2007 Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

2007 Newsletter FALL 2007 ComTHmE on Denominator UCLA DEPARTMENT OF MATHEMATICS NEWSLETTER Sum of its parts equals AMS Award for UCLA Math For “providing an outstanding model of all that a cal careers in the United States.” Also cited was INSIDE mathematics department can be,” UCLA received the Department’s pioneering math education group, AMS Award 1–2 the American Mathematical Society’s (AMS) 2007 serving K through 12th graders and their teachers Award for an Exemplary Program or Achievement in with innovative programs aimed at increasing math- Events 3 a Mathematics Department. The award recognizes a ematics competency in California public schools. Its New Faculty 4–5 mathematics department in North America that has 52-strong “fi rst-rate faculty of internationally recog- Faculty News 6–7 distinguished itself by undertaking an unusual or par- nized mathematicians,” along with the arrival this Graduate News 8–9 ticularly effective program of value to the mathemat- fall of six distinguished new recruits, reinforces its ics community, internally, or in relation to the rest of position among the top 12 mathematics programs in Undergraduate News 10 society. UCLA is the second recipient of this award. the country (most recent National Research Council Math Education 11 AMS praised the Department for “a comprehen- ranking). UCLA is also one of the top four programs IPAM 12 sive vision for its undergraduate, graduate, and post- in applied mathematics (U.S. News & World Report, Alumni News 13 doctoral training programs that involves important 2006). Yet, despite its size and scope, indeed per- interactions with the NSF-funded Institute for Pure haps because of it, the Department has succeeded Gifts 14 and Applied Mathematics (IPAM) at UCLA. Through in creating a unique synergy among its faculty and Our Donors 15 these unusually large training programs, UCLA has its complementary training programs, which is at the Letter from the Chair 16 become one of the biggest pipelines to mathemati- heart of the award. continued on next page 2 THE COMMON DENOMINATOR | FALL 2007 Sum of its parts equals AMS Award for UCLA Math continued from page 1 As demonstrated by over 850 mathematics In perhaps the most high-profi le, synergistic majors in 2006, the undergraduate program has move of the Department, fi ve math faculty—Tony experienced tremendous growth in the past decade. Chan (now at NSF), Eitan Tadmor (now at the Univer- Degrees were up 56 percent from 160 in 1996 sity of Maryland), Bjorn Engquist, John Garnett and “The American to 249 in 2006. So what is the big appeal? In a Mark Green—capitalized on UCLA’s nascent culture Mathematical Society word: choice. The Department is a pioneer of the of cross-disciplinary collaboration by creating an in- broad-based mathematics major. Understanding the stitute for pure and applied mathematics, or IPAM. is the best of its kind importance that math brings to other disciplines, Mark, who became the institute’s director in 2001, in the world. We are very faculty have sought to forge partner programs with attributes its success to the size and strength of other departments, resulting in an array of under- UCLA’s science departments, including a fi rst-rate honored by this award,” graduate degrees impressive in scope. In addition medical school, together with forward-thinking math- says Christoph Thiele, to pure and applied (science and engineering) de- ematics faculty who are actively involved in IPAM. grees, majors include math/applied science (with Well over 1,000 participants a year now come professor and four sub-specialties, including the individual plan), through IPAM’s doors, interacting in programs that department chair. mathematics of computation, mathematics for are designed to create visionary, interdisciplinary teaching (teaching careers), mathematics/econom- collaboration between mathematicians and scien- ics, and atmospheric sciences/mathematics. tists from biology, medicine, engineering and other The Department also offers opportunities for disciplines, as well as industry and national labora- undergraduates to participate in research through tories. The institute’s mission is nationally focused its summer program—Research