Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation

Total Page:16

File Type:pdf, Size:1020Kb

Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation processing, intersymbol interference, data compression, and cryptog- Dr. Hellman is a member of Tau Beta Pi and Eta KappaNU. He raphy. He has consulted in the areas of communications, informa is President of theSan Francisco Section’s IEEE Information tion theory, and general engineering forvarious industries and Theory Group’s Chapter, and was Publications Chairman for the laboratories. He is the liaison at Stanford for its Industrial Aaliates 1972 Information Theory Symposium. He is an Associate Editor Program in Information Systems, a program designed to increase for Communication Theory of the IEEE TRANSACTIONSON COM- interaction between industry and the university. MUNICATIONS. Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation Abstract-In this paper, the rationale and some advantages for and methods for the evaluation and optimization of the multiaccessbroadcast packet communication usingsatellite and channelperformance of a slotted ALOHA system. The ground radio channels arediscussed. A mathematical model is form- ulated for a “slotted ALOHA” random access system. Using this problem of performance evaluation is addressed in this model, a theory is put forth which gives a coherent qualitative inter- paper. In [l], we present dynamic channel control pro- pretation of the system stability behavior which leads to the defini- cedures as solutions to some of the issues considered herein. tion of a stability measure. Quantitative estimates for the relative In this paper, the rationale for multiaccess broadcast instability of unstable channels are obtained. Numerical results are packet communication is first discussed. The mathematical shown illustratingthe trading relationsamong channel stability, throughput, and delay. These results provide tools for the perform- model to be considered is then described. Following that, a ance evaluation and design of an uncontrolled slotted ALOHA sys- theory is proposed which explains the dynamic and tem. Adaptive channel control schemes are studied in a companion stochastic channel behavior. In particular, we display the paper. delay-throughput performance curves obtained under the assumption of equilibrium conditions [6]. We then demon- INTRODUCTION strate that a slotted ALOHA channel often exhibits “un- N THIS and a forthcoming paper [l], a packet switch- stable behavior.” A stability definition is proposed which I ing technique based upon the randomaccess concept of characterizesstable and unstable channels. Astability the ALOHA System [Z] will be studied in detail. This measure (FET) is then defined which quantifies the technique, referred to as slotted ALOHA random access, relative instability of unstable channels. An algorithm is enables efficient sharing of a data communicatiori channel given for the calculation of FET. Finally, numerical results by a large population of users, each with a bursty data are shown which illustrate the trading relations among stream. This packet switching technique may be, applied channel stability, channel throughput, and average packet tothe use of satelliteand groundradio channels for delay. Our main concern in this paper is the consideration computer-computer and terminal-computer communica- of the stabilityissue and its effecton the channel through- tions, respectively’ [3]-[10]. The multiaccess broadcast put-delay performance. capabilities of these channels render them attractive solu- tions to two problems: 1) large computer-communication MULTIACCESS BROADCAST PACKET networkswith nodes distributed over wide geographic COMMUNICATION areas,and 2) largeterminal access networkswith po- Rationale tentially mobile terminals. The objective of this studyis to develop analytic models For almost a century, circuit switching dominated the design of communication networks. Only with the higher Paper approved bythe Associate Editor for Computer Com- speed and lower cost of modern computers did packetcom- munication of the IEEE CommunicationsSociety for publication munication become competitive. It was not until approxi- after presentation at the 7th Hawaii International Conference on System Sciences, Honolulu, Hawaii, January 8-10, 1974. Manuscript mately 1970 that the computer (switching) cost dropped received June 30, 1974; revised September 30, 1974. This research below the communication (bandwidth) cost in a packet was supported by the Advanced Research Projects Agency of the Department of Defense under Contract DAHC 15-73-C-0368. switching network [ll]. This also marked the first ap- L. Kleinrockis withthe Department of Computer Science, pearance of packet switched computer-communication University of California, Los Angeles, Calif. 90024. S. S. Lam is with the IBM Thomas J. Watson Research Center, networks [Z], [12]. Yorktown Heights, N. Y. 10598. Circuit switching is relatively inefficient for computer XLEINROCK AND LAM: PACKET SWITCHING 41 1 communications, especially over long distances. Measure- stations covered by the transponder beam. Thus, a satel- mentstudies [13] conducted on time-sharing systems lite channel (consisting of both carrier frequencies) pro- indicate that bothcomputer and terminal datastreams are vides a completely connected network topology for all bursty. Depending on the channel speed, the ratiobetween earth stations covered by the transponderbeam. the peak andthe average datarates may be as high: Consider the use of packet communication in a com- as 2000 to 1 [SI. Consequently, if a high-speed point-to- puter-communication networkenvironment tosupport point channel is used, the channel utilization may be ex- large populatons of (bursty) users over a wide