 19 2.2.1 General bivalve larval development ...................................................... 19 2.2.2 Bivalve larval shell morphology ............................................................. 24 2.2.3 Bivalve larval nervous system ............................................................... 26 2.2.4 Larval development of Perna canaliculus ............................................. 31 I 2.2.5 Significance of research on Perna canaliculus larvae .......................... 35 2.3 AIM & OBJECTIVES ................................................................................. 36 2.4 METHODS AND MATERIALS .................................................................. 36 2.4.1 General larval rearing ............................................................................ 36 2.4.2 Survivability ........................................................................................... 40 2.4.3 Shell length ............................................................................................ 40 2.4.4 Feeding consumption ............................................................................ 41 2.4.5 Light microscopy .................................................................................... 41 2.4.6 Scanning electron microscopy .............................................................. 42 2.4.7 Histology ................................................................................................ 43 2.4.8 Confocal microscopy ............................................................................. 44 2.4.9 Statistical analyses ................................................................................ 45 2.5 RESULTS ................................................................................................. 46 2.5.1 Survivability analysis ............................................................................. 46 2.5.2 Shell length analysis .............................................................................. 47 2.5.3 Feeding consumption analysis .............................................................. 48 2.5.4 Embryogenesis ...................................................................................... 49 2.5.5 Shell morphology ................................................................................... 52 2.5.6 Organogenesis ...................................................................................... 56 2.5.7 Neurogenesis ........................................................................................ 62 II 2.6 DISCUSSION............................................................................................ 70 2.6.1 Survivability ........................................................................................... 71 2.6.2 Shell morphology and growth ................................................................ 73 2.6.3 Feeding consumption ............................................................................ 76 2.6.4 Embryogenesis ...................................................................................... 78 2.6.5 Organogenesis ...................................................................................... 80 2.6.6 Neurogenesis ........................................................................................ 84 CHAPTER THREE: Cryopreservation ............................................................. 91 3.1 ABSTRACT ............................................................................................... 92 3.2 INTRODUCTION AND LITERATURE REVIEW ....................................... 93 3.2.1 General bivalve cryopreservation .......................................................... 93 3.2.2 Cryopreservation on Perna canaliculus ................................................ 96 3.2.3 Significance of cryopreserving Perna canaliculus larvae ...................... 98 3.3 AIM & OBJECTIVES ................................................................................. 98 3.4 METHODS AND MATERIALS .................................................................. 99 3.4.1 Experimental reagents .......................................................................... 99 3.4.2 Larval incubation and collection ............................................................ 99 3.4.3 Cryopreservation .................................................................................100 3.4.4 Larval rearing & sampling ....................................................................102 3.4.5 Statistical analyses ..............................................................................104 III 3.5 RESULTS ...............................................................................................104 3.5.1 Survivability .........................................................................................104 3.5.2 Shell length ..........................................................................................106 3.5.3 Feeding consumption ..........................................................................107 3.5.4 Shell morphology .................................................................................109 Control larvae .............................................................................................109 Cryopreserved at D-stage ..........................................................................109 Cryopreserved at trochophore stage .........................................................110 3.5.5 Organogenesis ....................................................................................117 Control larvae .............................................................................................117 Cryopreserved at trochophore ...................................................................123 Cryopreserved at