Pseudomonas Khazarica Sp. Nov., A

Total Page:16

File Type:pdf, Size:1020Kb

Pseudomonas Khazarica Sp. Nov., A 1 Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon- 2 degrading bacterium isolated from Khazar Sea sediments 3 4 Vahideh Tarhriz1†, Imen Nouioui2†, Cathrin Spröer3, Susanne Verbarg3, Vida Ebrahimi4, 5 Carlos Cortés-Albayay2, Peter Schumann3, Mohammad Amin Hejazi5, Hans-Peter Klenk2*, 6 Mohammad Saeid Hejazi1,4,6* 7 8 9 1 Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical 10 Sciences, Tabriz, Iran 11 2 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon 12 Tyne, UK 13 3 Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 14 Inhoffenstr. 7B, 38124 Braunschweig, Germany 15 4 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran 16 5 Branch for the Northwest and West Region, Agriculture Biotechnology Research Institute of 17 Iran (ABRII), Tabriz, Iran 18 6 School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, 19 Iran 20 21 *Authors for correspondence 22 Hans-Peter Klenk 23 School of Natural and Environmental Sciences 24 Newcastle University 25 Ridley Building 2 26 Newcastle upon Tyne 27 NE1 7RU 28 UK 29 Telephone: +44 (0) 191 208 5138 30 Fax: 31 Email: [email protected] 32 33 Mohammad Saeid Hejazi 34 Molecular Medicine Research Center 35 Tabriz University of Medical Sciences 36 Tabriz, 37 Iran 38 Tel: +98 (411) 3372256 39 Fax: +98 (411) 334 4798 40 Email: [email protected] 41 †: These authors contributed equally in this study and should be considered as co-first 42 authors. 43 1 44 Abstract 45 A novel Gram-negative, aerobic, motile and rod-shaped bacterium with the potential to 46 biodegrade polycyclic aromatic hydrocarbons, was isolated from Khazar (Caspian) Sea. 47 Strain TBZ2T grows in the absence of NaCl and tolerates up to 8.5% NaCl and could grow at 48 pH 3.0-10.0 (optimum, pH 6.0-7.0) at 10- 45°C (optimum, 30 °C). The major fatty acids are 49 C18:1 ω7C, C16:1 ω7C/ 15 iso OH, C16:0, C12:0 3-OH, C10:0 3-OH. 16S rRNA gene sequence 50 analysis showed that strain TBZ2T is a member of the genus Pseudomonas with the highest 51 similarity to P. oleovorans subsp. oleovorans DSM 1045T (98.83%), P. mendocina NBRC 52 14162T (98.63%), P. oleovorans subsp. lubricantis RS1T (98.61%) and P. alcaliphila JCM 53 10630T (98.49%) based on EzBioCloud server. Phylogenetic analyses using housekeeping 54 genes (16S rRNA, rpoD, gyrB and rpoB) and genome sequences demonstrated that the strain 55 TBZ2T formed a distinct branch closely related to the type strains of P. mendocina and P. 56 guguanensis. Digital DNA-DNA hybridization and average nucleotide identity values 57 between strain TBZ2T and its closest relatives, P. mendocina NBRC 14162T (25.3%, 81.5%) 58 and P. guguanensis ICM 18146T (26.8%, 79.0%), rate well below the designed threshold for 59 assigning prokaryotic strains to the same species. On the basis of phenotypic, 60 chemotaxonomic, genomic and phylogenetic results, it is recommended that strain TBZ2T is a 61 novel species of the genus Pseudomonas, for which the name Pseudomonas khazarica sp. 62 nov., is proposed. The type strain is TBZ2T (=LMG 29674T =KCTC 52410T). 