area. We tremely low since the channel is idle most of the time. On can then identify and summarize the following advantages the other hand, if a low-speed channel is used, the trans- of satellite and ground radio channels over conventional mission delay is large. wire communications. The above dilemma is caused by channel users imposing 1) Elimi?lation of ComplexTopological Design and bursty random demandson their communication channels. RoutingProblems: Topological design and routing prob- By the law of large numbers in probability theory, the lems are verycomplex in networks with a large population total demand at any instant from a large population of of users. Existing implementations suitable for a (say) 50 independentusers is, with high probability, approxi- node network may become totally inappropriate for a 500 mately equal to the sum of their average demands (i.e., a node network required to perform thesame functions nearlydeterministic quantity).Thus, if a channel is [21]. On theother hand, ground radio andsatellite dynamically shared in some fashion among many users, channels used in themultiaccess broadcast mode provide a the required channel bandwidth to satisfy a given delay completely connected network topology, since every user constraint may be much less than if the users are given may access any other user covered by the broadcast. dedicated channels. This concept is known as statistical load 2) Wide Geographical Areas: Wire communications be- averaging and has been applied in many computer-com- come expensive over long distances (e.g., transcontinental, munication schemes to various degrees of success. These transoceanic). Even on a local level, the communication schemes include: polling systems [14], loop systems [15], cost, for an interactive user on an alphanumeric console asynchronous time division multiplexing (ATDM) [lS], over distances of over 100 miles may easily exceed the cost andthe store-and-forward packet switching concepts of computation [2]. On the other hand, satellite andradio [17]-[19] implemented in the ARPA network [lz]. communications are relatively distance independent, and We are currently facing an enormous growth in com- are especially suitable for geographically scattered users. puter networks [20]. To design cost-effective computer- 3) Mobility of Users: Since radio is a multiaccess broad- communication networks for the future, new techniques cast medium, it is possible for users to move around freely. are needed which are capable of providing efficient high- This consideration willsoon become importantin the speed computer-computer and terminal-computer com- development of personal terminals in future telecommuni- munications in a large network environment. The applica- cation systems [22] as well as in aeronautical and mari- tion of packet switching techniques to radio communica- time applications [23]. ti.on (both satellite andground radio channels) appears to 4) LargePopulation of Activeand Inactive Users: In provide a solution. wire communications, the system overhead usually in- Radio is a multiaccess broadcast medium. That is, a creases with the number of users (e.g., polling schemes). signal generated by a radio transmitter may be received The maximum number of users is often bounded by some over a wide area by any number of receivers. This is hardware limitation (e.g., the fan-in of a communications referred to as the broadcast capability. Furthermore, any processor). In radio communication, since each user is number of users maytransmit signals over the same merely represented by an ID number, the number of channel. This is referred to as the multiaccess capability. active users is bounded only by the channel capacity and (However, if two signals at the same carrier frequency thereis no limitation tothe number of inactive (but overlap intime at a radio receiver', we assume that potentially
Recommended publications
  • Vision-Based Mobile Free-Space Optical Communications Kyle Cavorley, Wayne Chang, Jonathan Giordano, Taichi Hirao Advisor: Prof
    Vision-Based Mobile Free-Space Optical Communications Kyle Cavorley, Wayne Chang, Jonathan Giordano, Taichi Hirao Advisor: Prof. Daut Abstract Methodology The implementation of a free-space optical (FSO) communication system capable of interfacing with moving receivers such as unmanned ground or aerial vehicles. Two way communication Inexpensive laser diodes are used to transmit data at rates of up to 1 Mbps. A computer vision and tracking system controls a pan-tilt platform for target Transmit side Receive side acquisition and tracking. Complex package components, suchs as a laser driver and photo receiver, are avoided when possible to study the design of low-level system components. A two way communication system is made possible utilizing a reflective optical chopper (ROC) at the receiver end. Motivations and Objectives Motivations: -High power efficiency with high throughput Fig. 2: Photodiode Amplifier and Comparator Circuit. Fig. 4: Laser Diode Driver Circuit. -Increased security Objectives: -Construct optical communication link capable of 1 Mbps at thirty feet range -Form and maintain two way optical communication channel -Build computer vision tracking system and platform Fig. 6: Boston Micromachines Reflective Optical Chopper (ROC); used in two-way communication Fig. 3: Output Response of photodiode Fig. 5: Schmitt Trigger Circuit. Only one end of the communication link amplifier/comparator. requires a visual tracking/laser targeting system. Results ❑ 2 Mhz signal successfully transmitted 14 feet using 5 mW 670 nm laser. ❑ AD8030 Op-amp used to amplify photodiode response signal from a range [60 mV, 1 V] to 5V before entering comparator that generates a TTL output. Fig. 1: Vision Based FSO Communication Block Diagram.