D-stage ..........................................................................126 3.5.6 Neurogenesis ......................................................................................128 Control larvae .............................................................................................128 Cryopreserved at D-stage ..........................................................................134 Cryopreserved at trochophore ...................................................................138 3.6 DISCUSSION..........................................................................................141 3.6.1 Survivability .........................................................................................142 3.6.2 Shell length ..........................................................................................145 3.6.3 Feeding consumption ..........................................................................147 IV 3.6.4 Shell morphology .................................................................................148 3.6.5 Organogenesis ....................................................................................150 3.6.6 Neurogenesis ......................................................................................152 CHAPTER FOUR: General Discussion .........................................................156 4.1 DISCUSSION ............................................................................................157 REFERENCES .................................................................................................164 V LIST OF FIGURES Figure 1.1. Female green-lipped mussel releasing orange oocytes. .......................... 5 Figure 1.2. Male green-lipped mussel releasing white clouds of sperm. ................... 6 Figure 1.3. Unfertilised oocytes of Perna canaliculus.. ................................................ 7 Figure 1.4. Life cycle of mussel ..................................................................................... 8 Figure 2.1. General bivalve and freshwater bivalve life cycle ................................... 20 Figure 2.2. Diagram of
Recommended publications
  • Common Name: Chiton Class: Polyplacophora
    Common Name: Chiton Class: Polyplacophora Scrapes algae off rock with radula 8 Overlapping Plates Phylum? Mollusca Class? Gastropoda Common name? Brown sea hare Class? Scaphopoda Common name? Tooth shell or tusk shell Mud Tentacle Foot Class? Gastropoda Common name? Limpet Phylum? Mollusca Class? Bivalvia Class? Gastropoda Common name? Brown sea hare Phylum? Mollusca Class? Gastropoda Common name? Nudibranch Class? Cephalopoda Cuttlefish Octopus Squid Nautilus Phylum? Mollusca Class? Gastropoda Most Bivalves are Filter Feeders A B E D C • A: Mantle • B: Gill • C: Mantle • D: Foot • E: Posterior adductor muscle I.D. Green: Foot I.D. Red Gills Three Body Regions 1. Head – Foot 2. Visceral Mass 3. Mantle A B C D • A: Radula • B: Mantle • C: Mouth • D: Foot What are these? Snail Radulas Dorsal HingeA Growth line UmboB (Anterior) Ventral ByssalC threads Mussel – View of Outer Shell • A: Hinge • B: Umbo • C: Byssal threads Internal Anatomy of the Bay Mussel A B C D • A: Labial palps • B: Mantle • C: Foot • D: Byssal threads NacreousB layer Posterior adductorC PeriostracumA muscle SiphonD Mantle Byssal threads E Internal Anatomy of the Bay Mussel • A: Periostracum • B: Nacreous layer • C: Posterior adductor muscle • D: Siphon • E: Mantle Byssal gland Mantle Gill Foot Labial palp Mantle Byssal threads Gill Byssal gland Mantle Foot Incurrent siphon Byssal Labial palp threads C D B A E • A: Foot • B: Gills • C: Posterior adductor muscle • D: Excurrent siphon • E: Incurrent siphon Heart G F H E D A B C • A: Foot • B: Gills • C: Mantle • D: Excurrent siphon • E: Incurrent siphon • F: Posterior adductor muscle • G: Labial palps • H: Anterior adductor muscle Siphon or 1.
    [Show full text]
  • First Insight Into Nutrition Effect on Spawning and Larvae Rearing of the Clam Ruditapes Decussatus L
    First insight into nutrition effect on spawning and larvae rearing of the clam Ruditapes decussatus L. from Dakhla Bay 1Yassine Ouagajjou, 2Touryia El Aloua, 3Mohamed El Moussaoui, 1El Mustafa Ait Chattou, 4Adil Aghzar, 3Younes Saoud 1 National Institute of Fisheries Research, INRH, Casablanca, Morocco; 2 Faculty of Science, Chouaib Doukkali University, El Jadida 24000, Morocco; 3 Faculty of Science, Abdelmalek Essaadi University, Tétouan 93002, Morocco; 4 Higher School of Technology, Sultan Moulay Slimane University, Khénifra, Morocco. Corresponding author: Y. Ouagajjou, [email protected]; [email protected] Abstract. The local clam Ruditapes decussatus has been a widespread bivalve along the natural beds in Dakhla Bay (Morocco). But, nowadays its overexploitation during many years has prompted the depletion of its occurrence in many extents and also has limited the availability of natural spat. In this study, the influence of nutrition on spawning, fertilization and larvae rearing was assessed for the first time. The potential of oocytes accumulation and release was highly influenced by the quality of microalgae combination (F = 20.7, p < 0.001) rather than their availability (F = 4.092, p < 0.05). Nevertheless, the eggs fertilization was also significantly affected by diet and ration respectively (F = 7.347, p < 0.01 and F = 4.645, p < 0.05). For larvae rearing, as regards to physiological responses, small size strains Isochrysis galbana and Pavlova lutheri are the most suitable regimen during early larvae phase, while diatom Chaetoceros calcitrans and large size strain Tetraselmis chui are more appropriate during late larvae phase. Therefore, the mixture of the four microalgae was the only diet that led to metamorphosis and settlement throughout this experiment.