Experiences for and geared toward assembling a broad research Undergraduates (REU). The program has the active community ranging from distinguished professors to participation of senior faculty and postdoctoral men- young ladder faculty, postdocs, graduate students tors, and was broadened in the last two years to and undergraduates. include the applied mathematics laboratory under Like IPAM, the Department’s highly success- the direction of Professor Andrea Bertozzi. ful, K–12 math education programs sprang from 2007-2008 The year 2000 was a turning point in the Depart- and continue to be nurtured by the efforts of in- Academic Year ment’s graduate program with the awarding of a $5 novative Department educators. Professor Emeritus million NSF grant—Vertical Integration of Research Phil Curtis, who will turn 80 next year, is credited Faculty 58 and Education, or VIGRE. The goal of the program is with inspiring math education at UCLA. Last June, Postdocs 45 to initiate changes in the way professional mathema- the Curtis Center was established in his honor to ticians are trained, specifi cally promoting interaction formally bring the programs together. Professor Ted Graduate students 178 between mathematics and other fi elds, and increas- Gamelin currently serves as the faculty leader and ing the number of U.S. citizens and permanent resi- the Department provides offi ce space and adminis- Undergraduate majors 850 dents in math and science. Renewed in 2005, the trative services, such as computing and accounting. IPAM participants (annual program has supported 154 students since its incep- Today it is the most extensive outreach program for estimate) 1,000 tion. The continuing success of the program is attrib- the K–12 community housed in a research math- utable to collective faculty efforts to redevelop the ematics department. program into one where students learn in a research group environment, starting early in their studies. The Department sought to further broaden graduate The synergy of its comprehensive training programs students’ research experience in 2005, initiating the is at the core of the Department’s acknowledged Graduate Summer Internship Program in which stu- success in educating current and future mathema- dents work outside of the Department with faculty ticians. UCLA’s culture of interdisciplinary collabo- from other disciplines or industry. ration that made IPAM possible is also a big fac- This year’s hiring has resulted in the addition tor. Bottom line, the Department is a collaborative of 12 young researchers in fall 2007, making the bunch that sees itself at the forefront of raising the Department’s postdoctoral program one of the national profi le of math and preparing the way for largest in the country. Currently, 45 postdocs work unprecedented opportunities for mathematicians in under different research faculty in the Department, the 21st century. sometimes across disciplines. This integration of research interests and the opportunity to train un- View the complete award article in the June/July der diverse faculty is a huge draw. Notices of the AMS online at www.ams.org UCLA DEPARTMENT OF MATHEMATICS NEWSLETTER 3 events A Field Day for 2006–2007 Distinguished Higher Math Lecture Series UCLA Mathematics Hosts Fields Medalists Symposium Continuing the Department’s tradition of inviting world-class Surrounded by the gothic fl ourishes and stained Peter Lax of the Courant Institute of Mathematical mathematicians to share glass windows of UCLA’s Kerckhoff Hall, a stand- Sciences sits with Marguerite Mautner before he signifi cant developments ing-room-only crowd of 150-plus mathematicians, delivers the 2007 Mautner Memorial Lecture “Us- and trends in current math- alumni, students and numbers enthusiasts gath- ing Mathematics to Explain the World Around Us” ematics, three distinguished ered to hear some of the world’s most prominent to the public. speakers participated in mathematicians. Four UC recipients of the Fields the lecture series in applied Medal—often referred to as the Nobel Prize in with his lively talk “Flatland: A Great Place to Do Al- mathematics, geometry, and mathematics—did not disappoint, all giving unique gebra.” It described his mathematical journey through number theory. talks in