Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Contents lists available at ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology

journal homepage: www.elsevier.com/locate/palaeo

Paleobiogeography and historical biogeography of the non-marine caenogastropod family

Thomas A. Neubauer ⁎, Mathias Harzhauser, Oleg Mandic, Elisavet Georgopoulou, Andreas Kroh

Geological–Paleontological Department, Natural History Museum Vienna, 1010 Vienna, Austria article info abstract

Article history: We investigate the distributions of representatives of the family Melanopsidae (: : Received 4 November 2015 ) from the late to present-day. The present contribution discusses and partly revises Received in revised form 8 December 2015 former schemes of melanopsid dispersal during the Cenozoic, all of which were based on outdated stratigraphic Accepted 14 December 2015 and tectonic concepts as well as an incompletely considered fossil record. Conflating a comprehensive and Available online 23 December 2015 stratigraphically well-constrained fossil record, modern paleogeographical reconstructions and contemporary Keywords: climate data, our goal is to present a thorough model of melanopsid distribution and its changes over the Ceno- Biogeography zoic as well as its paleogeographical and climatic constraints. The family Melanopsidae evolved about 90 Ma ago in the late Turonian from brackish cerithioidean ancestors. Cretaceous and Paleogene species occur in marginal Freshwater marine to brackish environments along the shores of the Tethys and Paratethys seas. The extant clades of Brackish-water likely derive from the evolution of freshwater Melanopsis on the Balkan Peninsula back in the late Climate early Miocene. Up to the Pliocene, freshwater species spread toward southwestern and southeastern Gastropoda and successively replaced brackish-water representatives, paralleling a general decline of latter systems during the late Cenozoic. The southwards expansion of Melanopsis and its simultaneous retreat from northern latitudes resulted in the disjunct distribution pattern observed today. The Holandriana first appeared in northern Italy in the late early Miocene. The genera Microcolpia and both first occurred in the late Miocene and likely derive from brackish-water Melanopsis species native to peri-Paratethyan lakes. The present-day biogeographic isolation of the three latter genera and Melanopsis roots in the climatic deterioration and the disappearance of major lake systems in southeastern Europe. While ther- mophilous Melanopsis retreated to the warm, dry climates of the Mediterranean and Middle East, Holandriana, Microcolpia and Esperiana adapted to the seasonal, cold-temperate climate of southeastern and eastern Europe and some species became restricted to thermal springs. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction...... 125 2. Methods...... 125 2.1. Dataset...... 125 2.2. Climateandaltitudedata...... 126 3. Results...... 126 3.1. Melanopsid(paleo-)biogeographyandpaleobiodiversity...... 126 3.1.1. Cretaceous...... 126 3.1.2. Paleocene...... 127 3.1.3. Eocene...... 128 3.1.4. Oligocene...... 129 3.1.5. EarlyMiocene...... 129 3.1.6. MiddleMiocene...... 129 3.1.7. LateMiocene...... 129

⁎ Corresponding author. E-mail address: [email protected] (T.A. Neubauer).

http://dx.doi.org/10.1016/j.palaeo.2015.12.017 0031-0182/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 125

3.1.8. Pliocene...... 129 3.1.9. Pleistocene...... 130 3.1.10. Presentday...... 130 3.2. Climaticandphysiographicvariables...... 130 4. Discussion...... 131 4.1. Melanopsid evolution and dispersal — thewaytowardfreshwater...... 131 4.2. Historical biogeography of Melanopsis ...... 135 4.3. Notes on the origin of Holandriana,EsperianaandMicrocolpia...... 136 4.4. Climatechangetriggeredbiogeographicisolation...... 137 4.5. Conservationissues...... 137 5. Conclusion...... 137 Acknowledgements...... 137 References...... 137

1. Introduction Pacific islands claimed to belong to the Melanopsidae (e.g., Bănărescu, 1990; Clark and Moore, 2013; Glaubrecht, 1996) are not considered Today, the family Melanopsidae Adams and Adams, 1854 in the present study. Our aims are (1) the reconstruction of (Caenogastropoda: Cerithioidea) forms a moderately diverse group paleobiogeographic patterns from the Cretaceous to present-day, with – depending on the taxonomic concept – up to 50 species (2) revealing the origin and biogeographic history of the recent genera (Strong et al., 2008, 2011), which are distributed over southern to and the disjunct distribution pattern of Melanopsis in relation to eastern Europe, northern , the Middle East, New Zealand and Europe's paleogeographic development, and (3) linking contemporary some south Pacific islands (Bănărescu, 1990). The group's fossil record climate to melanopsid occurrence data to assess factors constraining is excellent, comprising several hundreds of species and subspecies, their dispersal. We do not aim for systematic or taxonomic revisions and dates back to the Cretaceous (Bandel, 2000). A considerable degree and do not deal with the problems concerning morphological varieties of its diversity is owed to the extraordinary morphological variability versus biological species. Addressing such issues, albeit indeed of im- the family is famous for, which has led to an inflation of names for ex- portance, is beyond our possibilities since we mostly deal with fossil tant and fossil forms that hardly represent biological entities (Altaba, species that are always based on a morphological species concept. Be- 1998; Glaubrecht, 2011). Nevertheless, the arresting morphological yond that, these issues do not affect the main goals of the paper. spectrum, regarding developments of size, shape and sculpture, made the group a favorable target for research over the past 200 years 2. Methods and attracted taxonomists and ecologists as well as evolutionary and molecular biologists. 2.1. Dataset Among the many works dealing with Melanopsidae, the pivotal work of Glaubrecht (1996) contributed most to our understanding of The majority of present-day distribution data as well as all fossil ob- that group, providing comprehensive insights into morphology and servations have been acquired by in-depth literature research in the anatomy, ontogenetic development, ecology and reproduction, evolu- course of the FreshGEN project (Neubauer et al., 2014e). This yielded a tionary history, biogeography as well as an overview of the fossil record. dataset comprising 3784 melanopsid records deriving from 349 publi- Moreover, a series of works have dealt with the enormous morpholog- cations (Table S1). The stratigraphic age of the deposits providing fossil ical plasticity of fossil and extant representatives and discussed the data were carefully checked and occasionally revised, in order to avoid a potential underlying evolutionary dynamics (e.g., Bandel, 2000; potential temporal bias (e.g., Georgopoulou et al., 2015; Neubauer et al., Bandel et al., 2007; Elkarmi and Ismail, 2006; Geary, 1990, 1992; 2015b). The and systematics of all taxa were updated accord- Geary et al., 2002, 2012; Heller and Sivan, 2002a; Heller et al., 1999, ing to latest published concepts, in order to minimize a bias from out- 2005; Neubauer et al., 2013a, 2014d; Papp, 1955). Beyond that, there dated genus classifications and misidentifications (see, e.g., Neubauer are many other studies providing details on morphology, ontogeny, et al., 2014c, 2014e). Moreover, we considered the taxonomic history ecology and reproduction (e.g., Afzelius et al., 1989; Bilgin, 1973; of taxa and faunas involved and amended faunal lists following Glaubrecht, 1993; Heller and Abotbol, 1997; Hodgson and Heller, revisions of earlier works. 2000; Iljina and Frolov, 2010; Mouahid et al., 1996), as well as a For extant occurrences, the dataset was supplemented by records series of species catalogues on fossil and/or recent Melanopsidae from the comprehensive GBIF database and Glaubrecht (1996). Data (e.g., Azpeitia Moros, 1929; Pallary, 1924, 1926; Pantanelli, 1886a; from GBIF were thoroughly examined for errors concerning geographic Wenz, 1929). Only the molecular phylogeny of the Melanopsidae position. Records with geospatial issues were excluded and those is still poorly resolved as previous phylogenetic studies were based with inaccurate coordinates were amended. Moreover, GBIF records on few specimens and species (Lydeard et al., 2002; Smoleń and are taxonomically highly inconsistent; only records with clear identifi- Falniowski, 2009; Strong et al., 2011 and discussion therein). cation and undoubted generic attribution were included. 335 records The present-day disjunct biogeographic pattern of the genus remained after data streamlining (Table S2). For regions where no Melanopsis has led to a series of investigations on the historical biogeog- occurrence data were available in our or the GBIF database, we added raphy of the entire family (Glaubrecht, 1993, 1996), selected genera data from Glaubrecht (1996), who provided comprehensive maps of (Altaba, 1998) or geographic regions (Heller, 2007). Unfortunately, all today's Melanopsis distribution. The maps cover the regions of southern of these authors based their considerations on a series of outdated strat- and southwestern Spain, northeastern Africa (Morocco, Algeria and igraphic and tectonic schemes and misinterpretations of the fossil Tunisia) and the Middle East (northeastern Egypt, Iran, Iraq, Israel, record. Similarly, little is known about the paleobiogeography and Jordan, Lebanon, Palestine, Syria, and southeastern Turkey). Unfortu- paleobiodiversity of fossil representatives, as well as the geographic nately, Glaubrecht (1996) did not provide a list with localities. origin of extant genera and the family as a whole. Therefore, we georeferenced his maps as precise as possible based on This paper presents the most detailed analysis of occurrence data on the indicated country borders, shorelines and rivers using ESRI ArcGIS European Melanopsidae so far. Species from New Zealand and south 10.0. Points were matched with existing water bodies where possible. 126 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Judging from the size of the points given in the maps, inaccuracy may in- (BIO 13), precipitation of driest month (BIO 14), as well as altitude, volve up to c. 20 km, and for western Africa, where no detailed maps each with a resolution of 30″ (corresponding to c. 0.5–1 km grid cell exist, up to c. 50 km. Given the geographic scale of the study, such an in- length for the chosen data frame). Air temperature indirectly constrains accuracy does not produce a major bias of overall distribution patterns. gastropod dispersal by affecting water temperature and thus their sur- A bias of the inferences on climate preferences is unlikely as well, as vival as well as their metabolic and reproductive activities (e.g., Costil, inaccuracy mostly affects regions with permanently hot climates. 1994, 1997; Matsukura et al., 2009). Precipitation influences diverse Not all of the 32 extant European Melanopsis species listed by the chemical and physical properties of the water, such as the volume of IUCN Red List, comprising many rare species, were covered by our water discharged by rivers affecting water energy accordingly, pH- data. Because of their high morphological plasticity and convergence value and ion concentration, as well as submerged vegetation cover of shell characters, Melanopsis species are hard to distinguish. Moreover, (Giovanelli et al., 2005; Ndifon and Ukoli, 1989). Altitude was included a plethora of species names is available, few of which represent as well because it indirectly affects precipitation and temperature. Only biological units. Only molecular systematics (Glaubrecht, 1993, 1996) one species per genus per locality was included for climate inferences, in or high-detail conchometric studies (Heller et al., 2005)havebeencon- order to avoid a bias from duplicated records caused by misidentifica- sidered to allow reliable separation of Melanopsis species. Unfortunate- tion or misspelling (Table S3). Climate, altitude and occurrence data ly, taxonomy and systematics among extant Melanopsis clades are still were linked in ArcGIS with the tool "Extract Multi Values to Points" far from being settled. To be consistent with current diversity assess- using bilinear interpolation of surrounding grid cells, which allows ment, we adopted the species number provided by the IUCN for correcting for georeferencing issues. Only for a single locality, no such diversity reconstruction in Fig. 1. link could be established, as it lies close to the shoreline and is beyond For matters of illustration, the maps provided in Figs. 2–4 were the edges of the climate grid. cropped to the extent of the distribution data while retaining the Normality of each inferred climate variable and altitude was tested same scale across all images. For comparison of all time intervals with with the Shapiro–Wilk test in R 3.1.3 (R Core Team, 2015). Since we equal regions of interest, see Fig. S1. The underlying digital elevation did not assume normality for all parameters, we compared the variables model derives from the WorldClim database (http://www.worldclim. across genera applying Tukey and Kramer (Nemenyi) post-hoc tests org; Hijmans et al., 2005). For diversity reconstructions, stratigraphic with Tukey-distribution approximation for independent samples using subdivisions were chosen as detailed as possible to limit diversity infla- the R package PMCMR (Pohlert, 2015). That non-parametric test is tion because of time-averaging; a more detailed break-down, however, superior to ANOVA for cases where assumption of normal distribution was not possible given the usually too coarse stratigraphic resolution of is severely violated. It is an extension of the Kruskal–Wallis test the deposits including the freshwater gastropods. for pairwise multiple comparisons and allows unequal sample sizes (Pohlert, 2015).