63 Keywords: Pseudomonas khazarica, polycyclic aromatic hydrocarbons, Khazar 64 65 66 67 68 2 69 Introduction 70 Polycyclic Aromatic Hydrocabons (PAHs), a group of environmental organic pollutants 71 with crucial public health concern due to their genotoxic and carcinogenic properties, 72 unfortunately are found in high concentrations in many industrial sites (Martins et al. 2016; 73 Wilson and Jones 1993). They are considered as environmental concerns due to their stability 74 against degradation and their potential to bioaccumulate in the food chain (Bosma et al. 1996; 75 Fujikawa et al. 1993). Various bacteria, isolated from marine habitats, have been reported to 76 remediate and degrade PAHs, including naphthalene, anthracene and phenanthrene (Ghosal et 77 al. 2016; Jin et al. 2015). During an analysis of the microbial biodegradation ability of 78 polycyclic aromatic hydrocarbons (PAHs) in Khazar (Caspian) Sea, the world's largest lake, a T 79 Gram-negative, rod shaped and motile bacterium was isolated. The isolated strain, TBZ2 P P 80 (abbreviation of Tabriz) was subjected to a polyphasic taxonomic analysis. Based on the 81 results, this strain is considered to represent a novel species of the genus Pseudomonas. 82 The genus Pseudomonas, belonging to the family Pseudomonadaceae, was first proposed 83 by Migula (1894). Numerous members of the genus have been isolated from different 84 environmental sources such as soil, plants, animals and water and some of them are human 85 and plant pathogens (Busquets et al. 2017; Palleroni 1984). The nutritional spectrum of 86 aerobic Pseudomonas revealed that the ability of members of this genus in using different 87 compounds as the sole sources of carbon and energy has provided an essential platform for 88 phenotypic characterization (Palleroni 1984; Stanier et al. 1966). Based on 16S rRNA 89 phylogenetic study, P. oleovorans subsp. oleovorans is the closest related species to our 90 isolate with 98.79% similarity. P. oleovorans was isolated first time from water-oil 91 emulsions used as lubricants and cooling agents. It is a Gram-negative and methylotrophic 92 bacterium with the ability to use one-carbon compounds, such as methanol (Waturangi et al. 93 2011). 3 94 Materials and Methods 95 Isolation and preservation 96 Strain TBZ2T was isolated from estuary of Shahrood river (Qaemshahr area, 97 Mazandaran province, Iran) flowing north through the Alborz mountain into the Khazar 98 (Caspian) Sea, on ONR7a medium supplemented with one of PAHs compounds (including 99 naphthalene or phenanthrene or anthracene) as the carbon source (Tarhriz et al. 2014). 100 Growth was studied on brain heart infusion Agar (Scharlau) and MacConkey agar (Merck) 101 also on sea water agar, nutrient agar, LB (Luria-Bertani) media. Gram reaction was tested 102 (Gerhardt 1994) and confirmed by KOH lysis test (Gregersen 1978). 103 104 Phenotypic characterization 105 Growth was observed at various NaCl concentrations in lab made marine agar medium 106 containing (per liter): peptone, 5.0 g; yeast extract, 1.0 g; Fe3+-citrate, 0.1 g; NaCl, 19.45 g; 107 MgCl2 (dried), 8.8 g; Na2SO4, 3.24g; CaCl2, 1.8 g; KCl ,0.55 g; NaHCO3, 0.16 g; KBr, 0.08 108 g; SrCl2, 34.0 mg; H3BO3, 22.0 mg; Na-silicate, 4.0 mg; NaF, 2.4 mg; (NH4)NO3, 1.6 mg; 109 Na2HPO4, 8.0 mg; agar 15.0 g and pH was adjusted to 7.6 ± 0.2, supplemented without NaCl 110 and with 0.5-10% (w/v) NaCl at intervals of 0.5%. 111 Growth was investigated at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 °C on lab made marine 112 broth. In order to determine the optimal growth temperature, samples were measured by UV 113 absorbance at 600 nanometer wave length (OD: 600) after 48 hours. The pH tolerance was 114 determined in marine broth with at 30°C (optimum condition) with the pH set from 4.0 and 115 12.0 (using increments of 1 pH unit). Also the cells were incubated in an anaerobic chamber 116 for 48 hours in order to determine the extent of growth under anaerobic conditions. 