    [Show full text]
  • Silicified Eocene Molluscs from the Lower Murchison District, Southern Carnarvon Basin, Western Australia
    [<ecords o{ the Western A uslralian Museum 24: 217--246 (2008). Silicified Eocene molluscs from the Lower Murchison district, Southern Carnarvon Basin, Western Australia Thomas A. Darragh1 and George W. Kendrick2.3 I Department of Invertebrate Palaeontology, Museum Victoria, 1'.0. Box 666, Melbourne, Victoria 3001, Australia. Email: tdarragh(il.Illuseum.vic.gov.au :' Department of Earth and Planetary Sciences, Western Australian Museum, Locked Bag 49, Welshpool D.C., Western Australia 6986, Australia. 1 School of Earth and Ceographical Sciences, The University of Western Australia, 35 Stirling Highway, Crawlev, Western Australia 6009, Australia. Abstract - Silicified Middle to Late Eocene shallow water sandstones outcropping in the Lower Murchison District near Kalbarri township contain a silicified fossil fauna including foraminifera, sponges, bryozoans, solitary corals, brachiopods, echinoids and molluscs. The known molluscan fauna consists of 51 species, comprising 2 cephalopods, 14 bivalves, 1 scaphopod and 34 gastropods. Of these taxa three are newly described, Cerithium lvilya, Zeacolpus bartol1i, and Lyria lamellatoplicata. 25 of these molluscs are identical to or closely comparable with taxa from the southern Australian Eocene. The occurrence of this fauna extends the Southeast Australian Province during the Eocene from southwest Western Australia along the west coast north to at least 27° present day south latitude; consequently the province is here renamed the Southern Australian Province. Keywords: siliceous fossils, Eocene, Kalbarri, molluscs, new taxa, Carnarvon Basin, biogeography, Southern Australian Province. INTRODUCTION The source deposit, a pallid to ferruginous silicified Eocene marine molluscan assemblages from sandstone, forms a weakly defined, low breakaway coastal sedimentary basins in southern Australia trending N-S and sloping gently westward.
    [Show full text]
  • Impacts of Ocean Acidification on Marine Shelled Molluscs
    Mar Biol DOI 10.1007/s00227-013-2219-3 ORIGINAL PAPER Impacts of ocean acidification on marine shelled molluscs Fre´de´ric Gazeau • Laura M. Parker • Steeve Comeau • Jean-Pierre Gattuso • Wayne A. O’Connor • Sophie Martin • Hans-Otto Po¨rtner • Pauline M. Ross Received: 18 January 2013 / Accepted: 15 March 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Over the next century, elevated quantities of ecosystem services including habitat structure for benthic atmospheric CO2 are expected to penetrate into the oceans, organisms, water purification and a food source for other causing a reduction in pH (-0.3/-0.4 pH unit in the organisms. The effects of ocean acidification on the growth surface ocean) and in the concentration of carbonate ions and shell production by juvenile and adult shelled molluscs (so-called ocean acidification). Of growing concern are the are variable among species and even within the same impacts that this will have on marine and estuarine species, precluding the drawing of a general picture. This organisms and ecosystems. Marine shelled molluscs, which is, however, not the case for pteropods, with all species colonized a large latitudinal gradient and can be found tested so far, being negatively impacted by ocean acidifi- from intertidal to deep-sea habitats, are economically cation. The blood of shelled molluscs may exhibit lower and ecologically important species providing essential pH with consequences for several physiological processes (e.g. respiration, excretion, etc.) and, in some cases, increased mortality in the long term. While fertilization Communicated by S. Dupont. may remain unaffected by elevated pCO2, embryonic and Fre´de´ric Gazeau and Laura M.
    [Show full text]
  • Effects of Marine Harmful Algal Blooms on Bivalve Cellular Immunity and Infectious Diseases: a Review
    Effects of marine Harmful Algal Blooms on bivalve cellular immunity and infectious diseases: a review Malwenn Lassudrie, Helene Hegaret, Gary Wikfors, Patricia Mirella da Silva To cite this version: Malwenn Lassudrie, Helene Hegaret, Gary Wikfors, Patricia Mirella da Silva. Effects of marine Harm- ful Algal Blooms on bivalve cellular immunity and infectious diseases: a review. Developmental and Comparative Immunology, Elsevier, 2020, 108, pp.103660. 10.1016/j.dci.2020.103660. hal-02880026 HAL Id: hal-02880026 https://hal.archives-ouvertes.fr/hal-02880026 Submitted on 24 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Effects of marine Harmful Algal Blooms on bivalve cellular immunity and infectious diseases: a review Malwenn Lassudrie1, Hélène Hégaret2, Gary H. Wikfors3, Patricia Mirella da Silva4 1 Ifremer, LER-BO, F- 29900 Concarneau, France. 2 CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France. 3 NOAA Fisheries Service, Northeast Fisheries Science Center, Milford, CT 0640 USA. 4 Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil. Abstract Bivalves were long thought to be “symptomless carriers” of marine microalgal toxins to human seafood consumers.