2.2. Climate and altitude data 3. Results

In order to evaluate whether present-day melanopsid distribution is 3.1. Melanopsid (paleo-)biogeography and paleobiodiversity affected by climate conditions, we gathered bioclimatic data from the WorldClim database. Parameters used are annual mean temperature Including IUCN records not covered by our dataset, the fossil and re- (BIO 1), maximum temperature of warmest month (BIO 5), minimum cent Melanopsidae comprise a total diversity of 487 species-group taxa, temperature of coldest month (BIO 6), temperature annual range of which 417 are currently treated as distinct species-level taxa. The (BIO 7), annual precipitation (BIO 12), precipitation of wettest month taxa are classified within nine genera, i.e., Campylostylus Sandberger, 1870, Esperiana Bourguignat, 1877 (objective senior synonym of Bourguignat, 1884), Holandriana Bourguignat, 1884 (objective senior 180 synonym of Amphimelania Fischer et al., 1885), Megalonoda Kollmann, 160 1984, Melanopsis Férussac in Férussac and Férussac, 1807, Microcolpia Bourguignat, 1884, Pseudofagotia Anistratenko, 1993, Turripontica 140 Anistratenko, 1993, and three subgenera, i.e., Melanopsis (Duabiana) 120 Staгobogatov and Anistratenko in Anistratenko, 1993, Melanopsis (Melanosteira) Oppenheim, 1893, Esperiana (Sasykiana)Gozhikin 100 Gozhik and Datsenko, 2007. Although the present work does not offer taxonomic or systematic conclusions it should be noted that generic 80 classifications and genus diversity are far from being settled. Many re- 60 cords require detailed reinvestigations to revise generic attributions, clarify genus first occurrences and fill apparent ghost ranges. Unfortu- 40 nately, no modern systematic concept exists for fossil Melanopsidae,

number of species group taxa 20 despite a great wealth of available names. Among the many genera, FAD ~90 Ma subgenera and sections proposed for the Melanopsidae in the past 0 (see, e.g., Bourguignat, 1884; Cossmann, 1909; Sandberger, 1870– 100 90 80 70 60 50 40 30 20 10 0 1875), few are currently accepted (e.g., Glaubrecht, 1996; Neubauer Paleoc. Eocene Oligoc. Miocene P Q et al., 2014a; Welter-Schultes, 2012).

Fig. 1. Number of melanopsid taxa per time interval. The solid line indicates all described 3.1.1. Cretaceous species-group names (incl. subspecies); the dashed line represents only species-level fi taxa; the dotted line gives the number of species for the genus Melanopsis.Graybars The rst Melanopsidae in Earth history have been reported for reflect the chosen temporal subdivisions, which are intended to limit diversity inflation late Cretaceous strata of Austria (Kollmann, 1984), dated to approxi- because of time-averaging; a more detailed break-down was not possible given mately 90 Ma (Figs. 1–12, Table ; late Turonian; regional stratigraphy the usually coarse stratigraphic resolution of the localities included. Note that after Summesberger and Kennedy, 1996, calibrated to present Geologi- species diversity might be severely overestimated given the extreme morphological cal Time Scale after Gradstein et al., 2012). Until the late Santonian to plasticity of Melanopsis and the associated inflation of names in the past (Glaubrecht, 1996, 2011; Van Damme et al., 2010). Abbreviations: FAD — first appearance date; early Campanian they had spread over central Europe and were found P — Pliocene; Q — Quaternary. in northern Germany (Mertin, 1939), Hungary (Bandel and Riedel, T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 127

Table 1 Numbers of species-group taxa (including subspecies), species and Melanopsis species for predefined time intervals (for details on definition see Methods). For a graphical display see Fig. 1.

Time interval Base age [Ma] Top age [Ma] Species-group taxa Species Melanopsis species

Late Cretaceous (Cenomanian–Coniacian) 100.5 86.3 5 5 3 Late Cretaceous (Santonian–) 86.3 66 15 14 8 Paleocene 66 56 8 8 8 Eocene (Ypresian–Lutetian) 56 41.2 15 15 15 Eocene (Bartonian–Priabonian) 41.2 33.9 11 11 11 Oligocene 33.9 23.03 19 18 18 Early Miocene (Aquitanian–Burdigalian) 23.03 15.97 25 25 25 Middle Miocene (Langhian–Serravallian) 15.97 11.63 60 55 51 Late Miocene (Tortonian–Messinian) 11.63 5.333 188 154 145 Pliocene 5.333 2.58 126 109 91 Pleistocene 2.58 0.0117 97 80 71 Present-day 0.0117 0 36 36 31

1994) and France (Oppenheim, 1892). By the end of the Cretaceous of a marine or brackish-water cerithioid. Similarly, Bandel and Riedel (Maastrichtian), they had also reached northeastern Spain (Bataller, (1994) attributed a species from the late Santonian to early Campanian 1937, 1949; Depape and Bataller, 1931; Dominici and Kowalke, 2014; of Ajka in Hungary to the genus Esperiana, which otherwise is not Vidal, 1874). Morphologically, the early melanopsids seem to be quite known prior to the late Miocene. Therefore, a close relationship of the diverse already, ranging from slender and smooth shapes to bulky and Cretaceous species with Esperiana seems doubtful, despite morphologi- highly sculptured ones. Some of the slender morphologies already cal similarities. Alleged records of Melanopsidae from early Cretaceous closely resemble species known from the Miocene and present-day deposits, such as those mentioned by Delpey (1940) and Stewart et al. (e.g., Bandel and Riedel, 1994; Mertin, 1939). Nevertheless, a careful (1991), are highly uncertain and require detailed examination. taxonomic revision of these early records is necessary in order to assure their systematic position within the Melanopsidae or even the genus 3.1.2. Paleocene Melanopsis as claimed by several authors (e.g., Bandel and Riedel, Comparable to the Cretaceous, few localities and melanopsid species 1994; Cossmann, 1888; Mertin, 1939; Stoliczka, 1860; Vidal, 1974). have been documented for the Paleocene while approximately main- In contrast to Melanopsis sensu stricto, the genera Campylostylus, taining the former geographic range. Records come from Austria characterized by a simply thickened , curved columella and (Penecke, 1885), Belgium (Kowalke, 2002), Bosnia and Herzegovina sharp fasciole, and large, bulky and sculptured Megalonoda are restrict- (Katzer, 1903), France (e.g., Cossmann, 1888; Deshayes, 1862; Glibert, ed to the late Cretaceous. The record of “Melanopsis sp.” by Kollmann 1962; Melleville, 1843), Hungary (Oppenheim, 1892), Poland (Krach, (1979) from the Losenstein Formation in Upper Austria, dated to the 1963), Slovenia (Stache, 1889) and Spain (Vidal, 1893)(Fig. 2). At that late Aptian to early Cenomanian (Wagreich, 2001) and predating the time, they first occurred in the rich fossil assemblages of the Paris abovementioned late Turonian origin, is based on a misidentification Basin (e.g., Deshayes, 1862).

Fig. 2. Distribution of Melanopsidae during the Cretaceous to the middle Miocene. Question marks indicate doubtful generic classifications. The symbols marked with an arrow indicate Serravallian records in the Karaman Basin which did not fit in the chosen frame; see Fig. S1 for their actual position. 128 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Fig. 3. Distribution of Melanopsidae in the late Miocene and Pliocene. Geographic scale is the same as in Fig. 2. The asterisk marks a sample with questionable geographic position.

