Extended Phylogeny and Morphology of Marine And

Total Page:16

File Type:pdf, Size:1020Kb

Extended Phylogeny and Morphology of Marine And EXTENDED PHYLOGENY AND MORPHOLOGY OF MARINE AND FRESHWATER CHOANOFLAGELLATES WITH ADDITIONAL METHODOLOGICAL STUDIES ON HETEROTROPHIC FLAGELLATES I n a u g u r a l – D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Alexandra C. Jeuck aus Haan Köln, 2014 Berichterstatter: Prof. Dr. Hartmut Arndt Prof. Dr. Michael Bonkowski Tag der mündlichen Prüfung: 17.10.14 Danksagung Danksagung Mein ganz besonderer Dank gilt zuallererst meinem Betreuer Herrn Prof. Dr. Hartmut Arndt für die Möglichkeit zur Promotion, die Betreuung meiner Doktorarbeit, das in mich gesetzte Vertrauen, viele hilfreiche Diskussionen, Anregungen und die Möglichkeit und Unterstützung, an zahlreichen nationalen wie internationalen Tagungen teilzunehmen. An die ISOP/ISEP-Tagung in Kanada und die Exkursions-Reise nach Tansania am Ende meiner Promotionszeit werde ich bestimmt lange und gerne zurückdenken. Ich danke ganz herzlich Herrn Prof. Dr. Bonkowski für die Erstellung des Zweitgutachtens. Auch möchte ich mich bei Herrn Prof. Dr. Herbig sehr bedanken für die Übernahme des Disputationsvorsitzes. Mein überaus großer Dank gilt Dr. Frank Nitsche, der erst den Anstoß für die Arbeit mit Choanoflagellaten gab und mir stets und ohne eine Spur von Ungeduld zur Seite stand bei allen ungezählten Fragen. Bei allen Kooperationspartnern möchte ich mich sehr bedanken, vor allem bei den Choanoflagellaten-Spezialisten Dr. Martin Carr, Prof. Dr. Barry Leadbeater und Dr. Daniel Richter. Aber auch bei Dr. Claudia Wylezich für viele methodische Hilfestellungen. Und natürlich bei all denjenigen, die ich jetzt nicht im Besonderen aufgeführt habe. Der gesamten AG Arndt danke ich für die schöne und erfreuliche gemeinsame Zeit, ganz besonders herzlich aber möchte ich mich bei folgenden Personen bedanken: Rosita Bieg für unzählige Hilfestellungen und Problemlösungen bei technischen Fragen und für die schöne gemeinsame „Bürozeit“ gegen Ende meiner Doktorarbeit, Brigitte Gräfe für viele Anregungen bezüglich Flagellatenbestimmung und – dokumentierung, Bärbel Jendral für jegliche finanzielle und organisatorische Arbeit und dafür, dass sie stets den Durchblick behielt im Dschungel der Uni-Bürokratie und Dr. Anja Scherwaß 4 Danksagung für zahlreiche anregende Diskussionen und Ermunterungen und für die angenehme gemeinsame „Bürozeit“ am Anfang meiner Doktorarbeit. Meinen Kollegen und Exkollegen Anne, Jana, Kathi, Mar und Timm danke ich ganz im Allgemeinen, aber nicht nur… Es war eine wunderbare gemeinsame Zeit - Ihr seid mir ans Herz gewachsen und ohne Euch wäre es nur halb so gut gewesen! Außerdem möchte ich Anne und vor allem Timm meinen ganz speziellen Dank aussprechen für zahlreiche fachmännische Diskussionen und Korrekturen. Meiner Familie danke ich für jegliche Unterstützung und Ermunterung und dafür, dass sie mir fortwährend und in jeder Hinsicht bei Seite steht. Zu guter Letzt aber möchte ich meinem Freund dafür danken, dass er in den letzten Jahren so viel und ohne Klagen auf meine Anwesenheit verzichtet hat und er immer und bedingungslos für mich da ist! 5 „Quam ob rem prius aequorum, amnium, stagnorumque dicentur.“ „Daher soll zuvor [von den Organismen] in Meeren, Flüssen und Seen die Rede sein.“ GAIUS PLINIUS SECUNDUS MAIOR, NATURALIS HISTORIA, IX, 1-2 Table of Contents Table of Contents Zusammenfassung .................................................................................................. 10 Abstract .................................................................................................................... 12 General Introduction and Aim of the Study .......................................................... 14 Chapter 1 - A short guide to common heterotrophic flagellates of freshwater habitats based on the morphology of living organisms ...................................... 20 Supplementary Material .................................................................................. 41 Chapter 2 - Extended phylogeny of the Craspedida (Choanomonada) .............. 52 Abstract .......................................................................................................... 54 Introduction ..................................................................................................... 55 Material and Methods ..................................................................................... 56 Results ............................................................................................................ 60 Discussion ...................................................................................................... 77 References ..................................................................................................... 80 Supplementary Material .................................................................................. 86 Chapter 3 - A new group of acanthoecid related choanoflagellates from freshwater, sediment and soil ................................................................................ 90 Abstract .......................................................................................................... 92 Introduction ..................................................................................................... 93 Material and Methods ..................................................................................... 94 Results ............................................................................................................ 98 Discussion .................................................................................................... 