    [Show full text]
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Perna Viridis (Asian Green Mussel)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Perna viridis (Asian Green Mussel) Order: Mytiloida (Mussels) Class: Bivalvia (Clams, Oysters and Mussels) Phylum: Mollusca (Molluscs) Fig. 1. Asian green mussel, Perna viridis. [http://www.jaxshells.org/n6948.htm, downloaded 3 April 2015] TRAITS. Perna viridis is a large species of mussel which ranges from 8-16 cm in length. There is no sexual dimorphism as regards their size or other external traits. The shell is smooth and elongated with concentric growth lines. The shell tapers in size as it extends to the anterior (Rajagopal et al., 2006). The ventral margin (hinge) of the shell is long and concave. The periostracum, a thin outer layer, covers the shell. In juveniles, the periostracum has a bright green colour. As the mussel matures to adulthood, the periostracum fades to a dark brown colour with green margins (Fig. 1). The inner surface of the shell is smooth with an iridescent blue sheen (McGuire and Stevely, 2015). The posterior adductor muscle scar is kidney shaped. There are interlocking teeth at the beak. The left valve has two teeth while the right valve has one tooth. The foot is long and flat and specially adapted for vertical movement. The ligamental ridge (hinge) is finely pitted (Sidall, 1980). DISTRIBUTION. They originated in the Indo-Pacific region, mainly dispersed across the Indian and southern Asian coastal regions (Rajagopal et al., 2006). It is an invasive species that has been introduced in the coastal regions of North and South America, Australia, Japan, southern United States and the Caribbean, including Trinidad and Tobago (Fig.
    [Show full text]
  • Studies on the Filtration, Feeding and Excretion Rates in Perna Viridis, Marcia Cor and Crassostrea Gryphoides (Mollusca: Bivalvia) Using P³² Labelled Ankistrodesmes
    Studies on the filtration, feeding and excretion rates in Perna viridis, Marcia cor and Crassostrea gryphoides (Mollusca: Bivalvia) using P³² labelled Ankistrodesmes Item Type article Authors Zehra, I.; Qadeer, S.; Naqvi, I.I. Download date 26/09/2021 16:31:28 Link to Item http://hdl.handle.net/1834/31903 Pakistan Journal of Marine Sciences, Vol.2(2), 101-112, 1993. STUDIES ON THE FILTRATION, FEEDING AND EXCRETION RATES IN PERNA VIRIDIS, MARCIA COR AND CRASSOSTREA . GRYPHOIDES (MOLLUSCA: BIVALVIA) USING p32 LABELLEDANKISTRODESMES ltrat Zebra, Shagufta Qadeer and Iftildtar Imam N aqvi Centre of Excellence in Marine Biology, University of Karachi (IZ); Department of Chemistry, University of Karachi (SQ,IIN), KaraGhi-75270, Pakistan ABSTRACT: The study deals with a series of experiments to investigate feeding and excretion in three species of bivalves:Perna viridis (Linne),Marcia cor (Sowerby) and Crassostrea g1yphoides (Gould) fromManora Channel, 32 Karachi. Bivalves were fed with suspensions of Ankistrodesmes labelled with P . These animals showed a considerable variation in the average filtration rates depending upon species and the body length. Exceptionally high conten~ of_the p 32 int_roduced with Ankistr~d~smes, ~~t. excreted as pseudofaeces and t~eces w~thiti t~rst three d~ys followmg 1ts absorptwn as a meal. 11w ass1mllated p- 1s partly released as faecal matenal and Its maJor proportiOn is directly transferred to the solution. As expected the gonad and kidney are the main organs found responsible for excretion as compared to other body parts. Although, the assimilated P32 is mostly concentrated in the digestive glands, the results also show a significant presence ofP32 in the gonads.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1999 Academic Press. This manuscript is an author version with the final publication available and may be cited as: Young, C. M. (1999). Marine invertebrate larvae. In E. Knobil & J. D. Neill (eds.), Encyclopedia of Reproduction, 3. (pp. 89-97). London, England, and San Diego, CA: Academic Press. --------1111------- Marine Invertebrate Larvae Craig M. Young Harbor Branch Oceanographic Institution 1. What Is a Larva? metamorphOSiS Morphological and physiological changes II. The Production of Larvae that occur during the transition from the larval phase to iII. Larval forms and Diversity the juvenile phase: often coincides with settlement in ben­ IV. Larval Feeding and Nutrition thic species. V. Larval Orientation, Locomotion, Dispersal, and mixed development A developmental mode that includes a Mortality brooded or encapsulated embryonic stage as well as a free­ VI. Larval Settlement and Metamorphosis swimming larval stage. VlI. Ecological and Evolutionary Significance of Larvae planktotrophic larva A feeding larva that obtains at least part VlIl. Economic and Medical Importance of Larvae of its nutritional needs from either particulate or dissolved exogenous sources. Planktotrophic larvae generally hatch from small, transparent eggs. GLOSSARY settlement The permanent transition of a larva from the plankton to the benthos. In sessile organisms, settlement atrochal larva A uniformly ciliated larva (cilia not arranged is marked by adhesion to the substratum. It is often closely in distinct bands). associated with metamorphosis and may involve habitat se­ competent larva A larva that is physiologically and morpho­ lection.