3.1.3. Eocene 1822), they are known from few spots in Belgium (Kaasschieter, 1961; Despite the long geological duration of c. 22 myr, few regions with Wenz, 1929), Germany (Benecke and Cohen, 1881), Croatia (Kühn, Melanopsidae are known for the Eocene. Apart from the many findings 1946), Hungary (Kecskeméti-Körmedy, 1980, 1990; Szőts, 1953), in the Paris and London basins and southern France (e.g., Cossmann, northern Italy (Oppenheim, 1895), Sardinia (Esu and Kotsakis, 1983), 1888, 1909; Deshayes, 1862; Doncieux, 1908; Forbes, 1856; Sowerby, Spain (Cossmann, 1898, 1906; Dominici and Kowalke, 2014)and

Fig. 4. Distribution of Melanopsidae in the Pleistocene and today. Geographic scale is the same as in Figs. 2 and 3. Question marks indicate doubtful generic classifications. T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 129

Switzerland (Locard, 1893)(Fig. 2). In the east, they extended their Pyrenean region for several previous intervals, but not before the middle geographic range to the Southern Carpathians in Romania (Popescu- Miocene they occurred in central Spain (Royo Gómez, 1922). Voiteşti, 1910). During the early middle Miocene, Holandriana occurred in the Vienna Basin, Romania and Serbia (Burgerstein, 1877; Hörnes, 1851– 3.1.4. Oligocene 1856; Živković,1893) and expanded as far as Turkey in the late A geographic expansion happened during the early Oligocene, with Serravallian (Landau et al., 2013). a single species, i.e., Melanopsis hantkeni Hofmann, 1870, extending to Greece and western Turkey (Fig. 2; Harzhauser, 2004; Islamoğlu, 2008 3.1.7. Late Miocene (misidentified as M. impressa Krauss, 1852); Harzhauser et al., Melanopsid diversity culminated in the late Miocene, reflecting unpublished data). Beyond that, Melanopsidae appeared for the first major geographic expansions (Figs.1,3, Table 1). Melanopsids extended time in the Aquitaine and lower Rhône basins in southern France far into the east and appeared at the Crimean Peninsula, in Georgia and (e.g., d'Orbigny, 1852; Fontannes, 1884; Förster, 1892; Grateloup, Azerbaijan (Andrusov, 1905, 1909; Davitashvili, 1931; Nevesskaya, 1840; Noulet, 1854), in the Alpine Foreland Basin in Austria, southern 1990). They expanded their range on the Iberian Peninsula, occurred Germany and Switzerland (e.g., Gümbel, 1875), along the Upper there in several major lake basins and extended far to the south Rhine Graben, Mainz and Neuwied basins in western Germany (Azpeitia Moros, 1929; Bandel et al., 2000; Royo Gómez, 1922). They be- (e.g., Kadolsky, 1975; Sandberger, 1873), as well as several Paratethyan came abundant in the Rhône and Bresse graben systems (e.g., Fontannes, (Egerian) localities in Hungary, Romania, Slovenia and Croatia (e.g., Báldi, 1881; Locard, 1883; Meon, 1963), in northern, central and southern Italy 1973; Báldi and Seneš, 1975). They were still present in the London Basin (e.g., Esu and Girotti, 1989; Pantanelli, 1879, 1886a, 1886b; Sacco, 1889), in the Rupelian (e.g., Bembridge beds; Wenz, 1929), while they have not the many newly evolved lakes in the Aegean-Anatolian region been documented from the Paris Basin. In the west, the southernmost (e.g., Erünal-Erentöz, 1958; Kühn, 1951, 1963; Mazzini et al., 2013; record comes from the Rupelian of Mallorca (Esu, 1984), constituting Papp, 1979; Rust, 1997; Schütt, 1976, 1988; Syrides, 1998; Taner, the only record of Melanopsidae from that island. 1974; Willmann, 1980, 1981, 1982) and Kosovo (Atanacković, 1959; Pavlović, 1903, 1932, 1935), and first appeared on the African continent, 3.1.5. Early Miocene in northern Algeria (Pallary, 1901). During the late Messinian, they Not before the early Miocene, diversity started to rise considerably widely occurred in the Lago-mare deposits throughout the western (Fig. 1), whereas the melanopsids' geographic range diminished Mediterranean (Harzhauser et al., 2015). (Fig. 2). This retreat mainly concerns the disappearance of Melanopsidae Although many of these regions form centers of melanopsid diversi- in the United Kingdom, the Rhône Basin, Italy and Turkey. One of the ty in the late Miocene, they all were outmatched by the incredibly di- main radiation centers of Melanopsidae was the Dinaride Lake System, verse, brackish and long-lived Lake Pannon, comprising 112 species which initiated during the late early Miocene (De Leeuw et al., 2012; and subspecies of Melanopsidae (e.g., Bandel, 2000; Brusina, 1902; Krstić et al., 2003; Neubauer et al., 2015a, 2015c). As documented by sta- Fischer, 1993, 1996a, 1996b; Fischer and Reischütz, 1995; Fordinál, ble isotope data, it was a pure freshwater system without any brackish 1993; Fuchs, 1870a, 1870b; Geary, 1990; Geary et al., 1989, 2002, water influx (Harzhauser et al., 2012). Within that system, the first 2012; Gillet and Marinescu, 1971; Handmann, 1882, 1887; Harzhauser freshwater Melanopsidae in Earth history have been documented from et al., 2002; Hörnes, 1851–1856; Jekelius, 1944; Marinescu, 1973; the deposits of the Pag Basin (Bulić and Jurišić-Polšak, 2009), which Mikuž, 2005; Neumayr, 1876; Neubauer et al., 2013a; Papp, 1953; were dated to 17.1–16.7 Ma (Jiménez-Moreno et al., 2009). Beyond Pavlović, 1927; Strausz, 1941), most of which are endemic to the lake. that, Melanopsidae were common in the Aquitaine Basin in France Contrasting their expansion to the south and east, Melanopsidae (e.g., Cossmann and Peyrot, 1918; Degrange-Touzin, 1892; d'Orbigny, retreated from the north; by the onset of the late Miocene they had 1852); the Upper Brackish Water Molasse (Dunker, 1848; Krauss, disappeared from Germany and Poland. The genus Holandriana re- 1852; Schlickum, 1970a, 1970b), the Bavarian Rzehakia beds occurred in northern Italy but retreated from southern Turkey. Finally, (Schlickum, 1964) and the Mainz and Hanau basins in Germany the genera Microcolpia and Esperiana first appeared in the late Miocene. (e.g., Sandberger, 1859; Thomä, 1845); and the Moravian Rzehakia Specimens closely resembling extant Microcolpia daudebartii (Prevost, beds in Czech Republic (Čtyroký, 1972; Rzehak, 1883). 1821) have been reported from numerous early late Miocene localities The genus Holandriana first appeared during the late Burdigalian in in Austria, Hungary, Croatia, Serbia, Romania, Greece, Ukraine and marine strata of the Torino hills in northern Italy (Sacco, 1895; Wenz, Azerbaijan (e.g., Andrusov, 1909; Gozhik and Datsenko, 2007; Papp 1929). Note that some earlier authors (e.g., Wenz, 1929) erroneously at- et al., 1985; Rust, 1997; Stevanović et al., 1990; Wenz, 1929). Its oldest tributed these strata to the Tortonian (see, e.g., Zunino and Pavia, 2009). records come from the early to middle Sarmatian of the Eastern Paratethys of Romania and early phases of the Lake Pannon in Austria 3.1.6. Middle Miocene and Serbia. Esperiana first appeared in the Maeotian (8.6–6.04 Ma; Despite only a slight geographic expansion, species diversity mark- Stoica et al., 2013) on the Crimean Peninsula (Andrusov, 1905). edly rose in the middle Miocene (Fig. 1). This increase is mainly a result of intralacustrine radiations within lakes of the Dinaride Lake System 3.1.8. Pliocene (Brusina, 1874, 1897; Neumayr, 1869; Neubauer et al., 2011, 2013b, Diversity declined in the Pliocene, paralleling the extinction of Lake 2013c, 2014b, 2015d; Olujić,1999) and nearby systems in Serbia, Koso- Pannon during the earliest Pliocene (Fig. 1; Magyar et al., 1999, 2013; vo and Macedonia (Brusina, 1902; Burgerstein, 1877; Pavlović, 1903, Neubauer et al., 2015e). The follow-up freshwater lacustrine system 1931; Živković, 1893), accounting for 37 of the 60 species known for in the southern Pannonian Basin, Lake Slavonia, was likewise character- that interval (Fig. 2). Melanopsidae are abundant elements in many ized by a highly diverse fauna, amongst others dominated by localities of the Upper Freshwater Molasse in southern Germany, Melanopsidae (Fig. 3; Brusina, 1897, 1902; Mandic et al., 2015; Switzerland and western Austria (e.g., Locard, 1893; Rollier, 1910; Neumayr and Paul, 1875; Penecke, 1884). A system comparably rich Sandberger, 1870–1875; Wenz, 1924, 1933, 1935), in peri-Paratethyan in melanopsids was the brackish- to freshwater Lake Dacia in southern freshwater systems (e.g., Halaváts, 1914; Hörnes, 1851–1856; Romania and adjacent regions in Moldova, Ukraine and Bulgaria Kókay, 2006; Stepanović, 1938) and around the Proto-Mediterranean (e.g., Cobălcescu, 1883; Papaianopol and Marinescu, 2003; Porumbaru, (Landau et al., 2013). They extended eastwards beyond the Carpathians 1881; Stefanescu, 1896; Wenz, 1942). In the western Mediterranean, and occurred in Poland, Moldova and Ukraine (Bałuk, 2006; Łomnicki, Melanopsidae still occurred in many of the former regions but 1886; Sinzov, 1883). During that time, Melanopsidae also started to experienced slight declines, such as in Spain (Almera and Bofill y Poch, conquer the Iberian Peninsula. They have been reported from the 1898; Jodot, 1958; Robles, 1975), France (Delafond and Depéret, 1893; 130 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Locard, 1883) and Italy (Esu and Girotti, 1975, 1991; Petronio et al., 3.1.10. Present day 2003). In the eastern Mediterranean, in contrast, radiation events on Melanopsid distribution today largely resembles the Pleistocene Kos and Rhodes islands maintained a high level of diversity (Bukowski, pattern. The genus Melanopsis is today fully restricted to countries 1893, 1896; Magrograssi, 1928; Neumayr, 1880; Willmann, 1981, around the Mediterranean and Middle East, occurring between 26.0° 1985). In addition, several species of melanopsids evolved in the and 43.1° northern latitude (Fig. 4). It occurs in southern and eastern fluvial system entering the Rioni Bay in Georgia (Anistratenko, 1993; Spain and large parts of Morocco, Algeria and Tunisia in the west Davitashvili and Krestovnikov, 1931; Seninski, 1905). Their enigmatic (e.g., Glaubrecht, 1996; Pallary, 1939; Pujante and Gallardo, 1990); in morphologies led Anistratenko (1993) to the introduction of two new few thermal springs in Tuscany, Italy (Altaba, 1998; Cianfanelli, 2010); genera – Pseudofagotia, showing elongate shells, thickened apertures in mainland Greece and numerous Aegean islands, around the coasts and a reduced anterior canal, and monospecific Turripontica, with ex- and in few inland localities of Turkey and in Cyprus (e.g., Çabuk et al., traordinarily slender elongate, multi-whorled shells. Both genera are 2004; Frank, 1997; Glaubrecht, 1996; OdabaşiandArslan,2015;Paget, known only from the Duab beds at the Mok'vi monastery in Georgia, 1976; Schütt, 1965; Schütt and Bilgin, 1974); and the Middle East, which have been correlated to the Kimmerian and early Pliocene, respec- comprising numerous localities in Iran, Iraq, Israel, Jordan, Lebanon, tively (Anistratenko, 1993; Iljina and Frolov, 2010). Palestine and Syria, as well as single spots in northeastern Egypt and Moreover, Melanopsis apparently first occurred in the Middle East eastern Saudi Arabia (e.g., Glaubrecht, 1996; Heller et al., 1999, 2002; during the late Pliocene (Blanckenhorn and Oppenheim, 1927); the Heller and Sivan, 2000). stratigraphic age of the respective deposits is still not ascertained and The biogeographic separation between Melanopsis and other we cannot exclude an early Pleistocene age. The erratic occurrence of melanopsid genera is even clearer than for the Pleistocene, with only a asingleMelanopsis in northwestern Germany (Schlickum and Strauch, slight overlap in northeastern Turkey (Fig. 4). The genus Microcolpia 1979) is the northernmost record at that time and suggests a rather occurs in eastern Austria, southern Slovakia, Hungary, Slovenia, spotty distribution north of 47° northern latitude. northern Italy, Croatia, Serbia, northern Bulgaria, Romania, Moldova, Microcolpia and Esperiana maintained their late Miocene distribution Ukraine and northwestern Turkey and ranges between 40.7° and 51.3° patterns, while Holandriana became restricted to southeastern Europe northern latitude (e.g., Balashov et al., 2013; Beran, 2013; Kolev et al., and Greece, largely corresponding to its present distribution. 2015; Smoleń and Falniowski, 2009; Stel'mashchuk et al., 2012; Welter-Schultes, 2012). Esperiana occurs almost in the same countries 3.1.9. Pleistocene (Hungary, Slovenia, Croatia, Serbia, northern Bulgaria, Romania, With the onset of the Pleistocene, a clear biogeographic differentia- Moldova, Ukraine and northwestern Turkey) and covers a similar latitu- tion between the genus Melanopsis and other melanopsid genera dinal range of 40.7–50.6° (e.g., Balashov et al., 2013; Beran, 2013; Kolev emerged (Fig. 4), while diversity continued to decline (Fig. 1). While et al., 2015; Sîrbu et al., 2010; Tytar and Makarova, 2015; species of Melanopsis were largely confined to the Mediterranean Welter-Schultes, 2012). The distribution of the genus Holandriana is Realm and the Middle East (e.g., Andrusov, 1923; Azpeitia Moros, slightly more confined, comprising eastern Austria, Hungary, Slovenia, 1929; Blanckenhorn, 1901; Blanckenhorn and Oppenheim, 1927; Esu Croatia, Bosnia and Herzegovina, Serbia, Montenegro, Albania, and Girotti, 1975, 2015a, 2015b; Frogley and Preece, 2004; Grossowicz Macedonia and southern Romania; it ranges between 41.0° and 48.2° et al., 2003; Heller and Sivan, 2001, 2002a, 2002b; Jodot, 1958; Papp, northern latitude (e.g., Beran, 2013; Novaković et al., 2013; Sîrbu 1955; Willmann, 1981), Microcolpia and Esperiana were widely distrib- et al., 2010; Vranković et al., 2012; Welter-Schultes, 2012). uted in central and eastern Europe. Those genera were common on the Because of morphological convergence, present diversity is difficult fluvial plains of the Pannonian and eastern Dacian basins (e.g., Gozhik to estimate and depends on the investigator. The most current estimates and Datsenko, 2007; Jaskó and Krolopp, 1991; Krolopp, 1977, 1981; are from Strong et al. (2008), who give a range of 25–50 species, and the Nenadić et al., 2009; Radulescu et al., 2000), extending eastwards to IUCN Red List, including 36 species for Europe. southwestern Russia (Tesakov et al., 2010)andGeorgia(Wenz, 1929). Their northernmost occurrences have been reported from the 3.2. Climatic and physiographic variables Netherlands (Meijer and Preece, 1996), central Germany (Meijer and Preece, 1996; Zeissler, 1968), northern Poland and Belarus (San'ko, The genus Melanopsis occurs today in a great variety of climate 2007); in the south, they extended to central Italy (Wenz, 1929). regimes and altitudes. The extreme temperature values inferred for With the onset of the middle Pleistocene, Microcolpia and Esperiana dis- our data range between −7.0 °C and 46.7 °C (Fig. 5, Table 2), with opti- appeared from the Netherlands, Germany, Poland and Italy and by the mum conditions between a minimum of 4.4 °C in the coldest month and end of the middle Pleistocene also from Belarus. a maximum of 31.4 °C in the warmest month, a median annual mean During the late Pleistocene, two subspecies of Microcolpia became temperature of 17.2 °C and an annual temperature range of 27.3 °C. adapted to thermal springs. Microcolpia daudebartii doboi (Schréter, Especially in the Saharan and Arabian deserts as well as on the Iranian 1975) has been reported from the travertines of Eger Castle in Plateau, temperature ranges exceed this value by far and populations Hungary and was discussed as hot-water sister taxon of “Fagotia may experience annual temperature ranges of up to 42.4 °C. Quite the acicularis” [now Microcolpia daudebartii]byKrolopp (1985) and Fűköh contrary is true for regions close to the sea, where the annual range (2012).Likewise,Microcolpia parreyssii (Philippi, 1847) appeared dur- can be as low as 12.1 °C (western Africa). Annual precipitation in ing the late Pleistocene in the area of the Lake Pețea in Romania fed by regions with Melanopsis ranges between 6 mm and 1708 mm, with a thermal spring (Brusina, 1903; Kormos, 1903, 1905; Paucă, 1937; median value of 448 mm (Fig. 6, Table 2). Note, however, that only 15 Sümegi et al., 2012a, 2012b). Because of its morphological similarity to localities record precipitations higher than 1000 mm a year and all of extant Melanopsis costata (Olivier, 1804), that species, which still occurs them lie close to the sea. Precipitation of the wettest month has a in and is endemic to Lake Pețea today, has long been considered an er- range of 2–247 mm. Precipitation of the driest month in turn ranges be- ratic occurrence of Melanopsis, but latest phylogenetic and morpholog- tween 0 mm and 80 mm, with a median value of 3 mm; the maximum ical analyses evidenced its ancestry from smooth Microcolpia acicularis value refers to a single locality at the Black Sea shore in northeastern [now M. daudebartii](Neubauer et al., 2014d; Smoleń and Falniowski, Turkey, while all other localities attain not more than 42 mm. The ma- 2009). jority of Melanopsis species are found between sea level and a few hun- The genus Holandriana has been recorded for the Pleistocene of the dred meters (median: 271 m), but they also occur close to Earth's lowest Pannonian Basin (Krolopp, 1977; Nenadić et al., 2009), northern region, i.e., the shores of the Dead Sea (minimum: −277 m), as well as Greece (Syrides and Koliadimou, 1994) and Georgia (Mikhaylovskiy, in the montane areas of the Zagros and Elburs Mts. in Iran (maximum: 1903). 1838 m) (Fig. 6, Table 2). Note that extreme values inferred with ArcGIS T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 131