their fi elds of interest. the dimensions, including the notion of the “fourth di- Renowned applied mathema- UCLA Chancellor Norman Abrams opened the mension” and beyond that holds magical appeal for tician David Levermore of all-day symposium with an acknowledgement of UC’s many. Vaughan illustrated his concepts through Edwin the University of Maryland most recent Fields medalist, Terry Tao, who won the Abbott’s classic book Flatland, which revolves around spoke on “From Boltzman award in 2006 at the improbably young age of 31. Pre- a society of two-dimensional intelligent beings and the Equations to Gas Dynam- senting in order of receiving the award, 1990 Fields diffi culty they have conceptualizing the third dimension. ics,” an exposition of the medalist Professor Vaughan Jones of UC Berkeley 1994 medalist and UC San Diego Professor Efi m foundational problem of initiated the talks, following introductory remarks by Zelmanov steered the symposium in a more technical explaining the dynamics of UCLA mathematics chair Professor Christoph Thiele. direction. His lecture “Profi
Recommended publications
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Robust High-Resolution Cloth Using Parallelism, History-Based Collisions and Accurate Friction Andrew Selle, Jonathan Su, Geoffrey Irving, Ronald Fedkiw
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Robust High-Resolution Cloth Using Parallelism, History-Based Collisions and Accurate Friction Andrew Selle, Jonathan Su, Geoffrey Irving, Ronald Fedkiw Abstract—In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high-resolution and high-fidelity simulations. Index Terms—Computer Graphics, Geometric algorithms, Physically based modelling, Cloth, Collision response, Friction ! 1 INTRODUCTION LOTH simulation is pervasive in film, e.g. the untan- C gling strategies for Monsters Inc. [1], the collision and stiction methods for Terminator 3 and Harry Potter [2], and the wrinkle system for Shrek 2 [3]. Cloth sim- ulation also promises to have significant future impact on the clothing industry [4] (see also [5]). While, some researchers have focused on real-time simulation for computer games or non-hero characters [6] that have Bridson [10] Method Our Method lower quality requirements, our focus is on hero char- (45,000 triangles) (1,700,000 triangles) acters, online shopping, and related applications that need photorealistic cloth and clothing. Achieving such Fig.
    [Show full text]
  • Fall 2020 Issue
    MATHEMATICS + BERKELEY Fall 2020 IN THIS ISSUE Letter from the Chair 2 Department News 4 Happy Hours, New Horizons 3 Grad and Undergrad News 5 Prize New Faculty and Staff 7 Chair Michael Hutchings (PhD, Harvard, 1998) has been a member of the math faculty since 2001. His research is in low dimension- al and symplectic geometry and topology. He became Chair in Fall 2019. Dear Friends of Berkeley Math, Due to Covid-19, this last year has been quite extraordinary for almost everyone. I have been deeply moved by the enormous efforts of members of our department to make the most of the The department’s weekly afternoon tea in virtual 1035 Evans Hall on gather.town. Some attendees are dressed as vampires and pumpkins, others are playing pictionary. circumstances and continue our excellence in teaching and research. rejoined the department as an Assistant Teaching Professor. Yingzhou Li, who works in Applied Mathematics, and Ruix- We switched to remote teaching in March with just two days iang Zhang, who works in Analysis, will join the department of preparation time, and for the most part will be teaching as Assistant Professors in Spring and Fall 2021, respectively. remotely at least through Spring 2021. As anyone who teach- es can probably tell you, teaching online is no easier than And we need to grow our faculty further, in order to meet very teaching in person, and often much more difficult. However, high teaching demand. In Spring 2020 we had over 900 mathe- developing online courses has also given us an opportunity to matics majors, and we awarded a record 458 undergraduate de- rethink how we can teach and interact with students.
    [Show full text]
  • TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
    2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match.
