Starting New Populations of Longleaf Pine 3-Ound

Total Page:16

File Type:pdf, Size:1020Kb

Starting New Populations of Longleaf Pine 3-Ound RESEARCH ARTICLE ABSTRACT: Southeastern United States habitats dominated by longleaf pine (Pinus palustris Miller) and associated plant species have declined dangerously. Conservation of rare and common plants of longleaf pine habitats may be aided by starting new popula- tions in the field. We review methods for initiating plant populations and integrate information from our studies of rare and common longleaf pine ground-layer plants of the outer South Carolina Coastal Plain. In our experience it is possible to start new populations of most longleaf pine ground-layer plants, including rare species if (1) seeds Starting New are collected from frequently burned sites with reasonably large populations of desired species; (2) appropriate media are used for seedling propagation; (3) outplanting of nursery grown seedlings or direct seeding is done during periods of sufficient soil Populations of moisture; and (4) introduction sites properly match habitat requirements (inferred from indicator plants) of desired species, and the sites can be managed with frequent prescribed Longleaf Pine fire. 3-ound-layer Plants Index terms: Longleaf pine, Pinus palustris, rare plants, reintroduction, southeastern United States in the Outer Coastal Plain of ranges (see Morse 1996, Gaston 1997 and references therein). These species typical- INTRODUCTION ;outh Carolina, USA ly appear on federal or state rare lists, and receive low G-ranks from The Nature Longleaf pine (Pinus palustris Miller) sa- Conservancy. Hardin and White (1989) vannas and woodlands are characterized and Walker (1993) compiled and published by a sparse tree canopy and a very rich Jeff S. Glitzenstein lists of longleaf pine associated species ground layer usually dominated by herbs that meet these traditional criteria for rar- Donna R. Streng (Bridges and Orzell 1989, Peet and Allard ity. Walker’s (1993) list included 389 spe- 1993). Decline of these biologically rich Tall Timbers Research Station cies, 187 of which were considered rare habitats, which once encompassed vast 13093 Henry Beadel Drive range-wide and vulnerable to extinction areas of the southeastern United States, is Tallahassee, FL 32312 USA (G-ranks = l-3). Most are herbaceous pe- well documented (Frost 1993, Harcombe rennials that depend on frequent natural et al. 1993). Only about 3% of an estimat- Dale D. Wade fire. More than half (65%) occur in moist ed 37 million ha remains. Contributing USDA Forest Service longleaf pine habitats (i.e., seasonally factors include logging, clearing, inten- Southern Research Station flooded flatwoods and savannas, depres- sive forestry, and, perhaps most important, 320 Green Street sions, shrub bog ecotones, seepage slopes, fire exclusion. Although precise data are Athens, GA 30602 USA pond margins), although many (45 spe- not available for many species, most her- cies, 24.2% of the total) occur in typical baceous plants in longleaf pine dominated John Brubaker mesic-dry upland habitats (Walker 1993). habitats apparently require frequent (i.e., An update of Walker’s (1993) list, avail- Medical University of South Carolina mean fire return intervals less than 5 years), able online at http://www.talltimbers.org/ Department of Pharmacology low-intensity fires for population mainte- research.html, includes 256 additional spe- Charleston, SC 29403 USA nance (Lemon 1949, Platt et al. 1991, cies. This large increase reflects, in part, Waldrop et al. 1992). (Plant nomenclature the endangerment of ever-larger numbers follows Kartesz [1994] unless otherwise of ground-layer plants of longleaf pine l indicated.) habitats. Given the continuing loss and endanger- The second group of at-risk species includes ment of high quality longleaf pine habitats formerly dominant, but still often locally (e.g., Percher et al. 1999), many of their abundant, “climax” grasses of North Amer- characteristic plants could, or should, be ican prairies and savannas. These grasses considered rare or endangered. Two groups tend to be shallow-rooted and are highly l Correspollding authorauthor e-mail: of species may be at greatest risk. The first [email protected] susceptible to even light to moderate distur- group includes species that fit the tradi- bance of upper soil horizons such as me- tional definition of rarity-species with chanical site preparation for artificial regen- Natural Areas Journal 21:89-110 small population sizes, few populations, eration of pine stands (e.g., Schultz 1976). or very limited geographic or ecological Volume 21 (I), 2001 Natural Areas journal 89 Wind-pollinated and limited in dispersal, has been going on for centuries, and his- mendations on seed sampling for genetic these plants may also be particularly vulner- torical evidence suggests that many cur- diversity, see Center for Plant Conserva- able to habitat fragmentation and declining rently rare