Fig. 5. Present-day distribution of Melanopsis (large frames) and Esperiana, Microcolpia and Holandriana (small frames) in relation to selected temperature variables. All frames have the same geographic scale. Symbols for the genera are the same as in Fig. 3. Temperature values are given in °C. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) might not reflect precise boundary conditions as the values rely on the 4. Discussion accuracy of the georeferencing of the localities. No climate variable or altitude showed normal distribution ex- 4.1. Melanopsid evolution and dispersal — the way toward freshwater cept for temperature annual range and precipitation of the wettest month for Esperiana (Table S4), which is why we performed a The Melanopsidae originated in the late Cretaceous from brackish- Tukey and Kramer post-hoc test to compare variables across water cerithioidean ancestors (Bandel, 2000; Glaubrecht, 1996). melanopsid genera. The genera Microcolpia, Esperiana and Given the deposits they were found in and their accompanying fauna Holandriana all show significant differences from Melanopsis across (e.g., Bandel and Riedel, 1994; Kollmann, 1979, 1984), all early temperature and precipitation variables; only concerning altitude, melanopsids appear to have still inhabited brackish waters. Already at Holandriana did not differ significantly from Melanopsis (p = that time, they covered a great morphological disparity, including a 0.585; Table S5, Fig. 7). None of the variables showed significantly variety of modes of sculpture (e.g., Dominici and Kowalke, 2014; different distributions when comparing Microcolpia, Esperiana and Kollmann, 1984). The presence of sculptured melanopsids (including Holandriana (Table S5, Fig. 7). the genus Melanopsis) already in the Cretaceous markedly predates A major difference between the three genera and Melanopsis is the the late Miocene origin of sculpture as presumed by Glaubrecht (1996). distinctly lower mean annual, minimum and maximum temperatures A major difference to recent Melanopsidae, which are typical but higher temperature annual ranges, reflecting their varied geograph- of freshwater habitats (despite the tolerance to brackish conditions ical distribution (Figs. 5–6). With median values for annual mean of some species; Glaubrecht, 1996), is the mode of ontogenetic develop- temperatures of 11.1 °C (Microcolpia)and11.2°C(Esperiana and ment and the associated limitations for dispersal. Early, brackish-water Holandriana) they lie about 6 °C below the median for Melanopsis melanopsids have been considered oviparous (Glaubrecht, 1996), (Table 2). The median of the temperature annual ranges in turn, ranging while extant representatives are ovoviviparous (Mouahid et al., 1996). from 29.9° to 30.4°, exceed the value for Melanopsis by c. 3 °C. Moreover, The fundamental developmental and ecological differences between annual precipitation, precipitation of the wettest month and precipita- early and modern Melanopsidae explain their varied distributions in tion of the driest month are much higher on average than for Melanopsis Earth history. Throughout the Cretaceous and Paleogene, melanopsid (Table 2). Finally, Microcolpia, Esperiana and Holandriana occur in a species are found in various parts of Europe, which at that time did not markedly narrower altitudinal range than Melanopsis; the median form a uniform continent but a patchy array of islands of different size altitude lies around 104.5 m (Microcolpia), 115 m (Esperiana)and (e.g., Popov et al., 2004; Stampfli and Borel, 2002). Oviparity and a 175 m (Holandriana). brackish-water lifestyle facilitated dispersal via passive drift of 132 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Table 2 Median, minimum and maximum values of the bioclimatic variables, altitude, latitude and longitude inferred for the four different genera. The median was preferred over the mean since few of the variables are normally distributed (see Results) and the median thus better reflects the majority of cases. Abbreviations: AMT — annual mean temperature (BIO1); TWM — maximum temperature of warmest month (BIO5); TCM — minimum temperature of coldest month (BIO6); TAR — temperature annual range (BIO7); AP — annual precipitation (BIO12); PWM — precipitation of wettest month (BIO13); PDM — precipitation of driest month (BIO14).