104 References ................................................................................................... 107 8 Table of Contents Chapter 4 - A six-gene phylogeny provides new insights into choanoflagellate evolution ................................................................................................................ 112 Abstract ........................................................................................................ 114 Introduction ................................................................................................... 115 Material and Methods ................................................................................... 118 Results .......................................................................................................... 123 Discussion .................................................................................................... 139 Taxonomic summary .................................................................................... 141 References ................................................................................................... 150 Supplementary Material ................................................................................ 157 Chapter 5 - A comparison of methods to quantify heterotrophic flagellates ... 168 Abstract ........................................................................................................ 170 Introduction ................................................................................................... 171 Material and Methods ................................................................................... 173 Results .......................................................................................................... 179 Discussion .................................................................................................... 189 Concluding Remarks .................................................................................... 193 References ................................................................................................... 195 Supplementary Material ................................................................................ 203 Concluding Remarks and Perspectives .............................................................. 211 General References ............................................................................................... 218 Record of Achievement ........................................................................................ 225 Teilpublikationen ................................................................................................... 227 Erklärung................................................................................................................ 228 9 Zusammenfassung Zusammenfassung Heterotrophe Flagellaten (HF) sind kleinzellige Protisten mit weltweiter Verbreitung. Als Hauptkonsumenten von Bakterien nehmen sie eine bedeutende Rolle im aquatischen und terrestrischen Nahrungsnetz ein. Um verlässliche Untersuchungen zur Diversität und Phylogenie der HF und besonders der Choanoflagellaten zu ermöglichen, wurde in der vorliegenden Arbeit ein einfach gehaltener Bestimmungsschlüssel für die gängigen, heterotrophen Flagellaten des Süßwassers entwickelt. Dieser Schlüssel soll die Bestimmung der diversen Morphotypen erleichtern, indem er auf morphologischen Charakteristika von Lebendorganismen basiert. Aufgrund ihrer hohen Diversität und artspezifischer Eigenheiten ist es ferner schwierig, HF exakt zu quantifizieren. Daher wurden verschiedene Methoden zur Quantifizierung – die Lebendzählmethode, Fixierungsmethoden, Kultivierungs- methoden und Molekulare Arbeitsweisen – in Bezug auf Umweltstudien verglichen und jeweils optimiert. Die Vor- und Nachteile jeder dieser Quantifizierungsmethoden wurden gegenüber gestellt und Empfehlungen zur Wahl der
Recommended publications
  • A Six-Gene Phylogeny Provides New Insights Into Choanoflagellate Evolution Martin Carr, Daniel J
    A six-gene phylogeny provides new insights into choanoflagellate evolution Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche To cite this version: Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, et al.. A six- gene phylogeny provides new insights into choanoflagellate evolution. Molecular Phylogenetics and Evolution, Elsevier, 2017, 107, pp.166 - 178. 10.1016/j.ympev.2016.10.011. hal-01393449 HAL Id: hal-01393449 https://hal.archives-ouvertes.fr/hal-01393449 Submitted on 7 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Molecular Phylogenetics and Evolution 107 (2017) 166–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A six-gene phylogeny provides new insights into choanoflagellate evolution ⇑ Martin Carr a, ,1, Daniel J. Richter b,1,2, Parinaz Fozouni b,3, Timothy J. Smith a, Alexandra Jeuck c, Barry S.C. Leadbeater d, Frank Nitsche c a School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK b Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA c University of Cologne, Biocentre, General Ecology, Zuelpicher Str.
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • The State of the World's Aquatic Genetic Resources for Food and Agriculture 1
    2019 ISSN 2412-5474 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME 2019 Required citation: FAO. 2019. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131608-5 © FAO, 2019 Some rights reserved. This work is available under a CC BY-NC-SA 3.0 IGO licence 2018 © FAO, XXXXXEN/1/05.18 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode).