species were more common tion (1991). population size (Tilman et al. 1997). prior to recent antbropogenic declines (El- liott 18161824, Percher 1848, Ravenel Fire history is an important factor in site Ecologists generally agree that conserva- 1876, Weakley 1999); and (3) if current quality for ground-layer plants of longleaf tion is a more effective tool for protecting trends continue, today’s common species pine habitats. Frequently burned sites have and maintaining biodiversity than restora- may be rare in the near future. In the first reduced competition from hardwood tion (Falk et al. 1996). Fortunately, some section of this paper we discuss seed is- shrubs and sprouts (Waldrop et al. 1992), large tracts of properly managed, high sues, including choice of collection sites resulting in more vigorous ground-layer - quality longleaf pine habitat remain on and dates, seed processing and storage, plants with larger inflorescences and great- private and public lands. Nevertheless, to and germination tests. The second section er seed production. On sites with a history counteract continuing loss of biodiversity, covers seedling issues and includes con- of frequent fire, canopy density can have _ it may be necessary to start new popula- siderations of seedling propagation, plant- an influence on seed viability. Means tions of the most threatened species (Falk ing sites, and seedling performance after (1997) found a negative correlation be- et al. 1996, Pavlik 1996). There are three outplanting. This section also contains re- tween density of overstory slash pine (Pi- basic strategies for starting plant popula- sults from a small translocation experi- nus elliottii) and seed viability of Aristida tions: translocation (i.e., moving individu- ment we conducted with Agrimonia in- beyrichiana Trinius and Ruprecht. Fire als or parts of individuals directly from cisa, a globally rare forb of subxeric history also influences seed predation, field populations), outplanting of nursery longleaf pine habitats. The third section which can have a major impact on seed grown seedlings or cuttings, and direct discusses direct seeding methods, and com- availability. Hiers et al. (2000) found that seeding (Guerrant 1996). Each strategy pares results from two of our own studies approximately 68% of Tephrosia virgini- involves several procedural issues. For of direct seeding that varied with respect ana pods in unburned control plots con- example, to successfully grow and out- to competition control. Finally, we briefly tained seed predators compared to only plant seedlings one must collect and pro- discuss native plant gardens and the po- 23% in burned plots. cess the seed, germinate it, select a growth tential role of gardens as refuges and source medium, choose a planting site, and man- populations. For each topic, we first pro- Seed production of most longleaf pine age the new population. Direct seeding vide a review of pertinent literature, and ground-layer species tends to decline with also involves seed collection and germina- when appropriate, present our own unpub- time since burning. Seeds are most abun- tion and requires information on the envi- lished data. We present data suggesting dant during the year of the bum, or, if the ronmental and biotic conditions needed to that it is not difficult to start new popula- bum occurs late in the year, the following maximize germination and establishment tions of longleaf pine ground-layer plants, growing season. However, some species, under field conditions. Translocation may including rare species, if the introduction such as Gymnopogon ambiguus , Aristida be the easiest initiation technique, although site is located in an appropriate habitat and purpurascens, and Muhlenbergia capil- it is often hard to justify ethically, and can be managed with frequent fire. laris, flower and produce abundant seed choice of planting site and transplant con- for several years following fire (Pfaff and ditions are critical concerns (Hall 1986). Gonter 1996). It is not known whether I: SEED ISSUES seed quality in these species declines with This paper reviews methods for starting time since fire. Seed Collection Sites and Dates populations of ground-layer plants of longleafpine savannas and woodlands, and Finding a quality seed collection site is Season of burning can affect seed produc- includes some of our own unpublished usually the first step in starting a new plant tion. Many pine savanna grasses, and some data. We emphasize species additions to population. Unfortunately, there is little composites, flower more prolifically after relatively intact communities. In contrast, information on collection site quality
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • Element Occurrence Data Standard