Genus Parameter AMT [°C] TWM [°C] TCM [°C] TAR [°C] AP [mm] PWM [mm] PDM [mm] Altitude [m] Latitude [°] Longitude [°]

Melanopsis Median 17.2 31.4 4.4 27.3 448 74 3 271 36.8713 −0.246 Minimum 9.6 22.5 −7 12.1 6 2 0 −277 26.0543 −10.4026 Maximum 27 46.7 11.3 42.4 1708 247 80 1838 48.25 57.6182 Microcolpia Median 11.1 27.4 −3.3 30.4 652.5 83 37 104.5 45.385 20.351 Minimum 7.2 24 −8.8 26.2 428 51 24 −1 40.7005 11.7847 Maximum 14.4 29.5 2.3 34 1323 138 82 528 51.2803 32.7916 Esperiana Median 11.2 27.4 −2.5 29.9 739 105 40 115 45.1214 20.9317 Minimum 7.3 23.7 −8.4 26.2 435 51 24 2 40.7005 14.5369 Maximum 14.4 28.7 2.3 33.8 1306 159 83 450 50.6084 32.6147 Holandriana Median 11.2 27.4 −3.25 30.4 712 86 43 175 44.1269 20.3872 Minimum 5.8 19.9 −6.2 26.2 448 54 26 5 41.0312 14.511 Maximum 15.9 31.5 4.3 34.1 1641 227 83 1483 46.8473 25.9447

propagules. In ovoviviparous extant representatives, however, dispersal The first occurrence date of freshwater melanopsids in the fossil re- relies on drift of (sub)adult specimens or active movement cord cannot be proved with certainty, also because well-preserved (Glaubrecht, 1996). Moreover, being restricted to freshwater implies freshwater faunas are infrequent prior to the Miocene. Cretaceous and that geographic expansion requires hydrological connections via rivers Paleogene species are reported solely from marine or brackish-water and lakes. Long-distance dispersal in melanopsids via waterfowl, being sediments, indicating the vicinity to the Tethys and Paratethys seas a common dispersal mode for pulmonates and hydrobiids (Kappes and (e.g., İslamoğlu et al., 2010; Lozouet, 2004; Plint, 1984). By the end of Haase, 2012; van Leeuwen et al., 2012a, 2012b, 2013), is unlikely to the early Miocene, a series of pure freshwater lakes formed on what is allow successful establishment of remote populations given their dioe- called the Dinaride-Anatolian Island (Fig. 8; Jiménez-Moreno et al., cious mode of reproduction (Mouahid et al., 1996). 2008, 2009; Mandic et al., 2009). This so-called Dinaride Lake System

Fig. 6. Present-day distribution of Melanopsis (large frames) and Esperiana, Microcolpia and Holandriana (small frames) in relation to selected climate variables and altitude. All frames have the same geographic scale. Symbols for the genera are the same as in Fig. 3. Note that the altitude scale is not linear. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 133

Fig. 7. Boxplots showing the present-day ranges and medians of bioclimatic variables and altitude per melanopsid genus. Note the considerable differences between Melanopsis and the other genera across all parameters. 134 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Fig. 8. Paleobiogeography of Melanopsis in the early to late Miocene in relation to geodynamic development. Blue areas and circles represent freshwater, green ones brackish-water environments; white circles signal an unknown type of environment. Note that in the Dacian Basin freshwater conditions prevailed only in the northeastern part and only during the late Maeotian (Jipa and Olariu, 2009). Assignments as well as environment outlines are based on the biogeographic scheme of Neubauer et al. (2015a). The palinspastic maps follow Popov et al. (2004, 2006). Abbreviations: DLS — Dinaride Lake System; OSM — Upper Freshwater Molasse (“Obere Süßwassermolasse”); UBWM — Upper Brackish Water Molasse. Localities/basins: 1 — Jazvina; 2 — Sarajevo; 3 — Posušje; 4 — Metohia; 5 — Kosovo; 6 — Skopje; 7 — Katerini; 8 — Thessaloniki; 9 — Strimon; 10 — Xanthi; 11 — Limni; 12 — Athens; 13 — Markopoulo. Asterisks mark Lago-mare assemblages. Unlabeled points refer to the numerous allochthonous occurrences of brackish-water Melanopsis around the shores of the Paratethys Sea (early–middle Miocene) or indicate Lago-mare records (late Miocene). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) persisted into the middle Miocene and was characterized by an enor- (1996) proposed, the evolution of sculpture in the Melanopsidae is mous diversity and high levels of endemism of its mollusk fauna not monophyletic but occurred several times in the late Cenozoic of (Krstić et al., 2003; Mandic et al., 2009; Neubauer et al., 2015a, 2015c). Europe (e.g., Geary, 1992; Geary et al., 2002; Neubauer et al., 2013a, The Dinaride Melanopsis species are especially famous for their extraor- 2014d; Willmann, 1981) and even several times within the Dinaride dinary morphological and sculptural variability, featuring weak to Lake System (e.g., Neubauer et al., 2011, 2013c; Olujić,1999). Many of prominent axial ribs, keels or bulges, as well as spiky nodes to bulbous the Dinaride lakes harbored Melanopsidae already in the late early tubercles (e.g., Neubauer et al., 2013b, 2015d). Unlike Glaubrecht Miocene (Bulić and Jurišić-Polšak, 2009; De Leeuw et al., 2010), and T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 135 soon after they became a dominant part of the faunal compositions in been an isolated case. At least at selected occasions, e.g., in Pliocene fresh- the middle Miocene (Brusina, 1897; Mandic et al., 2009; Neumayr, water lakes Slavonia and Dacia, both of which derive from brackish pre- 1869, 1880; Neubauer et al., 2011, 2013b, 2013c, 2015a, 2015d). At cursors (Jipa and Olariu, 2009; Mandic et al., 2015), the many species of that time, freshwater Melanopsidae were already more abundant and Melanopsidae are likely to have evolved directly from brackish ancestors also appeared on the lower Balkan Peninsula (Brusina, 1902; Pavlović, (Figs.8,9). We assume that a constant decline of salinity in the late stages 1903), in the Upper Freshwater Molasse in southern Germany and of precursors Lake Pannon (late Pannonian = latest Miocene to early Switzerland (Hummel and Wenz, 1924; Wenz, 1929, 1933, 1935), in Pliocene; Neubauer et al., 2015e) and the brackish Dacian Basin the wetlands of Sansan in southern France (Fischer, 2000)andon (late Pontian to early Dacian = early Pliocene; Jipa and Olariu, 2009) Chios island in Greece (Schütt and Besenecker, 1973); in the latest facilitated the adaptation to freshwater conditions. middle to early late Miocene they also reached the Duero Basin in Spain (González Delgado et al., 1986)(Fig. 8). 4.2. Historical biogeography of Melanopsis The early Miocene occurrence of freshwater Melanopsidae consider- ably predates the late Miocene origin presumed by Glaubrecht (1996) The roots of the disjunct pattern of present-day Melanopsis distribu- by over 5 myr. Although we agree that the paleogeographic changes tion were lively discussed by several authors (Altaba, 1998; Glaubrecht, in the Paratethys and Mediterranean regions during the late Miocene 1996; Heller, 2007; Van Damme et al., 2010). Unfortunately, all of these and associated declines in salinity did affect melanopsid evolution – in authors base their considerations on a series of outdated stratigraphic fact, these changes triggered the diversification event in Lake Pannon and tectonic schemes and misinterpretations of the fossil record. In (Fig. 1) – they did not pave the way for freshwater occupation. The the following, we provide an updated reconstruction of the historical claim that the isolation of the Paratethys from the Indian Ocean and sub- biogeography of the three regions of extant distribution of Melanopsis, sequent salinity decrease during the Sarmatian are important factors for i.e., the Maghrebian Province (sensu Van Damme, 1984, comprising melanopsid evolution (Glaubrecht, 1996)isbasedontheoutdatedcon- Spain and northwestern Africa), the Levantine-Oriental Province (see cept of a brackish Sarmatian Sea (Piller and Harzhauser, 2005). Moreover, Heller, 2007) and a geographically restricted region in central Italy. the fossil record indicates that the conquest of freshwater may not have The reconstructed migration (or dispersal) routes rely on up-to-date