117 Transmission electron microscopy (TEM; Zeiss LEO906) imaging was conducted at an 4 118 acceleration voltage of 100 kV from 200 µl of a suspension of the bacterium at logarithmic 119 growth phase in 3 ml of distilled water. 120 Biochemical tests containing determination of oxidase and catalase activity, gelatin 121 liquefaction, ability to hydrolyze starch, Tween 20, Tween 80 and casein, production of 122 indole and H2S, nitrate reduction and motility were done as described by MacFaddin (2000). 123 The ability of strain TBZ2T in utilizing various carbon sources, the production of acid from 124 sugars and its physiological profile were tested using the API 20E, API 20NE and API 50CH 125 kits (bioMérieux Corporate). 126 Extraction and analysis of fatty acids were carried out using minor modifications of the 127 method of (Miller 1982) and (Kuykendall et al. 1988). The fatty acid methyl esters mixtures 128 were separated using Sherlock Microbial Identification System (MIS) (MIDI, Microbial ID, 129 Newark, DE 19711 U.S.A.) which followed by naming and percentages calculation by using 130 MIS Standard Software (Microbial ID). 131 132 Molecular characterization 133 For genotypic characterization, DNA was extracted from the strain TBZ2T by using the 134 method described by Corbin and colleagues (Corbin et al. 2001) with some modifications. 135 For phylogenetic analysis based on 16S rRNA gene sequence, 16S rDNA was targeted for 136 amplification by polymerase chain reaction (PCR) in the presence of forward 16F 5’-AGA 137 GTT TGA TCC TGG CTC AG- 3' and reverse 16R for Gram-negative bacteria; 5' -ACG 138 GCT ACC TTG TTA CGA CTT- 3' (Karlson et al. 1993; Tarhriz et al. (2011)) and was 139 sequenced by Bioneer Company (Korea). BLAST of the 16S rRNA gene sequence of strain 140 TBZ2T in the EzBioCloud’s identity service (Yoon et al. 2017a) lead to retrieve its closest 141 phylogenetic neighbours. Maximum-likelihood (ML) (Kimura 1980) and Maximum- 142 parsimony (MP) (Fitch 1971) phylogenetic trees, as well as the pairwise sequence similarities 5 143 between TBZ2T and its relatives, were performed using the DSMZ phylogenomics pipeline 144 available at Genome-to-Genome distance calculator (GGDC) web server 145 (http://ggdc.dsmz.de). 146 Multilocus sequence analyses (MLSA) were carried out based on concatenated partial 147 sequences of rpoD (RNA polymerase subunit D), gyrB (DNA gyrase subunit B), and rpoB 148 (RNA polymerase beta subunit) and 16S rRNA genes.
Recommended publications
  • Comparative Analysis of the Core Proteomes Among The
    Diversity 2020, 12, 289 1 of 25 Article Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species‐Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis Marios Nikolaidis 1, Dimitris Mossialos 2, Stephen G. Oliver 3 and Grigorios D. Amoutzias 1,* 1 Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 2 Microbial Biotechnology‐Molecular Bacteriology‐Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 3 Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; [email protected] * Correspondence: [email protected]; Tel.: +30‐2410‐565289; Fax: +30‐2410‐565290 Received: 22 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core‐orthologues. The subsequent phylogenomic analysis revealed two well‐defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus‐level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group‐specific core proteins were also identified, with P.