    [Show full text]
  • Unit 7: Choosing Communication Channels
    UNIT 7: CHOOSING COMMUNICATION CHANNELS Unit 7 highlights the importance of selecting an appropriate channel mix for a communication response and describes five categories of communication channels: mass media, mid media, print media, social and digital media and interpersonal communication (IPC). For each of these channels, advantages and disadvantages have been listed, as well as situations in which different channels may be used. Although this Unit has attempted to differentiate the channels and their uses for simplicity, there is recognition that channels frequently overlap and may be effective for achieving similar objectives. This is why the match between channel, audience and communication objective is important. This unit provides some tools to help assess available and functioning channels during an emergency, as well as those that are more appropriate for reaching specific audience segments. Once you have completed this unit, you will have the following tools to support the development of your SBCC response: • Worksheet 7.1: Assessing Available Communication Channels • Worksheet 7.2: Matching Communication Channels to Primary and Influencing Audiences What Is a Communication Channel? A communication channel is a medium or method used to deliver a message to the intended audience. A variety of communication channels exist, and examples include: • Mass media such as television, radio (including community radio) and newspapers • Mid media activities, also known as traditional or folk media such as participatory theater, public talks, announcements through megaphones and community-based surveillance • Print media, such as posters, flyers and leaflets • Social and digital media such as mobile phones, applications and social media • IPC, such as door-to-door visits, phone lines and discussion groups Different channels are appropriate for different audiences, and the choice of channel will depend on the audience being targeted, the messages being delivered and the context of the emergency.
    [Show full text]
  • Modeling and Simulation of an Asynchronous Digital Subscriber Line Transceiver Data Transmission Subsystem
    Modeling and Simulation of an Asynchronous Digital Subscriber Line Transceiver Data Transmission Subsystem Elmustafa Erwa ABSTRACT Recently, there has been an increase in demand for digital services provided over the public telephone line network. Asymmetric digital subscriber line (ADSL) transmit high bit rate data in the forward direction to the subscriber, and lower bit rate data in the reverse direction to the central office, both on a single copper telephone loop. I implemented a Synchronous Dataflow (SDF) model for an ADSL transceiver’s data transmission subsystem in LabVIEW. My implementation enables designers to simulate and optimize different ADSL transceiver designs. The overall implementation is compliant with the European Telecommunications Standards Institute’s ADSL specification. 1. INTRODUCTION With the emergence of the Internet as the cornerstone of communications in this age, the demand for high speed Internet access has only been increasing. Asymmetric digital subscriber lines (ADSL) is one of the technologies that provide high-speed Internet access in residences and offices [1]. It facilitates the use of normal telephone services, Integrated Services Digital Network (ISDN), and high-speed data transmission simultaneously. Hence, bandwidth-demanding technologies, such as video-conferencing and video-on-demand, are enabled over ordinary telephone lines. ADSL standards use discrete multi-tone (DMT) modulation [2]. DMT divides the effectively bandlimited communication channel into a larger number of orthogonal narrowband subchannels. This allows for maximizing the transmitted bit rate and adapting to changing line conditions. Designing ADSL systems is inherently complex. However, advances in the digital signal processor (DSP) technology allowed programmable DSP based solutions to replace application-specific integrated circuit based implementations.