Fig. 9. Paleobiogeography of Melanopsis in the Pliocene to Pleistocene in relation to geodynamic development. Blue areas and circles represent freshwater, green ones brackish-water environments; white circles signal an unknown type of environment. Assignments as well as environment outlines for the Pliocene are based on the biogeographic scheme of Neubauer et al. (2015a). The Pliocene palinspastic map follows Popov et al. (2004, 2006). The Pleistocene map was created in European equidistant-conic projection to ease comparison with the palinspastic reconstructions. Pleistocene shoreline reconstructions follow Chiverell and Thomas (2010), Hewitt (1999) and Mangerud et al. (2004). Localities/basins: Pliocene: 1 — Preveza; 2 — Limni; 3 — Megara; 4 — Mesogea; 5 — Pyrgos; 6 — Corinth; 7 — Sparta. Pleistocene: 8 — Granada; 9 — Guadix-Baza; 10 — Mula; 11 — Hellín; 12 — Tobarillas; 13 — Alcocer de Planes; 14 — Gandía; 15 — Picassent; 16 — Llíria; 17 — Lower Valdarno; 18 — Siena; 19 — Radicondoli-Chiusdino; 20 — Chiana-Pietrafitta; 21 — Gubbio; 22 — Tiberino; 23 — Rieti; 24 — Chiani-Tevere; 25 — Sabina; 26 — Marcellina; 27 — Roma; 28 — Pamvotis; 29 — Yaltra; 30 — Atalanti; 31 — Angelokastro-Aitoliko; 32 — Patras; 33 — Aigio; 34 — Pyrgos; 35 — Sparta. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 136 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 paleogeographic models as presented in Figs. 8 and 9 and revised The cause for the sole occurrence of Melanopsis in the late Miocene of stratigraphic classifications of a comprehensive fossil record. northeastern Algeria is unclarified as yet. Given the accompanying The present-day patterns formed by the continuous replacement of fauna the respective species dwelled in freshwater environments brackish-water Melanopsis with freshwater representatives. Melanopsis (Pallary, 1901), which is why a relationship to the brackish Lago-mare started its expansion from its central European origin toward the south- species is unlikely. Since the fossil record in northern Africa is sparse west and southeast in the middle Miocene (Fig. 8). The prior advance to anyway, we might miss enlightening connecting links. Above all, the western Anatolia in the early Oligocene reflects a short-term excursion, stratigraphy of Neogene freshwater deposits in that area is in need of representing the expansion of brackish lagoons and swamps revision and we cannot rule out a stratigraphic bias. along the Paratethys (Fig. 2; Islamoğlu, 2008; Islamoğlu et al., 2010; Melanopsis is well represented in northwestern Africa from the Lebküchner, 1974). Freshwater Melanopsis species invaded about Pleistocene onwards (Fig. 4). Presently, it advances far into the Saharan coevally the Aegean area, which was still continental at that time Desert, where it dwells in permanent oases only (Altaba, 1998). Today's (Popov et al., 2004), and the Iberian peninsula in the middle Miocene hyper-arid climate and lacking hydrological connections constrain (Fig. 8). By that time, brackish melanopsids had already declined with melanopsid dispersal in that region. Expansion toward remote oases the disappearance (or desalinization) of many of their former habitats might have been promoted during more humid phases of Saharan cli- along the Aquitaine, Mainz and Hanau-Wetterau basins and the mate evolution in the Pleistocene and Holocene (Kuper and Kröpelin, Western Paratethys and succeeding Upper Brackish Water Molasse 2006; Ruddiman et al., 1989). (Fig. 8). During the late Miocene and Pliocene, freshwater species The isolated occurrence of recent Melanopsis etrusca Westerlund, further advanced toward southeastern Iberia and North Africa as well 1886 in Italy, which is restricted to a series of thermal springs in Tusca- as Turkey in the east. Especially the disappearance of Lake Pannon and ny, needs a closer examination. Altaba (1998) considered vicariance desalinization of Lake Dacia in the Pliocene (e.g., Jipa and Olariu, 2009; through microplate dispersal as the biogeographic origin of that species. Mandic et al., 2015) promoted the further retreat of brackish His hypothesis rests upon the tectonic fragmentation in the Western melanopsids. By the end of the Pliocene, finally, Melanopsis first oc- Mediterranean during the Cenozoic and the drift of the Corsican, curred in the Middle East, where it proliferated in the Orontes and Sardinian and Balearic terranes to its present position. Altaba (1998) Jordan river valleys with beginning of the Pleistocene (Fig. 9). For details suggested that the region inhabited by M. etrusca today was a terrane on the biogeographic relationships and migration routes within the during the Miocene that became detached from the Corso-Sardinian Levant see Heller (2007). block and so transported the melanopsids to what is now Tuscany. The transition from brackish- to freshwater-dominated melanopsids Yet, Corsica and Sardinia were approximately in their current position in the Miocene seems unrelated to any selective advantages. It is simply already during the late early Miocene (Rosenbaum et al., 2002), where- a matter of a changing prevalence of environmental types — brackish- as no melanopsid is reported from central Italy up to the latest Miocene. water systems were bound to decline as a result of Europe's geodynamic Following that gap of over ten million years, the first records represent evolution (compare Neubauer et al., 2015c). the typical, brackish Lago-mare assemblages of the late Messinian The influence of the Messinian Salinity Crisis and the following Lago- (Harzhauser et al., 2015; Neubauer et al., 2015a). Likewise, the alleged mare event on the propagation of Melanopsis and its extant distribution records of freshwater Melanopsis from Sardinia, which were mentioned is still questionable. The Messinian Salinity Crisis, which resulted in the by Altaba (1998) to corroborate his hypothesis, actually derive from the almost complete desiccation of the Mediterranean during the latest Lago-mare deposits as well (Esu and Kotsakis, 1983 and own observa- Messinian (Do Couto et al., 2014; Garcia-Castellanos and Villaseñor, tions). The first real freshwater Melanopsis did not occur before the 2011; Garcia-Castellanos et al., 2009; Krijgsman et al., 1999), has been Pliocene in Italy. Esu and Girotti (1975, 1991, 2015a) documented rep- repeatedly invoked as an important factor promoting evolution resentatives from several Pliocene and early Pleistocene deposits in cen- among freshwater organisms by isolating faunas and triggering endem- tral Italy, which clearly derive from truly lacustrine environments and ic developments (e.g., Reyjol et al., 2007; Tsigenopoulos et al., 2003; not thermal springs as inhabited by extant M. etrusca. Wilke, 2003). Particularly the following Lago-mare deposits, which In conclusion, the model by Altaba (1998) provides an unlikely ex- were distributed all around the Mediterranean Basin, have been consid- planation for the present distribution of M. etrusca. That species may ered to stimulate biogeographic expansion (e.g., Van Damme and Van rather derive from a Pliocene lacustrine ancestor, which may have mi- Bocxlaer, 2009; Van Damme et al., 2010). The Lago-mare event has grated from Slovenian or French systems to Italy, whereas intermediate been previously associated with oligo-mesohaline lacustrine conditions occurrences remained unreported or unpreserved. following the evaporite deposition during the Messinian Salinity Crisis, but current reconstructions suggest normal marine to marginally brack- 4.3. Notes on the origin of Holandriana, Esperiana and Microcolpia ish conditions (Do Couto et al., 2014; Carnevale et al., 2006). Indeed, one species of Melanopsis,i.e.,M. narzolina d'Archiac in Glaubrecht (1996) suggested a peri-Paratethyan origin for the genera Viquesnel, 1846 (syn. M. matheroni Mayer, 1871), has been reported Holandriana, Esperiana and Microcolpia. While this assumption is sup- from all along the shores of southern and southeastern Spain, southern ported by our data for the latter genera, Holandriana apparently first oc- France and Italy (Harzhauser et al., 2015). The species vanished together curred in late early Miocene deposits of the Proto-Mediterranean Sea with the whole Lago-mare assemblage in the Pliocene; later records (late Burdigalian, northern Italy; Fig. 2). Assuming that our records are from the Dacian Basin and Greece (e.g., Macarovici, 1940; Pană et al., fairly complete and regional stratigraphy is correct, the first occurrence 1981; Papaianopol and Marinescu, 2003; Papp, 1953) are misidentifica- of Holandriana coincided with the appearance of freshwater Melanopsis tions (Harzhauser et al., 2015). However, no radiation of Melanopsis in the nearby Dinaride Lake System. A connection between both events happened within the Lago-mare phase and morphological disparity is unrealistic, however, given the marine seaway separating the Alpine remained low compared to the Dinaride or Pannonian faunas. Finally, region and Balkan Peninsula at that time (Rögl, 1999). most interpretations of the Lago-mare facies rely on outdated models The genera Microcolpia and Esperiana both first appeared in the late suggesting extensive freshwater environments in the Mediterranean Miocene in southeastern to eastern Europe. While today's representa- Basin at that time, whereas several recent studies indicate brackish to tives are limited to pure freshwater and occur mostly in rivers (Welter- normal marine conditions (Carnevale et al., 2006; Do Couto et al., Schultes, 2012), all the late Miocene records derive from brackish- 2014). Since freshwater faunas with Melanopsis were already present water environments. On the one hand, these records might reflect in southern Spain and the Aegean area prior to the Lago-mare event allochthonous specimens in-washed by rivers, suggesting a freshwater (Fig. 8), we consider a major influence on the expansion of extant origin of these genera. On the other hand, Microcolpia and Esperiana freshwater clades unlikely. may indeed derive from brackish-water Melanopsis native to one of the T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 137 brackish system at that time, such as in the Pannonian or Dacian Basin. dry climate, we assume global warming will rather enlarge the regions With the rapid decline of brackish-water systems in the Pliocene and for potential settlement. the establishment of freshwater conditions in the Pannonian and Dacian basins, Microcolpia and Esperiana may have adapted to freshwater envi- 5. Conclusion ronments. That hypothesis is supported by the presences of Microcolpia in the Pannonian and Dacian basins and Esperiana in the Dacian Basin, The Melanopsidae and the genus Melanopsis originated in the late each before and after the environmental turnover. However, neither of Turonian in central Europe. From their beginnings up to the early both hypotheses can be tested from the present data. Miocene, Melanopsis stuck to its brackish roots and framed large parts of the Tethys and Paratethys shorelines. Following the formation of ex- 4.4. Climate change triggered biogeographic isolation tensive freshwater environments on the western Balkan Peninsula, termed the Dinaride Lake System, the first freshwater Melanopsis ap- Present-day Melanopsis is a generalist, capable of dwelling in a great peared in the late early Miocene, c. 17 Ma ago. Over the following twelve variety of environments and temperature and precipitation regimes, million years, freshwater Melanopsis successively replaced brackish- but its present distribution clearly reflects its adaptation to the water representatives. In addition, Melanopsis expanded toward south- Mediterranean climate. Apart from isolated occurrences in permanent western and southeastern Europe with onset of the middle Miocene, oases and thermal springs, it dwells in regions characterized by annual slowly approaching its present distribution ranges. While the Lago- mean temperatures above 9.5 °C, low annual temperature ranges and mare event following the Messinian Salinity Crisis in the latest Miocene low annual precipitation (peak at 447 mm) with at least temporally considerably increased the geographic range of a single or few brackish- dry conditions. Few occurrences are reported from regions with high water species, it did not affect the dispersal of freshwater species ances- precipitation throughout the year. The genera Microcolpia, Esperiana tral to the extant clades. Associated with the temperature decline in the and Holandriana, on the contrary, occur in the continental cold- late Cenozoic, thermophilous Melanopsis retreated from northern temperate climate of southeast and eastern Europe, with lower mean latitudes and became isolated from the other melanopsid genera annual temperatures but higher annual temperature ranges and higher Holandriana, Esperiana and Microcolpia. Those genera originated in precipitation. The similarities of climate preferences among the three peri-Mediterranean and peri-Paratethyan systems, respectively — genera are not unexpected, since they have similar geographic ranges Holandriana in the late early Miocene of northern Italy and Esperiana and often co-occur in the very same localities. and Microcolpia in the late Miocene of southeastern to eastern Europe, While the distribution areas of the genera Holandriana, Esperiana all of them perhaps deriving from brackish ancestors. The Pleistocene and Microcolpia and that of Melanopsis have been well separated since to present biogeographic isolation between those genera and Melanopsis the Pleistocene (Fig. 4), they co-occurred with Melanopsis in the same reflects their varied climate preferences. Melanopsis is typical for a systems and partly even the same localities during the Miocene and Mediterranean-type of climate, characterized by high annual mean tem- Pliocene (Figs. 2–3). The biogeographic isolation apparently arose as a perature, narrow annual temperature ranges and low annual precipita- result of the climatic deterioration during the Quaternary. With the con- tion with at least temporarily dry conditions. Holandriana, Esperiana tinuous decline of global temperature during the late Cenozoic (Zachos and Microcolpia are adapted to the seasonal, cold-temperate climate of et al., 2008) and especially following the Middle Miocene Climate southeastern to eastern Europe, with low annual mean temperature, Transition during the middle Miocene (Shevenell et al., 2004, 2008; high annual temperature ranges and high annual precipitation. Tian et al., 2013), thermophilous Melanopsis successively retreated TheMelanopsidaeandthegenusMelanopsis in particular owe their from northern latitudes, while Microcolpia, Esperiana and Holandriana success to their high potential for adaptation. Today, Melanopsis is a persisted and became adapted to a continental cold-temperate climate. generalist and occurs in a great variety of climate regimes and environ- In a way, they may have filled the ecological niche Melanopsis had ments, including lakes, rivers, springs, irrigation channels, oases and occupied before. In addition, the sudden turnover between coexistence thermal springs. The step from an entirely brackish-water lifestyle to in the Pliocene and biogeographic isolation in the Pleistocene was en- the adaptation to freshwater in the Miocene opened new pathways hanced by the disappearance of former large lakes Dacia and Slavonia and ecological niches and stimulated the origin of the recent clades. in that region and the extinction of associated faunas. Very likely, the present-day disjunct distribution of Melanopsis goes back to this very event in the late early Miocene. 