    ELEMENT OCCURRENCE DATA STANDARD February 6, 2002 NatureServe in cooperation with the Network of Natural Heritage Programs and Conservation Data Centers iii Table of Contents PREFACE.....................................................................................................................................currently under revision ACKNOWLEDGMENTS.....................................................................................................currently under revision ABSTRACT..................................................................................................................................currently under revision 1 INTRODUCTION.........................................................................................................currently under revision 2 EO DEFINITION .................................................................................................................................................10 2.1 Principal EOs........................................................................................................................................................10 2.2 Sub-EOs.................................................................................................................................................................12 2.3 Feature Labels.......................................................................................................................................................13 2.4 Location Use Class..............................................................................................................................................13
    [Show full text]
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • Streamhead Canebrakes Are Treeless Or Sparsely Treed Vegetation Dominated by Arundinaria Tecta in Seepage-Fed Drainages
    STREAMHEAD CANEBRAKE Concept: Streamhead Canebrakes are treeless or sparsely treed vegetation dominated by Arundinaria tecta in seepage-fed drainages. Tree plus broadleaf shrub cover is generally less than 25 percent in good examples but may be higher if fire frequency has been reduced. Most of this rare community type is in the Sandhills Region, but it might occur in sand dune areas elsewhere in the Coastal Plain. Distinguishing Features: Streamhead Canebrakes are distinguished from other communities of seepage-fed streamheads by the dominance of Arundinaria tecta combined with low cover of trees and other shrubs (less than 25 percent). They are distinguished from Peatland Canebrakes by occurring in streamheads rather than in flat or domed peatlands, Carolina bays, or shallow outer Coastal Plain swales. Synonyms: Arundinaria gigantea ssp. tecta Shrubland (CEGL003843) (not distinguished from Peatland Canebrake in NVC). Atlantic Coastal Plain Streamhead Seepage Swamp, Pocosin and Baygall (CES203.252). Sites: Streamhead Canebrakes occur along mucky headwater and small stream bottoms in dissected sandhill areas, where soils are kept saturated by seepage. Soils: Soils are mucky mineral soils, most often mapped as Johnston (Cumulic Humaquept). Hydrology: Hydrology is typical of the theme as a whole, with long-term saturation by nutrient- poor water but with little or no stream flooding or standing water. Vegetation: Vegetation consists of a dense thicket of Arundinaria tecta and limited cover of broadleaf shrubs. Pinus serotina, Liriodendron tulipifera, Pinus taeda, Nyssa biflora, and Magnolia virginiana may form a sparse canopy. Any of the species of Streamhead Pocosin may be present in moderate numbers. Lyonia lucida is the most abundant other shrub in CVS plot data.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • The 1700 Native Plants of Bucks County, PA
    The 1700 Native Plants of Bucks County, PA Bucks County, PA is blessed with an enormous range of physiographic regions, soil types, and hydrological conditions. Habitats range from the diabase areas of the Upper Bucks to the coastal plains of Lower Bucks, high palisades of the Delaware River to bog remnants, pristine freshwater ponds to tidal areas. These varied conditions host a dizzying array of species, sub‐species, and naturally‐occurring varieties. Common species are regularly available from ArcheWild; many can be grown under contract. Call ArcheWild at 855‐752‐6862 or e‐mail us for more information at: [email protected] Symbol Scientific Name Common Name ACGR2 Acalypha gracilens slender threeseed mercury ACRH Acalypha rhomboidea common threeseed mercury ACVI Acalypha virginica Virginia threeseed mercury ACNE2 Acer negundo boxelder ACNEN Acer negundo var. negundo boxelder ACPE Acer pensylvanicum striped maple ACRU Acer rubrum red maple ACRUR Acer rubrum var. rubrum red maple ACRUT Acer rubrum var. trilobum red maple ACSA2 Acer saccharinum silver maple ACSA3 Acer saccharum sugar maple ACSAS Acer saccharum var. saccharum sugar maple ACSP2 Acer spicatum mountain maple ACMI2 Achillea millefolium common yarrow ACPA Actaea pachypoda white baneberry ACRA7 Actaea racemosa black baneberry ACRAR Actaea racemosa var. racemosa black bugbane ADPE Adiantum pedatum northern maidenhair ADFU Adlumia fungosa allegheny vine AEFL Aesculus flava yellow buckeye AGAU3 Agalinis auriculata earleaf false foxglove AGPU5 Agalinis purpurea purple false foxglove