    [Show full text]
  • Real-Time Fluid Simulation on GPU
    An Improved Study of Real-Time Fluid Simulation on GPU Enhua Wu1, 2, Youquan Liu1, Xuehui Liu1 1Laboratory of Computer Science, Institute of Software Chinese Academy of Sciences, Beijing, China 2Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macao, China email: [email protected], [email protected], [email protected] http://lcs.ios.ac.cn/~lyq/demos/gpgpu/gpgpu.htm Abstract Taking advantage of the parallelism and programmability of GPU, we solve the fluid dynamics problem completely on GPU. Different from previous methods, the whole computation is accelerated in our method by packing the scalar and vector variables into four channels of texels. In order to be adaptive to the arbitrary boundary conditions, we group the grid nodes into different types according to their positions relative to obstacles and search the node that determines the value of the current node. Then we compute the texture coordinates offsets according to the type of the boundary condition of each node to determine the corresponding variables and achieve the interaction of flows with obstacles set freely by users. The test results prove the efficiency of our method and exhibit the potential of GPU for general-purpose computations. KEY WORDS: Graphics Hardware, GPU, Programmability, NSEs, Fluid Simulation, Real-Time Introduction Real-time fluid simulation is a hot topic not only in computer graphics research field for the special effects in movies and video games, but also in engineering applications field. However, the computation of Navier-Stokes equations (NSEs) used to describe the motion of fluids is really hard to achieve real-time.
    [Show full text]
  • Ligo-India Proposal for an Interferometric Gravitational-Wave Observatory
    LIGO-INDIA PROPOSAL FOR AN INTERFEROMETRIC GRAVITATIONAL-WAVE OBSERVATORY IndIGO Indian Initiative in Gravitational-wave Observations PROPOSAL FOR LIGO-INDIA !"#!$ Indian Initiative in Gravitational wave Observations http://www.gw-indigo.org II Title of the Project LIGO-INDIA Proposal of the Consortium for INDIAN INITIATIVE IN GRAVITATIONAL WAVE OBSERVATIONS IndIGO to Department of Atomic Energy & Department of Science and Technology Government of India IndIGO Consortium Institutions Chennai Mathematical Institute IISER, Kolkata IISER, Pune IISER, Thiruvananthapuram IIT Madras, Chennai IIT, Kanpur IPR, Bhatt IUCAA, Pune RRCAT, Indore University of Delhi (UD), Delhi Principal Leads Bala Iyer (RRI), Chair, IndIGO Consortium Council Tarun Souradeep (IUCAA), Spokesperson, IndIGO Consortium Council C.S. Unnikrishnan (TIFR), Coordinator Experiments, IndIGO Consortium Council Sanjeev Dhurandhar (IUCAA), Science Advisor, IndIGO Consortium Council Sendhil Raja (RRCAT) Ajai Kumar (IPR) Anand Sengupta(UD) 10 November 2011 PROPOSAL FOR LIGO-INDIA II PROPOSAL FOR LIGO-INDIA LIGO-India EXECUTIVE SUMMARY III PROPOSAL FOR LIGO-INDIA IV PROPOSAL FOR LIGO-INDIA This proposal by the IndIGO consortium is for the construction and subsequent 10- year operation of an advanced interferometric gravitational wave detector in India called LIGO-India under an international collaboration with Laser Interferometer Gravitational–wave Observatory (LIGO) Laboratory, USA. The detector is a 4-km arm-length Michelson Interferometer with Fabry-Perot enhancement arms, and aims to detect fractional changes in the arm-length smaller than 10-23 Hz-1/2 . The task of constructing this very sophisticated detector at the limits of present day technology is facilitated by the amazing opportunity offered by the LIGO Laboratory and its international partners to provide the complete design and all the key components required to build the detector as part of the collaboration.