    [Show full text]
  • Perna Indica (Kuriakose & Nair, 1976)
    Perna indica (Kuriakose & Nair, 1976)* Biji Xavier IDENTIFICATION Order : Mytilida Family : Mytilidae Common/FAO Name (English) : Brown mussel (Linnaeus, 1758) as per Wood et al., 2007. Local namesnames: Kallumakkai, Kadukka (MalayalamMalayalam) Perna perna MORPHOLOGICAL DESCRIPTION Brown mussels as the name suggests have brown coloured shells. They have elongate, equivalved and equilateral shells with pointed and straight anterior end. Dorsal ligamental margin and ventral shell margin are straight. The two valves of the shell are hinged at the anterior end with terminal umbo. Interior of shell is lustrous with muscle scar deeply impressed. It has a finger shaped, thick and extensible foot. Byssus threads emanate from the byssus stem and the threads are long, thick and strong with a well developed attachment disc at their distal end. It can change its position by discarding old byssus threads and secreting new ones. Source of image : Molluscan Fisheries Division, CMFRI, Kochi * 189 PROFILE GEOGRAPHICAL DISTRIBUTION The mussel beds are spread both in west coast (Quilon to Cape Comorin) and east coast (Cape Comorin to Thiruchendur). Important centres are Cape Comorin, Colachal, Muttom, Poovar, Vizhinjam, Kovalam, Varkalai and Quilon. HABITAT AND BIOLOGY The species forms dense populations along the rocky coasts from the intertidal region to depths of 10 m. Large sized individuals are found at 0.5 to 2 m depth. Maximum recorded length is 121 mm. Sexes are separate and fertilization is external. Natural spawning starts in May and lasts till September with peak during July to August. Prioritized species for Mariculture in India 190 PRODUCTION SYSTEMS BREEDING IN CAPTIVE CONDITIONS The breeding and larval rearing of Perna indica was successfully carried out on an experimental basis at Vizhinjam R.
    [Show full text]
  • First Record of the Mediterranean Mussel Mytilus Galloprovincialis (Bivalvia, Mytilidae) in Brazil
    ARTICLE First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil Carlos Eduardo Belz¹⁵; Luiz Ricardo L. Simone²; Nelson Silveira Júnior³; Rafael Antunes Baggio⁴; Marcos de Vasconcellos Gernet¹⁶ & Carlos João Birckolz¹⁷ ¹ Universidade Federal do Paraná (UFPR), Centro de Estudos do Mar (CEM), Laboratório de Ecologia Aplicada e Bioinvasões (LEBIO). Pontal do Paraná, PR, Brasil. ² Universidade de São Paulo (USP), Museu de Zoologia (MZUSP). São Paulo, SP, Brasil. ORCID: http://orcid.org/0000-0002-1397-9823. E-mail: [email protected] ³ Nixxen Comercio de Frutos do Mar LTDA. Florianópolis, SC, Brasil. ORCID: http://orcid.org/0000-0001-8037-5141. E-mail: [email protected] ⁴ Universidade Federal do Paraná (UFPR), Departamento de Zoologia (DZOO), Laboratório de Ecologia Molecular e Parasitologia Evolutiva (LEMPE). Curitiba, PR, Brasil. ORCID: http://orcid.org/0000-0001-8307-1426. E-mail: [email protected] ⁵ ORCID: http://orcid.org/0000-0002-2381-8185. E-mail: [email protected] (corresponding author) ⁶ ORCID: http://orcid.org/0000-0001-5116-5719. E-mail: [email protected] ⁷ ORCID: http://orcid.org/0000-0002-7896-1018. E-mail: [email protected] Abstract. The genus Mytilus comprises a large number of bivalve mollusk species distributed throughout the world and many of these species are considered invasive. In South America, many introductions of species of this genus have already taken place, including reports of hybridization between them. Now, the occurrence of the Mediterranean mussel Mytilus galloprovincialis is reported for the first time from the Brazilian coast. Several specimens of this mytilid were found in a shellfish growing areas in Florianópolis and Palhoça, Santa Catarina State, Brazil.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]