4.5. Conservation issues Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.palaeo.2015.12.017. As for many other organisms, human impact imposes severe pressure on melanopsid distribution and diversity. Several species are Acknowledgements today restricted to small regions and some of them are on the brink of extinction. In total, 16 of the 36 melanopsid species (44.4%) listed We are grateful to Joaquin Albesa (University of València), Vitaliy V. “ ” “ by the IUCN Red List have been marked Endangered or Critically Anistratenko (Schmalhausen Institute of Zoology of NAS, Kiev), Daniela ” Endangered . For example, Melanopsis etrusca Westerlund, 1886 and Esu (University of Rome), Gerhard Haszprunar (Bavarian State Collec- fi M. penchinati Bourguignat, 1868 are con ned to few thermal springs tion of Zoology and Ludwig Maximilian University, Munich), as well as in Italy and Spain (Altaba, 1998; Cianfanelli, 2010) and both show a cur- Sonja Herzog-Gutsch and Herbert Summesberger (both Natural History rent trend of population decrease (Cianfanelli, 2010; Martínez-Ortí, Museum Vienna), who provided invaluable support during literature 2011). Likewise, Microcolpia parreyssii (Philippi, 1847), restricted to a research. Two anonymous reviewers contributed greatly to the quality small lake fed by a thermal spring in Romania, suffers from severe pop- of the paper. The study was supported by the FWF-grant P25365-B25 ulation decline as the lake becomes successively smaller due to tourism, (“Freshwater systems in the Neogene and Quaternary of Europe: excessive use of thermal water and low precipitation (Féher, 2013; Gastropod biodiversity, provinciality, and faunal gradients”). Mintaş et al., 2012; Sîrbu et al., 2013). In addition, current climate change has been proposed to induce References population declines for the genera Esperiana and Microcolpia (Tytar and Makarova, 2015), based on climate extrapolations for 2050. Current Afzelius, B.A., Dallai, R., Callaini, G., 1989. Spermiogenesis and spermatozoa in Melanopsis and future climate change is, however, not considered to impose a (, Molluscan). J. Submicrosc. Cytol. Pathol. 21, 187–200. Almera, J., Bofill y Poch, A., 1898. Moluscos fósiles recogidos en los terrenos pliocenos de threat to the distribution and diversity of the genus Melanopsis as a Cataluna. Descripciones y figuras de las formas nuevas y enumeración de todas las whole. Quite the contrary, given its adaptation to a warm and rather encontradas en dichos yacimientos. Bol. Comisión Mapa Geol. España 24, 1–223. 138 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Altaba, C.R., 1998. Testing vicariance: melanopsid snails and Neogene tectonics in the Çabuk, Y., Arslan, N., Yilmaz, V., 2004. Species composition and seasonal variations, of the western Mediterranean. J. Biogeogr. 25, 541–551. http://dx.doi.org/10.1046/j.1365- Gastropoda in Upper Sakarya River System (Turkey) in relation to water quality. Acta 2699.1998.2530541.x. Hydrochim. Hydrobiol. 6, 393–400. http://dx.doi.org/10.1002/aheh.200300544. Andrusov, N., 1905. Maeotische Stufe. Zapiski Imperatorskago S.-Petersburgskago Carnevale, G., Landini, W., Sarti, G., 2006. Mare versus Lago-mare: marine fishes and the Mineralogicheskago Obshchestva, seriya 2 43, pp. 289–451. Mediterranean environment at the end of the Messinian Salinity Crisis. J. Geol. Soc. Andrusov, N., 1909. Materialy k poznaniyu Prikaspiyskogo neogena. Ponticheskiye plasty 163, 75–80. Shemakhinskogo uyezda. Trudy Geologicheskago Komiteta, novaya seriya 40, Chiverell, R.C., Thomas, G.S.P., 2010. Extent and timing of the Last Glacial Maximum pp. 1–177. (LGM) in Britain and Ireland: a review. J. Quat. Sci. 25, 535–549. http://dx.doi.org/ Andrusov, N., 1923. Apsheronskiy yarus. Trudy Geologicheskago Komiteta, novaya seriya 10.1002/jqs.1404. 110, pp. 1–294. Cianfanelli, S., 2010. Melanopsis etrusca. The IUCN Red List of Threatened Species Anistratenko, V.V., 1993. Mollyuski semeystv Melanopsidae i (Gastropoda, 2010: e.T40077A10300265 http://dx.doi.org/10.2305/IUCN.UK.2010-4.RLTS. Pectinibranchia) iz kimmeriyskikh otlozheniy Abkhazii. Byulleten' Moskovskogo T40077A10300265.en (Accessed on 08 October 2015). Obshchestva Ispytateley Prirody, Otdel biologicheskiy 98, pp. 68–79. Clark, S., Moore, S., 2013. Melanopsis trifasciata. The IUCN Red List of Threatened Spe- Atanacković, M., 1959. Pliocène du Bassin de Kosovo (Serbie méridionale). Geol. Glas. 3, cies 2013: e.T189217A1922321 http://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS. 257–377. T189217A1922321.en (Accessed on 28 October 2015). Azpeitia Moros, F., 1929. Monografía de las Melanopsis vivientes y fósiles de España. Cobălcescu, G., 1883. Studii geologice şi paleontologice asupra unor tărâmuri terţiare din Memorias del Instituto Geológico y Minero de España 36, pp. 1–402. unele părţi ale României. Memoriile Geol. Scólei Militare Iaşi1,1–161. Balashov, I.A., Son, M.O., Coada, V., Welter-Schultes, F., 2013. An updated annotated Cossmann, M., 1888. Catalogue illustré des coquilles fossils de l'Éocène des environs de checklist of the molluscs of the Republic of Moldova. Folia Malacologica 21, Paris. Ann. Soc. R. Malacol. Belg. 23, 3–324. 175–181. http://dx.doi.org/10.12657/folmal.021.021. Cossmann, M., 1898. Estudio de algunos moluscos eocénicos del Pirineo catalán. Bol. Báldi, T., 1973. Mollusc Fauna of Hungarian Upper Oligocene (Egerian). Akadémia Kiadó, Comisión Mapa Geol. España 23, 167–198. Budapest. Cossmann, M., 1906. Estudio de algunos moluscos eocénicos del Pirineo catalán. Bol. Báldi, T., Seneš, J. (Eds.), 1975. Chronostratigraphie und Neostratotypen. Miozän der Comisión Mapa Geol. España 28, 135–151. Zentralen Paratethys, Bd. V, OM. Egerien. Verlag der Slowakischen Akademie der Cossmann, M., 1909. Essais de Paléoconchologie Comparée. Huitième Livraison. Privately Wissenschaften, Bratislava. Published, Paris. Bałuk, W., 2006. Middle Miocene (Badenian) gastropods from Korytnica, Poland; Part V, Cossmann, M., Peyrot, A., 1918. Conchologie néogènique de l'Aquitaine. Actes Soc. Linn. Addenda et Corrigenda ad . Acta Geol. Pol. 56, 177–220. Bordeaux 70, 5–491. Bănărescu, P.M., 1990. Zoogeography of Fresh Waters. General distribution and dispersal Costil, K., 1994. Influence of temperature on survival and growth of two freshwater of freshwater vol. 1. Aula-Verlag, Wiesbaden. planorbid species, Planorbarius corneus (L.) and Planorbis planorbis (L.). J. Molluscan Bandel, K., 2000. Speciation among the Melanopsidae (Caenogastropoda). Special empha- Stud. 60, 223–235. http://dx.doi.org/10.1093/mollus/60.3.223. sis to the Melanopsidae of the Pannonian Lake at Pontian time (Late Miocene) and Costil, K., 1997. Effect of temperature on embryonic development of two freshwater pul- the Pleistocene and Recent of Jordan. Mitt. Geol.-Palaontol. Inst. Univ. Hamburg 84, monates, Planorbarius corneus (L.) and Planorbis planorbis (L.). J. Molluscan Stud. 63, 131–208. 293–296. http://dx.doi.org/10.1093/mollus/63.2.293. Bandel, K., Riedel, F., 1994. The late Cretaceous gastropod fauna from Ajka (Bakony Čtyroký, P., 1972. Die Molluskenfauna der Rzehakia-(Oncophora)-Schichten Mährens. Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien Ser. A 96, 1–65. Ann. Naturhist. Mus. Wien 76, 41–141. Bandel, K., Reicherter, K., Dyrssen, U., Reiss, S., 2000. Late Neogene lacustrine sedimentary fa- Davitashvili, L.S., 1931. Fossils of the Maeotian beds [in Russian]. In: Archangelsky, A.D., cies and gastropod assemblages (Granada Basin, southern Spain). Mitt. Geol.-Palaontol. Davitashvili, L.S. (Eds.), Characteristic Fossils of the Oil Districts of the Crimea and Inst. Univ. Hamburg 84, 111–130. Caucasus, 6. Transactions of the State Petroleum Research-Institute 9, pp. 1–37. Bandel, K., Sivan, N., Heller, J., 2007. Melanopsis from Al-Qarn, Jordan Valley (Gastropoda: Davitashvili, L.S., Krestovnikov, V.N., 1931. Fossils of the Duab Beds [in Russian]. In: Cerithioidea). Paläontol. Z. 81, 304–315. Archangelsky, A.D., Davitashvili, L.S. (Eds.), Characteristic Fossils of the Oil Districts Bataller, J.R., 1937. Catàleg de les espècies fòssils noves del cretàcic de Catalunya i d'altres of the Crimea and Caucasus, 9. Transactions of the State Petroleum Research- regions. Arxius de l'Escola Superior d'Agricultura 3, 581– 619. Institute, pp. 1–26. Bataller, J.R., 1949. Sinopsis de las especies nuevas del Cretácico de España. Anales de la De Leeuw, A., Mandic, O., Vranjković, A., Pavelić, D., Harzhauser, M., Krijgsman, W., Kuiper, Escuela de Peritos Agrícolas y de Especialidades Agropecuarias y de los Servicios K.F., 2010. Chronology and integrated stratigraphy of the Miocene Sinj Basin Técnicos de Agricultura 8, pp. 5–148. (Dinaride Lake System, Croatia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 292, Benecke, E.W., Cohen, E.W., 1879–1881. Geognostische Beschreibung der Umgegend 155–167. von Heidelberg: zugleich als Erläuterungen zur geognostischen Karte der De Leeuw, A., Mandic, O., Krijgsman, W., Kuiper, K., Hrvatović, H., 2012. Paleomagnetic and Umgegend von Heidelberg (Sectionen Heidelberg und Sinsheim). Trübner, geochronologic constraints on the geodynamic evolution of the Central Dinarides. Strassburg. Tectonophysics 530–531, 286–298. http://dx.doi.org/10.1016/j.tecto.2012.01.004. Beran, L., 2013. Aquatic molluscan fauna () of the Korana River (Croatia). Nat. Degrange-Touzin, A., 1892. Étude sur la faune terrestre, lacustre et fluviatile de l'Oligocène Croat. 22, 223–234. supérieur et du Miocène dans le Sud-Ouest de la France et principalement dans la Bilgin, F.H., 1973. Studies on the functional anatomy of (L.) and Gironde. Actes Soc. Linn. Bordeaux 45, 125–230. Zemelanopsis trifasciata (Gray). Proc. Malacol. Soc. Lond. 40, 379–393. Delafond, F., Depéret, C., 1893. Études des Gîtes minéraux de la France. Les terrains Blanckenhorn, M., 1901. Neues zur Geologie und Paläontologie Aegyptens. IV. Das Pliocän tertiaires de la Bresse et leurs gîtes de lignite et de minerais de fer. Imprimerie und Quartärzeitalter in Aegypten ausschliesslich des Rothen Meergebietes. Z. Dtsch. Nationale, Paris. Geol. Ges. 53, 307–502. Depape, G., Bataller, J.R., 1931. Note sur quelques plantes fossiles de la Catalogne. Bull. Blanckenhorn, M., Oppenheim, P., 1927. Neue Beiträge zur Kenntnis des Neogens in Inst. Catalana Hist. Nat. 31, 194–208. Syrien und Palästina. Geol. Palaeontol. Abh. Neue Folge 15, 319–358. Delpey, G., 1940. Les gastéropodes mésozoïques de la région libanaise. Haut Commissariat Bourguignat, J.R., 1863–1868. Mollusques nouveaux, litigieux ou peu connus. Première de la République française en Syrie et au Liban, Service des travaux publics, Section centurie. Savy, Paris. d'études géologiques - Notes et mémoires 3, 5–292. Bourguignat, J.R., 1877. Descriptions de deux nouveaux genres algériens, suivies d'une Deshayes, G.P., 1861–1864. Description des animaux sans vertèbres du Bassin de Paris classification des familles et des genres de mollusques terrestres et fluviatiles du pour servir de supplément a la description des coquilles fossiles des environs de système européen. Bull. Soc. Sci. Phys. Nat. Toulouse 3, 49–101. Paris comprenant une revue générale de toutes les espèces actuellement connues. Bourguignat, J.R., 1884. Histoire des mélaniens du système européen. Ann. Malacol. 2, Tome deuxième. - Texte. Mollusques Acéphales Monomyaire et Brachiopodes. 1–168. Mollusques céphales. Première Partie. J.-B. Baillière et Fils, Paris. Brusina, S., 1874. Fossile Binnen-Mollusken aus Dalmatien, Kroatien und Slavonien nebst Do Couto, D., Popescu, S.-M., Suc, J.-P., Melinte-Dobrinescu, M.C., Barhoun, N., Gorini, C., einem Anhange. Actienbuchdruckerei, Agram. Jolivet, L., Poort, J., Jouannic, G., Auxietre, J.-L., 2014. Lago Mare and the Messinian Brusina, S., 1897. Gragja za neogensku malakološku faunu Dalmacije, Hrvatske i Slavonije Salinity Crisis: Evidence from the Alboran Sea (S. Spain). Mar. Pet. Geol. 52, 57–76. uz neke vrste iz Bosne i Hercegovine i Srbije. Djela Jugoslavenske Akad. Znanosti i http://dx.doi.org/10.1016/j.marpetgeo.2014.01.018. Umjetnosti 18, 1–43. Dominici, S., Kowalke, T., 2014. Early Eocene Cerithioidean gastropods of mangrove- Brusina, S., 1902. Iconographia Molluscorum Fossilium in tellure tertiaria Hungariae, fringed coasts (South-central Pyrenees, Spain). Boll. Soc. Paleontol. Ital. 53, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzegovinae, Serbiae and Bulgariae 137–162. http://dx.doi.org/10.4435/BSPI.2014.13. inventorum. Officina Soc. Typographicae, Agram. Doncieux, L., 1908. Catalogue descriptif des fossiles nummulitiques de l'Aude et de Brusina, S., 1903. Eine subtropische Oasis in Ungarn. Mitt. Naturwiss. Ver. Steiermark 39, l'Hérault. Deuxième partie (Fascicule I). Corbières septentrionale. Annales de 101–121. l'Université de Lyon, Nouvelle Série, I. Sci. Med. 22, 1–288. Bukowski, G.v., 1893. Die levantinische Molluskenfauna der Insel Rhodus, I. Theil. 60. d'Orbigny, A., 1850–1852. Prodrome de Paléontologie. Stratigraphique universelle des Denkschriften der mathematisch-naturwissenschaftlichen Classe der Kaiserlichen animaux mollusques et rayonnés faisant suitre au cours élémentaire de paléontologie Akademie der Wissenschaften, pp. 265–306. et de géologie stratigraphique. Masson, Paris. Bukowski, G.v., 1896. Die levantinische Molluskenfauna der Insel Rhodus, II. Theil. Dunker, W., 1848. Diagnoses molluscorum novorum. Z. Malakozool. 5, 177–186. Schluss. Denkschriften der mathematisch-naturwissenschaftlichen Classe der Elkarmi, A.Z., Ismail, N.S., 2006. Allometry of the gastropod Melanopsis praemorsa Kaiserlichen Akademie der Wissenschaften 63 pp. 1–70. (: Prosobranchia) from Azraq Oasis, Jordan. Pak. J. Biol. Sci. 9, 1359–1363. Bulić, J., Jurišić-Pol šak, Z., 2009. Macropalaeontology and Stratigraphy of Lacustrine Mio- Erünal-Erentöz, L., 1958. Mollusques du Neogene des Bassins de Karaman, Adana et Hatay cene Deposits at Crnika Beach on the Island of Pag (Croatia). Geol. Croat. 62, (Turquie). Publ. Inst. Études Recherches Minières Turquie Sér. C 4, 1–232. 135–156. http://dx.doi.org/10.4154/gc.2009.16. Esu, D., 1984. Gasteropodi dei bacini continentali terziari eocenico-oligocenici Burgerstein, L., 1877. Beitrag zur Kenntniss des Jungtertiären Süsswasser-Depôts bei dell'isola di Maiorca (Baleari). Thalassia Salentina 14, 85–99. http://dx.doi. Ueskueb. Jahrb. K. K. Geol. Reichsanst. 27, 243–250. org/10.1285/i15910725v14p85. T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 139