    [Show full text]
  • 2 the Wireless Channel
    CHAPTER 2 The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter. A defining characteristic of the mobile wireless channel is the variations of the channel strength over time and over frequency. The variations can be roughly divided into two types (Figure 2.1): • Large-scale fading, due to path loss of signal as a function of distance and shadowing by large objects such as buildings and hills. This occurs as the mobile moves through a distance of the order of the cell size, and is typically frequency independent. • Small-scale fading, due to the constructive and destructive interference of the multiple signal paths between the transmitter and receiver. This occurs at the spatialscaleoftheorderofthecarrierwavelength,andisfrequencydependent. We will talk about both types of fading in this chapter, but with more emphasis on the latter. Large-scale fading is more relevant to issues such as cell-site planning. Small-scale multipath fading is more relevant to the design of reliable and efficient communication systems – the focus of this book. We start with the physical modeling of the wireless channel in terms of elec- tromagnetic waves. We then derive an input/output linear time-varying model for the channel, and define some important physical parameters. Finally, we introduce a few statistical models of the channel variation over time and over frequency. 2.1 Physical modeling for wireless channels Wireless channels operate through electromagnetic radiation from the trans- mitter to the receiver.
    [Show full text]
  • Designing Asymmetric Digital Subscriber Line with Discrete Multitone Modulator
    ISSN (Online) 2321-2004 IJIREEICE ISSN (Print) 2321-5526 International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering Vol. 7, Issue 11, November 2019 Designing Asymmetric Digital Subscriber Line with Discrete Multitone Modulator Attiq Ul Rehman1, Maninder Singh2 M. Tech., Student, ECE Department, Haryana Engineering College, Jagadhri, Haryana, India1 Assistant Professor, ECE Department, Haryana Engineering College, Jagadhri, Haryana, India2 Abstract: The objective of Digital Subscriber Line (DSL) is to propagate signal from the transmitter to the receiver over telephone lines. In communication industry Asymmetric Digital Subscriber Line (ADSL) is widely used because it can handle both phone services and internet access services at same time. As the communication industry develops, its main concern is to maximize the user handling capacity of communication systems. For this purpose, ADSL uses Discrete Multitone (DMT) modulator with QAM bank. But as the number of users increases the system complexity and interference also increases. The communication channel is not free from the effects of channel impairments such as noise, interference and fading. These channel impairments caused signal distortion and Signal to Ratio (SNR) degradation. One method that can be implemented to overcome this problem is by introducing channel coding. Channel encoding is applied by adding redundant bits to the transmitted data. The redundant bits increase raw data used in the link and therefore, increase the bandwidth requirement. So, if noise or fading occurred in the channel, some data may still be recovered at the receiver. While at the receiver, channel decoding is used to detect or correct errors that are introduced to the channel.
    [Show full text]
  • The Wireless Communication Channel Objectives
    9/9/2008 The Wireless Communication Channel muse Objectives • Understand fundamentals associated with free‐space propagation. • Define key sources of propagation effects both at the large‐ and small‐scales • Understand the key differences between a channel for a mobile communications application and one for a wireless sensor network muse 1 9/9/2008 Objectives (cont.) • Define basic diversity schemes to mitigate small‐scale effec ts • Synthesize these concepts to develop a link budget for a wireless sensor application which includes appropriate margins for large‐ and small‐scale pppgropagation effects muse Outline • Free‐space propagation • Large‐scale effects and models • Small‐scale effects and models • Mobile communication channels vs. wireless sensor network channels • Diversity schemes • Link budgets • Example Application: WSSW 2 9/9/2008 Free‐space propagation • Scenario Free-space propagation: 1 of 4 Relevant Equations • Friis Equation • EIRP Free-space propagation: 2 of 4 3 9/9/2008 Alternative Representations • PFD • Friis Equation in dBm Free-space propagation: 3 of 4 Issues • How useful is the free‐space scenario for most wilireless syst?tems? Free-space propagation: 4 of 4 4 9/9/2008 Outline • Free‐space propagation • Large‐scale effects and models • Small‐scale effects and models • Mobile communication channels vs. wireless sensor network channels • Diversity schemes • Link budgets • Example Application: WSSW Large‐scale effects • Reflection • Diffraction • Scattering Large-scale effects: 1 of 7 5 9/9/2008 Modeling Impact of Reflection • Plane‐Earth model Fig. Rappaport Large-scale effects: 2 of 7 Modeling Impact of Diffraction • Knife‐edge model Fig. Rappaport Large-scale effects: 3 of 7 6 9/9/2008 Modeling Impact of Scattering • Radar cross‐section model Large-scale effects: 4 of 7 Modeling Overall Impact • Log‐normal model • Log‐normal shadowing model Large-scale effects: 5 of 7 7 9/9/2008 Log‐log plot Large-scale effects: 6 of 7 Issues • How useful are large‐scale models when WSN lin ks are 10‐100m at bt?best? Fig.