    [Show full text]
  • A Novel Algorithm for Incompressible Flow Using Only a Coarse Grid Projection
    A Novel Algorithm for Incompressible Flow Using Only a Coarse Grid Projection Michael Lentine∗ Wen Zheng Ronald Fedkiw Stanford University Stanford University Stanford University Industrial Light + Magic Industrial Light + Magic Figure 1: High resolution smoke and water. (Left) Smoke flowing above a sphere on a 512 1024 512 grid. (Middle) Water pouring into a box on a 512 512 512 grid. (Right) Smoke flowing around a sphere on a 512 1024× 512 grid.× × × × × Abstract noise (see [Stam and Fiume 1993; Lamorlette and Foster 2002; Ras- mussen et al. 2003]) and curl noise (see [Bridson et al. 2007]) can be Large scale fluid simulation can be difficult using existing tech- used to enhance the visual fidelity of fluid simulations by coupling niques due to the high computational cost of using large grids. We the noise to the incompressible Navier-Stokes equations producing present a novel technique for simulating detailed fluids quickly. Our a more detailed flow. Alternatively, [Kim et al. 2008] and [Narain technique coarsens the Eulerian fluid grid during the pressure solve, et al. 2008] determine where to add noise using information from allowing for a fast implicit update but still maintaining the resolu- the existing simulation and then add it as a postprocess which al- tion obtained with a large grid. This allows our simulations to run at lows them to add noise where it is best suited. Other techniques a fraction of the cost of existing techniques while still providing the such as [Schechter and Bridson 2008] both determine where to add fine scale structure and details obtained with a full projection.
    [Show full text]
  • View Print Program (Pdf)
    PROGRAM November 3 - 5, 2016 Hosted by Sigma Pi Sigma, the physics honor society 2016 Quadrennial Physics Congress (PhysCon) 1 31 Our students are creating the future. They have big, bold ideas and they come to Florida Polytechnic University looking for ways to make their visions a reality. Are you the next? When you come to Florida Poly, you’ll be welcomed by students and 3D faculty who share your passion for pushing the boundaries of science, PRINTERS technology, engineering and math (STEM). Florida’s newest state university offers small classes and professors who work side-by-side with students on real-world projects in some of the most advanced technology labs available, so the possibilities are endless. FLPOLY.ORG 2 2016 Quadrennial Physics Congress (PhysCon) Contents Welcome ........................................................................................................................... 4 Unifying Fields: Science Driving Innovation .......................................................................... 7 Daily Schedules ............................................................................................................. 9-11 PhysCon Sponsors .............................................................................................................12 Planning Committee & Staff ................................................................................................13 About the Society of Physics Students and Sigma Pi Sigma ���������������������������������������������������13 Previous Sigma Pi Sigma
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Automorphy Lifting Theorems Permalink https://escholarship.org/uc/item/5br5g0fq Author Kalyanswamy, Sudesh Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Automorphy Lifting Theorems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Sudesh Kalyanswamy 2017 c Copyright by Sudesh Kalyanswamy 2017 ABSTRACT OF THE DISSERTATION Automorphy Lifting Theorems by Sudesh Kalyanswamy Doctor of Philosophy in Mathematics University of California, Los Angeles, 2017 Professor Chandrashekhar Khare, Chair This dissertation focus on automorphy lifting theorems and related questions. There are two primary components. The first deals with residually dihedral Galois representations. Namely, fix an odd prime p, and consider a continuous geometric representation ρ : GF ! GLn(O), where F is either a totally real field if n = 2, or a CM field if n > 2, and O is the integer ring of a finite extension of Qp. The goal is to prove the automorphy of representations whose residual representation ρ¯ has the property that the restriction to GF (ζp) is reducible, where ζp denotes a primitive p- th root of unity. This means the classical Taylor-Wiles hypothesis fails and classical patching techniques do not suffice to prove the automorphy of ρ. Building off the work of Thorne, we prove an automorphy theorem in the n = 2 case and apply the result to elliptic curves. The case n > 2 is examined briefly as well. The second component deals with the generic unobstructedness of compatible systems of adjoint representations.