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States Timothy M
    Clemson University TigerPrints All Dissertations Dissertations 5-2016 Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States Timothy M. Shearman Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Shearman, Timothy M., "Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States" (2016). All Dissertations. 1656. https://tigerprints.clemson.edu/all_dissertations/1656 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. IMPACTS OF LAUREL WILT DISEASE ON NATIVE PERSEA OF THE SOUTHEASTERN UNITED STATES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Forest Resources by Timothy M. Shearman May 2016 Accepted by: Dr. G. Geoff Wang, Committee Chair Dr. Saara J. DeWalt Dr. Donald L. Hagan Dr. Julia L. Kerrigan Dr. William C. Bridges ABSTRACT Laurel Wilt Disease (LWD) has caused severe mortality in native Persea species of the southeastern United States since it was first detected in 2003. This study was designed to document the range-wide population impacts to LWD, as well as the patterns of mortality and regeneration in Persea ecosystems. I used Forest Inventory and Analysis (FIA) data from the U.S. Forest Service to estimate Persea borbonia (red bay) populations from 2003 to 2011 to see if any decline could be observed since the introduction of LWD causal agents.
    [Show full text]
  • Natural Vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers
    Natural vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers A report prepared for the Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources in partial fulfillments of contract D07042. By M. Forbes Boyle, Robert K. Peet, Thomas R. Wentworth, Michael P. Schafale, and Michael Lee Carolina Vegetation Survey Curriculum in Ecology, CB#3275 University of North Carolina Chapel Hill, NC 27599‐3275 Version 1. May 19, 2009 1 INTRODUCTION The riverine and associated vegetation of the Waccamaw, Lumber, and Little Pee Rivers of North and South Carolina are ecologically significant and floristically unique components of the southeastern Atlantic Coastal Plain. Stretching from northern Scotland County, NC to western Brunswick County, NC, the Lumber and northern Waccamaw Rivers influence a vast amount of landscape in the southeastern corner of NC. Not far south across the interstate border, the Lumber River meets the Little Pee Dee River, influencing a large portion of western Horry County and southern Marion County, SC before flowing into the Great Pee Dee River. The Waccamaw River, an oddity among Atlantic Coastal Plain rivers in that its significant flow direction is southwest rather that southeast, influences a significant portion of the eastern Horry and eastern Georgetown Counties, SC before draining into Winyah Bay along with the Great Pee Dee and several other SC blackwater rivers. The Waccamaw River originates from Lake Waccamaw in Columbus County, NC and flows ~225 km parallel to the ocean before abrubtly turning southeast in Georgetown County, SC and dumping into Winyah Bay.
    [Show full text]
  • The Natural Communities of South Carolina
    THE NATURAL COMMUNITIES OF SOUTH CAROLINA BY JOHN B. NELSON SOUTH CAROLINA WILDLIFE & MARINE RESOURCES DEPARTMENT FEBRUARY 1986 INTRODUCTION The maintenance of an accurate inventory of a region's natural resources must involve a system for classifying its natural communities. These communities themselves represent identifiable units which, like individual plant and animal species of concern, contribute to the overall natural diversity characterizing a given region. This classification has developed from a need to define more accurately the range of natural habitats within South Carolina. From the standpoint of the South Carolina Nongame and Heritage Trust Program, the conceptual range of natural diversity in the state does indeed depend on knowledge of individual community types. Additionally, it is recognized that the various plant and animal species of concern (which make up a significant remainder of our state's natural diversity) are often restricted to single natural communities or to a number of separate, related ones. In some cases, the occurrence of a given natural community allows us to predict, with some confidence, the presence of specialized or endemic resident species. It follows that a reasonable and convenient method of handling the diversity of species within South Carolina is through the concept of these species as residents of a range of natural communities. Ideally, a nationwide classification system could be developed and then used by all the states. Since adjacent states usually share a number of community types, and yet may each harbor some that are unique, any classification scheme on a national scale would be forced to recognize the variation in a given community from state to state (or region to region) and at the same time to maintain unique communities as distinctive.
    [Show full text]