    [Show full text]
  • Telecommunication Through Broadband Services of Bsnl: a Bird’S Eye View
    International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 1, Issue 2 (may-june 2013), PP. 37-41 TELECOMMUNICATION THROUGH BROADBAND SERVICES OF BSNL: A BIRD’S EYE VIEW Dr Shilpi Verma Assistant Professor Deptt. of Library & information Science (School for Information Science & Technology) Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Rai-bareli Road Lucknow-226025 (UP) Abstract: In the cut throat competition every country telecommunication technologies are playing very vital want to be information equipped, the role. The consumers or users are demanding for faster and telecommunication is helping a lot in achieving the reliable bandwidth for purpose of e-commerce, same. Integrated communication is emerged as a boom videoconferencing, information retrieval and such other in communication world. The growth of data, applications. Broadband seems as a answer to these communication market and the networking questions. Broadband provides means of accessing technology trend has amplified the importance of technologies to bridge the customer & the service telecommunication in the field of information provider throughout the world. It basically provides high communication. Telecommunication has become one speed internet access, whereas the dial up connections of the very important part that is very essential to the was having their limitations and low speed. These socio-economic well being of any nation. The paper broadband services allow the user to send or receive video deals with concept of Broad band services of BSNL, or audio digital content and having real time features also. technology options for broadband services. Bharat It is able to provide interactive services.
    [Show full text]
  • Multi-User Signal and Spectra Co-Ordination for Digital Subscriber Lines
    KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT TOEGEPASTE WETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK Kasteelpark Arenberg 10, 3001 Heverlee MULTI-USER SIGNAL AND SPECTRA CO-ORDINATION FOR DIGITAL SUBSCRIBER LINES Promotor: Proefschrift voorgedragen tot Prof. Dr. ir. M. Moonen het behalen van het doctoraat in de toegepaste wetenschappen door Raphael CENDRILLON December 2004 KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT TOEGEPASTE WETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK Kasteelpark Arenberg 10, 3001 Heverlee MULTI-USER SIGNAL AND SPECTRA CO-ORDINATION FOR DIGITAL SUBSCRIBER LINES Jury: Proefschrift voorgedragen tot Prof. Dr. ir. G. De Roeck, voorzitter het behalen van het doctoraat Prof. Dr. ir. M. Moonen, promotor in de toegepaste wetenschappen Prof. Dr. ir. G. Gielen door Prof. Dr. ir. S. McLaughlin (U. Edinburgh, U.K.) Prof. Dr. ir. B. Preneel Raphael CENDRILLON Prof. Dr. ir. L. Vandendorpe (U.C.L.) Prof. Dr. ir. J. Vandewalle Prof. Dr. ir. S. Vandewalle U.D.C. 621.391.827 December 2004 c Katholieke Universiteit Leuven - Faculteit Toegepaste Wetenschappen Arenbergkasteel, B-3001 Heverlee (Belgium) Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron- isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the publisher. D/2004/7515/88 ISBN 90-5682-550-X Acknowledgement I would like to thank my family for all the support and love they have given me over the years. My parents have always believed in me and this taught me to believe in myself.
    [Show full text]
  • Communications Channels (Based on Blahut's Digital Transmission Of
    Communications Channels (Based on Blahut’s Digital Transmission of Information) The transfer of messages between individuals or between cells is an activity that is fundamental to all forms of life, and in biological systems, delicate mechanisms have evolved to support this message transfer. Each of these messages traverses an environment capable of producing various kinds of distortion in the message, but the message must be understood despite this distortion. Yet, the method of message transmission must not be so complex as to unduly exhaust the resources of the transmitter or the receiver. Man-made communication systems also transfer data through a noisy environment. This environment is called a communication channel. A very important channel is the one in which a message is represented by an electromagnetic wave that is sent to a receiver, where it appears contaminated by noise. The transmitted messages must be protected against distortion and noise in the channel. The first such communication systems protected their messages from the environment by the simple expedient of transmitting high power. Later, message design techniques were introduced that led to the development of far more sophisticated communication systems. Modern message design is the art of piecing together a number of waveform ideas to meet a set of requirements: generally, to transmit as many bits as is practical within the available power and bandwidth. It is by the performance at low transmitted power that one judges the quality of a digital communication system. The purpose of this course is to develop in a rigorous mathematical setting the modem waveform techniques for the digital transmission of information.