    [Show full text]
  • Marine Sediments Microbes Capable of Electrode Oxidation As a Surrogate for Lithotrophic Insoluble Substrate Metabolism
    ORIGINAL RESEARCH ARTICLE published: 14 January 2015 doi: 10.3389/fmicb.2014.00784 Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism Annette R. Rowe 1*, Prithiviraj Chellamuthu 2, Bonita Lam 3, Akihiro Okamoto 4 and Kenneth H. Nealson 1,2,3 1 Department of Earth Sciences, University of Southern California, Los Angeles, Los Angeles, CA, USA 2 Department of Molecular and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA, USA 3 Department Marine and Environmental Biology, University of Southern California, Los Angeles, Los Angeles, CA, USA 4 Department of Applied Chemistry, University of Tokyo, Tokyo, Japan Edited by: Little is known about the importance and/or mechanisms of biological mineral oxidation Pravin Malla Shrestha, University of in sediments, partially due to the difficulties associated with culturing mineral-oxidizing California, Berkeley, USA microbes. We demonstrate that electrochemical enrichment is a feasible approach for Reviewed by: isolation of microbes capable of gaining electrons from insoluble minerals. To this end we Bradley Stevenson, University of Oklahoma, USA constructed sediment microcosms and incubated electrodes at various controlled redox Ricardo O. Louro, Instituto de potentials. Negative current production was observed in incubations and increased as Tecnologia Química e Biológica redox potential decreased (tested −50 to −400 mV vs. Ag/AgCl). Electrode-associated António Xavier da Universidade biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors Nova de Lisboa, Portugal in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous *Correspondence: Annette R. Rowe, CDEBI iron sulfide enrichments derived from electrode biomass demonstrated products Postdoctoral Fellow, University of indicative of sulfur or iron oxidation.
    [Show full text]
  • Complete Genome Sequence and Function Gene Identify of Prometryne-Degrading Strain Pseudomonas Sp
    microorganisms Article Complete Genome Sequence and Function Gene Identify of Prometryne-Degrading Strain Pseudomonas sp. DY-1 Dong Liang 1,† , Changyixin Xiao 1,† , Fuping Song 2, Haitao Li 1 , Rongmei Liu 1,* and Jiguo Gao 1,* 1 College of Life Science, Northeast Agricultural University, Harbin 150038, China; [email protected] (D.L.); [email protected] (C.X.); [email protected] (H.L.) 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] * Correspondence: [email protected] (R.L.); [email protected] (J.G.); Tel.: +86-133-5999-0992 (J.G.) † These authors contributed equally to this work. Abstract: The genus Pseudomonas is widely recognized for its potential for environmental reme- diation and plant growth promotion. Pseudomonas sp. DY-1 was isolated from the agricultural soil contaminated five years by prometryne, it manifested an outstanding prometryne degradation efficiency and an untapped potential for plant resistance improvement. Thus, it is meaningful to comprehend the genetic background for strain DY-1. The whole genome sequence of this strain revealed a series of environment adaptive and plant beneficial genes which involved in environmen- tal stress response, heavy metal or metalloid resistance, nitrate dissimilatory reduction, riboflavin synthesis, and iron acquisition. Detailed analyses presented the potential of strain DY-1 for degrad- ing various organic compounds via a homogenized pathway or the protocatechuate and catechol branches of the β-ketoadipate pathway. In addition, heterologous expression, and high efficiency Citation: Liang, D.; Xiao, C.; Song, F.; liquid chromatography (HPLC) confirmed that prometryne could be oxidized by a Baeyer-Villiger Li, H.; Liu, R.; Gao, J.
    [Show full text]
  • Aquatic Microbial Ecology 80:15
    The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.
    [Show full text]
  • An Insight Into Beneficial Pseudomonas Bacteria
    Chapter 5 An Insight Into Beneficial Pseudomonas bacteria Galina Novik, Victoria Savich and Elena Kiseleva Additional information is available at the end of the chapter http://dx.doi.org/10.5772/60502 Abstract Pseudomonas is a widespread bacterial genus embracing a vast number of species. Various genosystematic methods are used to identify Pseudomonas and differentiate these bacteria from species of the same genus and species of other genera. Ability to degrade and produce a whole spectrum of compounds makes these species perspec‐ tive in industrial applications. It also makes possible to use various media, including wastes, for cultivation of Pseudomonas. Pseudomonads may be applied in bioreme‐ diation, production of polymers and low-molecular-weight compounds, biocontrol. Recent studies open up new frontiers for further use of Pseudomonas in various areas. Keywords: Pseudomonas bacteria, physiology, taxonomy, application 1. Introduction Pseudomonas is one of the most studied species of bacteria. They were first identified at the end of 19th century by Migula as Gram-negative, rod-shaped and polar-flagellated bacteria. Since that time description of genus Pseudomonas has widened; development of new methods allowed to study in detail the morphology and physiology of these bacteria. However, the morphological characteristics of Pseudomonas are common to many bacterial genera and so are of little value in the positive identification of members of the genus. Advanced nucleic acid- based methods allow to differentiate it from other similar genera and reveal taxonomic relationships among various bacterial species including Pseudomonas. Genus Pseudomonas is represented by species that occupy a wide range of niches owing to metabolic and physiological diversity.