    [Show full text]
  • Harmful Algae 91 (2020) 101587
    Harmful Algae 91 (2020) 101587 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review Progress and promise of omics for predicting the impacts of climate change T on harmful algal blooms Gwenn M.M. Hennona,c,*, Sonya T. Dyhrmana,b,* a Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States b Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States c College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past Genomics twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have trans- Transcriptomics formed that data landscape of many fields including the study of HABs. Advances in technology have facilitated Proteomics the creation of many publicly available omics datasets that are complementary and shed new light on the Metabolomics mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity Climate change and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species Phytoplankton Harmful algae responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In Cyanobacteria this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • Review of the Center for Computational Sciences, University of Tsukuba 2020
    Review of the Center for Computational Sciences, University of Tsukuba 2020 筑波大学計算科学研究センター 外部評価報告書 September 2020 2020 年 9月 Center for Computational Sciences University of Tsukuba Review of the Center for Computational Sciences, University of Tsukuba 2014-2019 Foreword This volume contains the Report of the External Review for Center for Computational Scineces (CCS), University of Tsukuba, which was carried out in FY2019. The objective of the External Review was to evaluate the research activities of CCS during the period from FY2014 to FY2019 since the previous external review which was held in FY2013, and the future strategy and plans. Originally formed as the Center for Computational Physics (CCP) in 1992, the CCS was reorganized, expanded and relaunched under its current name in April 2004. The mission of the Center for Computational Sciences (CCS) is the promotion of "Multidisciplinary Computational Sciences" through enhanced cooperation between, and the fusion of, computational and computer sciences. The most important characteristics of the research collaboration in the CCS is “codesigning” where the needs from application fields and seeds from system technologies to make a balanced and optimized system development as well as application program development. As a unique research center where both computational and computer scientists work together, our codesigning for advanced High Performance Computing (HPC) research has been continued from the beginning until today. The CCS has developed several supercomputers, and conducted computational sciences in the areas of particle physics, astrophysics, nuclear physics, materials science, life science, environmental science, high performance computing technology, and information science including database technology and computational media. Also, the CCS plays a significant role as a nation-wide joint-use facility that provides computational resources for external scientific researchers in all of these areas all over the world.
    [Show full text]
  • Raphidiophrys Contractilis
    Kobe University Repository : Thesis Mechanism of β-1,3-glucan mediated food uptake in the protozoon 学位論文題目 Raphidiophrys contractilis(原生生物Raphidiophrys contractilis におけ Title るβ-1, 3-グルカンが介在する捕食機構) 氏名 MOUSUMI BHADRA Author 専攻分野 博士(理学) Degree 学位授与の日付 2017-09-25 Date of Degree 公開日 2018-09-25 Date of Publication 資源タイプ Thesis or Dissertation / 学位論文 Resource Type 報告番号 甲第7000号 Report Number 権利 Rights JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/D1007000 ※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 PDF issue: 2021-10-07 Doctoral Dissertation Mechanism of β-1, 3-glucan mediated food uptake in the protozoon Raphidiophrys contractilis 原生生物 Raphidiophrys contractilis における β-1, 3-グルカンが介在する捕食機構 July 2017 Graduate School of Science Kobe University Mousumi Bhadra Contents Acknowledgements ............................................................................................................ 2 Summary ........................................................................................................................... 3 Chapter 1: Introductory review............................................................................................ 7 Chapter 2: Proteins required for food capturing in Raphidiophrys contractilis..................... 11 2.1. Introduction ....................................................................................................... 11 2.2. Materials and methods ........................................................................................ 15 2.3. Results ..............................................................................................................
    [Show full text]
  • Molecular Identity of Strains of Heterotrophic Flagellates Isolated from Surface Waters and Deep-Sea Sediments of the South Atlantic Based on SSU Rdna
    AQUATIC MICROBIAL ECOLOGY Vol. 38: 239–247, 2005 Published March 18 Aquat Microb Ecol Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA Frank Scheckenbach1, Claudia Wylezich1, Markus Weitere1, Klaus Hausmann2, Hartmut Arndt1,* 1Department of General Ecology and Limnology, Zoological Institute, University of Cologne, 50923 Cologne, Germany 2Institute of Biology/Zoology, Free University of Berlin, Research Group Protozoology, 14195 Berlin, Germany ABSTRACT: Whereas much is known about the biodiversity of prokaryotes and macroorganisms in the deep sea, knowledge on the biodiversity of protists remains very limited. Molecular studies have changed our view of marine environments and have revealed an astonishing number of previously unknown eukaryotic organisms. Morphological findings have shown that at least some widely dis- tributed nanoflagellates can also be found in the deep sea. Whether these flagellates have contact with populations from other habitats is still uncertain. We performed a molecular comparison of strains isolated from deep-sea sediments (>5000 m depth) and surface waters on the basis of their small subunit ribosomal DNA (SSU rDNA). Sequences of Rhynchomonas nasuta, Amastigomonas debruynei, Ancyromonas sigmoides, Cafeteria roenbergensis and Caecitellus parvulus were analysed, and 2 contrasting results obtained. Firstly, we found nearly identical genotypes within 1 morphospecies (C. roenbergensis), and secondly, quite different genotypes within certain morpho- species (R. nasuta, A. sigmoides and C. parvulus). In addition, high genetic distances between the dif- ferent strains of A. sigmoides and C. parvulus indicate that these morphospecies should be divided into different at least genetically distinguishable species. In contrast, some heterotrophic nanoflagel- lates must indeed be regarded as being cosmopolitan.
    [Show full text]
  • Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella Magna
    GBE Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella magna David Roy Smith1,y,JimengHua2,3,y, John M. Archibald2, and Robert W. Lee3,* 1Department of Biology, University of Western Ontario, London, Ontario, Canada 2Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Dalhousie University, Halifax, Nova Scotia, Canada 3Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: August 8, 2013 Data deposition: Sequence data from this article have been deposited in GenBank under the accession KC733827. Abstract Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1–7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns
    [Show full text]