    [Show full text]
  • Wireless and Mobile Communication Multiple Access Techniques for Wireless Communication
    WIRELESS AND MOBILE COMMUNICATION MULTIPLE ACCESS TECHNIQUES FOR WIRELESS COMMUNICATION In telecommunications and computer networks, a channel access method or multiple access method allows several terminals connected to the same multi-point transmission medium to transmit over it and to share its capacity.[1] Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode. A channel access method is based on multiplexing, that allows several data streams or signals to share the same communication channel or transmission medium. In this context, multiplexing is provided by the physical layer. There are three common types of multiple access system: 1. Frequency Division Multiple Access (FDMA) 2. Time Division Multiple Access (TDMA) 3. Code Division Multiple Access (CDMA) Frequency Division Multiple Access (FDMA) The frequency-division multiple access(FDMA) channel-access scheme is based on the frequency-division multiplexing (FDM) scheme, which provides different frequency bands to different data-streams. In the FDMA case, the data streams are allocated to different nodes or devices. An example of FDMA systems were the first-generation (1G) cell-phone systems, where each phone call was assigned to a specific uplink frequency channel, and another downlink frequency channel. Each message signal (each phone call) is modulated on a specific carrier frequency. FDMA Time Division Multiple Access (TDMA) The time division multiple access (TDMA) channel access scheme is based on the time-division multiplexing (TDM) scheme, which provides different time-slots to different data-streams (in the TDMA case to different transmitters) in a cyclically repetitive frame structure.
    [Show full text]
  • In Telecommunications and Computer Networks, a Channel Access Method
    In telecommunications and computer networks, a channel access method or multiple access method allows several terminals connected to the same multi-point transm ission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and half-duple x point-to-point links. A channel-access scheme is based on a multiplexing method, that allows several d ata streams or signals to share the same communicatcommunicationion channel or physical mediu m. Multiplexing is in this context provided by the physical layer. Note that mul tiplexing also may be used in full-duplex point-to-point communication between n odes in a switched network, which should not be conconsideredsidered as multiple access. A channel-access scheme is also based on a multiple access protocol and control suesmechanism, such as also addressing, known as assigningmedia access multiplex control channe (MAC).ls This to different protocol dealsusers, with and isav oiding collisions. The MAC-layer is a sub-layer in Layer 2 (Data Link Layer) of the OSI model and a component of the Link Layer of the TCP/IP model. Contents [hide] 1 Fundamental types of channel access schemes 1.1 Frequency Division Multiple Access (FDMA) 1.2 Time division multiple access (TDMA) 1.3 Code division multiple access (CDMA)/Spread spespectrumctrum multiple access (SSMA) 1.4 Space division multiple access (SDMA) 2 List of channel access methods 2.1 Circuit mode and channelization methods 2.2 Packet mode methods 2.3 Duplexing methods
    [Show full text]
  • Communication Channel Models
    Communication channel model Goal The goal of this experiment is to become familiar with the definition of channel model and the effect of the channel model on the transmitted signal both in the time and the frequency domain. Theory Communicating data from one location to another requires some form of pathway or medium. These pathways, called communication channels, use two types of media: cable (twisted-pair wire, cable, and fiber-optic cable) and broadcast (microwave, satellite, radio, and infrared). Cable or wire line media use physical wires of cables to transmit data and information. Twisted-pair wire and coaxial cables are made of copper, and fiber-optic cable is made of glass. The simplified block diagram of any communication system can be presented by Figure 1: Transmitter Channel Receiver Noise Figure 1. Block diagram of communication systems As it is seen in Figure 1, in order to model the whole transmission environment, the transmitted signal first passes through the channel and then, noise is added to the signal. In communication systems, noise is an error or undesired random disturbance of a useful information signal in a communication channel. The noise is a summation of unwanted or disturbing energy from natural and sometimes man-made sources. Noise is, however, typically distinguished from interference, for example in the signal-to-noise ratio (SNR), signal-to-interference ratio (SIR) and signal-to- noise plus interference ratio (SNIR) measures. Noise is also typically distinguished from distortion, which is an unwanted systematic alteration of the signal waveform by the communication equipment, for example in the signal-to-noise and distortion ratio (SINAD).
    [Show full text]