    [Show full text]
  • Antimicrobial Drug-Resistant Gram-Negative
    antibiotics Brief Report Antimicrobial Drug-Resistant Gram-Negative Saprophytic Bacteria Isolated from Ambient, Near-Shore Sediments of an Urbanized Estuary: Absence of β-Lactamase Drug-Resistance Genes Charles F. Moritz 1, Robert E. Snyder 1 , Lee W. Riley 1, Devin W. Immke 2 and Ben K. Greenfield 2,* 1 School of Public Health, University of California, Berkeley, CA 94720, USA; [email protected] (C.F.M.); [email protected] (R.E.S.); [email protected] (L.W.R.) 2 Department of Environmental Sciences, Southern Illinois University, Edwardsville, IL 62026, USA; [email protected] * Correspondence: [email protected] Received: 11 June 2020; Accepted: 7 July 2020; Published: 10 July 2020 Abstract: We assessed the prevalence of antimicrobial resistance and screened for clinically relevant β-lactamase resistance determinants in Gram-negative bacteria from a large urbanized estuary. In contrast to the broad literature documenting potentially hazardous resistance determinants near wastewater treatment discharge points and other local sources of aquatic pollution, we employed a probabilistic survey design to examine ambient, near-shore sediments. We plated environmental samples from 40 intertidal and shallow subtidal areas around San Francisco Bay (California, USA) on drug-supplemented MacConkey agar, and we tested isolates for antimicrobial resistance and presence of clinically relevant β-lactamase resistance determinants. Of the 74 isolates identified, the most frequently recovered taxa were Vibrio spp. (40%), Shewanella spp. (36%), Pseudomonas spp. (11%), and Aeromonas spp. (4%). Of the 55 isolates tested for antimicrobial resistance, the Vibrio spp. showed the most notable resistance profiles. Most (96%) were resistant to ampicillin, and two isolates showed multidrug-resistant phenotypes: V.
    [Show full text]
  • Phylogenomics and Systematics in Pseudomonas
    ORIGINAL RESEARCH published: 18 March 2015 doi: 10.3389/fmicb.2015.00214 Phylogenomics and systematics in Pseudomonas Margarita Gomila 1 †, Arantxa Peña 1 †, Magdalena Mulet 1, Jorge Lalucat 1, 2 and Elena García-Valdés 1, 2* 1 Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain, 2 Institut Mediterrani d’Estudis Avançats (Consejo Superior de Investigaciones Científicas-Universidad de las Islas Baleares), Palma de Mallorca, Spain The genus Pseudomonas currently contains 144 species, making it the genus of Gram-negative bacteria that contains the largest number of species. Currently, multilocus sequence analysis (MLSA) is the preferred method for establishing the phylogeny between species and genera. Four partial gene sequences of housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) were obtained from 112 complete or draft genomes of strains related to the genus Pseudomonas that were available in databases. These genes Edited by: were analyzed together with the corresponding sequences of 133 Pseudomonas type Frank T. Robb, University of Maryland, USA strains of validly published species to assess their correct phylogenetic assignations. We Reviewed by: confirmed that 30% of the sequenced genomes of non-type strains were not correctly Edward R. B. Moore, assigned at the species level in the accepted taxonomy of the genus and that 20% of the University of Gothenburg, Sweden strains were not identified at the species level. Most of these strains had been isolated Kostas Konstantinidis, Georgia Institute of Technology, USA and classified several years ago, and their taxonomic status has not been updated *Correspondence: by modern techniques. MLSA was also compared with indices based on the analysis Elena García-Valdés, of whole-genome sequences that have been proposed for species delineation, such Department of Biology, Universitat de les Illes Balears, Crtra.