    [Show full text]
  • The Perils of Complacency
    THE PERILS OF COMPLACENCYTHE PERILS : America at a Tipping Point in Science & Engineering : America at a Tipping Point THE PERILS OF COMPLACENCY America at a Tipping Point in Science & Engineering An Update to Restoring the Foundation: The Vital Role of Research in Preserving the American Dream AMERICAN ACADEMY OF ARTS & SCIENCES AMERICAN ACADEMY THE PERILS OF COMPLACENCY America at a Tipping Point in Science & Engineering An Update to Restoring the Foundation: The Vital Role of Research in Preserving the American Dream american academy of arts & sciences Cambridge, Massachusetts This report and its supporting data were finalized in April 2020. While some new data have been released since then, the report’s findings and recommendations remain valid. Please note that Figure 1 was based on nsf analysis, which used existing oecd purchasing power parity (ppp) to convert U.S. and Chinese financial data.oecd adjusted its ppp factors in May 2020. The new factors for China affect the curves in the figure, pushing the China-U.S. crossing point toward the end of the decade. This development is addressed in Appendix D. © 2020 by the American Academy of Arts & Sciences All rights reserved. isbn: 0- 87724- 134- 1 This publication is available online at www.amacad.org/publication/perils-of-complacency. The views expressed in this report are those held by the contributors and are not necessarily those of the Officers and Members of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, Massachusetts 02138- 1996 Telephone: 617- 576- 5000 Email: [email protected] Website: www.amacad.org Contents Acknowledgments 5 Committee on New Models for U.S.
    [Show full text]
  • Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate
    Giving to the Department of Physics by Erin McGrath RAINER WEISS ’55, PHD ’62 Bryce Vickmark Rai Weiss has established a fellowship in the Physics Department because he is eternally grateful to his advisor, the late Jerrold Zacharias, for all that he did for Rai, so he knows firsthand the importance of supporting graduate students. Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate. Rainer “Rai” Weiss was born in Berlin, Germany in 1932. His father was a physician and his mother was an actress. His family was forced out of Germany by the Nazis since his father was Jewish and a Communist. Rai, his mother and father fled to Prague, Czecho- slovakia. In 1937 a sister was born in Prague. In 1938, after Chamberlain appeased Hitler by effectively giving him Czechoslovakia, the family was able to obtain visas to enter the United States through the Stix Family in St. Louis, who were giving bond to professional Jewish emigrants. When Rai was 21 years-old, he visited Mrs. Stix and thanked her for what she had done for his family. The family immigrated to New York City. Rai’s father had a hard time passing the medi- cal boards because of his inability to answer multiple choice exams. His mother, who Rai says “held the family together,” worked in a number of retail stores. Through the services of an immigrant relief organization Rai received a scholarship to attend the prestigious Columbia Grammar School. At the end of 1945, when Rai was 13 years old, he became fascinated with electronics and music.
    [Show full text]
  • A Conference in Honor of HARUZO HIDA on His 60Th Birthday P -Adic Modular Forms and Arithmetic
    A Conference in Honor of HARUZO HIDA on His 60th Birthday p -adic Modular Forms and Arithmetic List of Registered Participants as of June 16th, 2012 Name E-Mail Affiliation Adebisi Agboola [email protected] UC Santa Barbara Patrick Allen [email protected] UCLA Daniel Barrera [email protected] Université Paris 7 Joel Bellaiche [email protected] Brandeis University John Bergdall [email protected] Brandeis University Manjul Bhargava [email protected] Princeton University Stephane Bijakowski [email protected] Université Paris 13 Saikat Biswas [email protected] Georgia Tech Don Blasius [email protected] UCLA George Boxer [email protected] Harvard University Miljan Brakocevic [email protected] McGill University Hunter Brooks [email protected] University of Michigan, Ann Arbor Ashay Burungale [email protected] UCLA Kevin Buzzard [email protected] Imperial College Rene Cabrera [email protected] UCLA Bryden Cais [email protected] University of Arizona Francesc Castella [email protected] McGill University Tommaso Centeleghe [email protected] Heidelberg University Ching-Li Chai [email protected] University of Pennsylvania Narasimha Kumar Cheraku [email protected] University of Heidelberg Liubomir Chiriac [email protected] Caltech Dohoon Choi [email protected] KAU John H. Coates [email protected] University of Cambridge Dan Collins [email protected] Princeton University Pierre Colmez [email protected] Institut
    [Show full text]