    [Show full text]
  • Metabolic and Spatio-Taxonomic Response of Uncultivated Seafloor Bacteria Following the Deepwater Horizon Oil Spill
    The ISME Journal (2017) 11, 2569–2583 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill KM Handley1,2,3, YM Piceno4,PHu4, LM Tom4, OU Mason5, GL Andersen4, JK Jansson6 and JA Gilbert2,3,7 1School of Biological Sciences, University of Auckland, Auckland, New Zealand; 2Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA; 3Institute for Genomic and Systems Biology, Argonne National Laboratory, Lemont, IL, USA; 4Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 5Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; 6Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA and 7The Microbiome Center, Department of Surgery, The University of Chicago, Chicago, IL, USA The release of 700 million liters of oil into the Gulf of Mexico over a few months in 2010 produced dramatic changes in the microbial ecology of the water and sediment. Here, we reconstructed the genomes of 57 widespread uncultivated bacteria from post-spill deep-sea sediments, and recovered their gene expression pattern across the seafloor. These genomes comprised a common collection of bacteria that were enriched in heavily affected sediments around the wellhead. Although rare in distal sediments, some members were still detectable at sites up to 60 km away. Many of these genomes exhibited phylogenetic clustering indicative of common trait selection by the environment, and within half we identified 264 genes associated with hydrocarbon degradation.
    [Show full text]
  • The Genome Sequence of the Hydrocarbon-Degrading Acinetobacter Venetianus VE-C3
    Research in Microbiology 164 (2013) 439e449 www.elsevier.com/locate/resmic The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3 Marco Fondi a,b,1, Ermanno Rizzi c,1, Giovanni Emiliani a, Valerio Orlandini a, Luisa Berna d,e, Maria Cristiana Papaleo a, Elena Perrin a, Isabel Maida a, Giorgio Corti c,i, Gianluca De Bellis c, Franco Baldi f, Lenie Dijkshoorn g, Mario Vaneechoutte h, Renato Fani a,* a Laboratory of Microbial and Molecular Evolution, Dept. of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino (FI), Italy b Computer Laboratory, Cambridge University, William Gates Building 15, JJ Thomson Avenue, Cambridge, United Kingdom c Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate (MI), Italy d Seccio´n Biomatematica, Facultad de Ciencias, Universidad de la Repu´blica, Igua´ 4225, Montevideo, Uruguay e Department of Preclinical and Clinical Pharmacology, University of Florence, viale G. Pieraccini 6, 50139 Firenze, Italy f Dipartimento di Scienze Molecolari e Nanosistemi (DSMN), Ca` Foscari, Universita` di Venezia, 30123 Venezia, Italy g Department of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands h Laboratory Bacteriology Research, Faculty Medicine & Health Sciences, University of Ghent, Belgium i Institute for Cancer Research and Treatment, Candiolo (TO), Italy Received 27 July 2012; accepted 8 March 2013 Available online 23 March 2013 Abstract Here we report the genome sequence of Acinetobacter venetianus VE-C3, a strain isolated from the Venice Lagoon and known to be able to degrade n-alkanes. Post sequencing analyses revealed that this strain is relatively distantly related to the other Acinetobacter strains completely sequenced so far as shown by phylogenetic analysis and pangenome analysis (1285 genes shared with all the other Acinetobacter genomes sequenced so far).
    [Show full text]
  • Phylogenomics and Systematics in Pseudomonas
    ORIGINAL RESEARCH published: 18 March 2015 doi: 10.3389/fmicb.2015.00214 Phylogenomics and systematics in Pseudomonas Margarita Gomila 1 †, Arantxa Peña 1 †, Magdalena Mulet 1, Jorge Lalucat 1, 2 and Elena García-Valdés 1, 2* 1 Microbiology, Department of Biology, Universitat de les Illes Balears, Palma de Mallorca, Spain, 2 Institut Mediterrani d’Estudis Avançats (Consejo Superior de Investigaciones Científicas-Universidad de las Islas Baleares), Palma de Mallorca, Spain The genus Pseudomonas currently contains 144 species, making it the genus of Gram-negative bacteria that contains the largest number of species. Currently, multilocus sequence analysis (MLSA) is the preferred method for establishing the phylogeny between species and genera. Four partial gene sequences of housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) were obtained from 112 complete or draft genomes of strains related to the genus Pseudomonas that were available in databases. These genes Edited by: were analyzed together with the corresponding sequences of 133 Pseudomonas type Frank T. Robb, University of Maryland, USA strains of validly published species to assess their correct phylogenetic assignations. We Reviewed by: confirmed that 30% of the sequenced genomes of non-type strains were not correctly Edward R. B. Moore, assigned at the species level in the accepted taxonomy of the genus and that 20% of the University of Gothenburg, Sweden strains were not identified at the species level. Most of these strains had been isolated Kostas Konstantinidis, Georgia Institute of Technology, USA and classified several years ago, and their taxonomic status has not been updated *Correspondence: by modern techniques. MLSA was also compared with indices based on the analysis Elena García-Valdés, of whole-genome sequences that have been proposed for species delineation, such Department of Biology, Universitat de les Illes Balears, Crtra.
    [Show full text]
  • University of Oklahoma Graduate College the Role Of
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE ROLE OF GAMMAPROTEOBACTERIA IN AEROBIC ALKANE DEGRADATION IN OILFIELD PRODUCTION WATER FROM THE BARNETT SHALE A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE BY MEREDITH MICHELLE THORNTON Norman, Oklahoma 2017 THE ROLE OF GAMMAPROTEOBACTERIA IN AEROBIC ALKANE DEGRADATION IN OILFIELD PRODUCTION WATER FROM THE BARNETT SHALE A THESIS APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________________ Dr. Joseph Suflita, Chair ______________________________________ Dr. Kathleen Duncan ______________________________________ Dr. Amy Callaghan © Copyright by MEREDITH MICHELLE THORNTON 2017 All Rights Reserved. I would like to dedicate this work to my family. To my loving parents, Tim and Donna, who have sacrificed so much for me and continue to provide for and support my wildest aspirations. To my sister, Mackenzie, who inspires me to set an example worthy of following. And to my future husband, Clifford Dillon DeGarmo, who motivates me to work harder, dream bigger, and pursue the best version of myself. Acknowledgements This work would not be possible without the guidance and unwavering support of my advisor, Dr. Kathleen Duncan. Throughout this process, she has been a role model for me in more than just the academic setting; she has inspired me through her kind nature, diligent work ethic, and optimistic outlook on life. She invested so much time and effort into shaping me into a scientist and I can never express how thankful and lucky I am to have been part of her legacy. I would also like to acknowledge Drs.
    [Show full text]
  • Cultivation-Based Quantification and Identification of Bacteria at Two
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.431940; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Cultivation-based quantification and identification of bacteria at 2 two hygienic key sides of domestic washing machines 3 4 Susanne Jacksch 1,3, Huzefa Zohra 1, Mirko Weide 2, Sylvia Schnell 3, and Markus Egert 1 5 6 1 Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and 7 Hygiene Group, Furtwangen University, 78054 Villingen-Schwenningen, Germany 8 2 International Research & Development – Laundry & Home Care, Henkel AG & Co. KGaA, 9 40191 Düsseldorf, Germany 10 3 Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition 11 (IFZ), Justus-Liebig-University Giessen, 35392 Giessen, Germany 12 13 Keywords: Washing machine, bacteria, hygiene, MALDI Biotyping 14 15 Correspondence: 16 * Prof. Dr. Markus Egert, Faculty of Medical and Life Sciences, Institute of Precision Medicine, 17 Microbiology and Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, 18 Germany. Telephone: +49 7720 3074554, Fax: +49 7720 3074207, E-mail: Markus.Egert@hs- 19 furtwangen.de 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.431940; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Detergent drawer and door seal represent important sites for microbial life in domestic washing 3 machines.
    [Show full text]