Esu, D., Girotti, O., 1975. La malacofauna continentale del Plio-Pleistocene dell'Italia Geary, D.H., Hoffmann, E., Magyar, I., Freiheit, J., Padilla, D., 2012. Body size, longevity, and centrale. I. Paleontologia. Geol. Romana 13, 203–294. growth rate in lake Pannon melanopsid gastropods and their predecessors. Paleobiol- Esu, D., Girotti, O., 1989. Late Miocene and Early Pliocene continental and oligohaline mol- ogy 38, 554–568. luscan faunas of Italy. Boll. Soc. Paleontol. Ital. 28, 253–263. Georgopoulou, E., Neubauer, T.A., Harzhauser, M., Kroh, A., Mandic, O., 2015. An outline of Esu, D., Girotti, O., 1991. Late Pliocene and Pleistocene assemblages of continental mol- the European Quaternary localities with freshwater gastropods: Data on geography luscs in Italy. A survey. Il Quaternario 4, 137–150. and updated stratigraphy. Palaeontol. Electron. 18, 48A (9 pp.). Esu,D.,Girotti,O.,2015a.ThelateEarlyPleistocene non-marine molluscan fauna from the Gillet, S., Marinescu, F., 1971. La faune malacologique pontienne de Radmanesti (Banat Synania Formation (Achaia, Greece), with description of nine new species. Arch. Roumain). Mém. Inst. Géol. Géophys. 15, 1–78. Molluskenkd. 144, 65–81. http://dx.doi.org/10.1127/arch.moll/1869-0963/144/065-081. Giovanelli, A., da Silva, C.L.P.A.C., Leal, G.B.E., Baptista, D.F., 2005. Habitat preference of Esu, D., Girotti, O., 2015b. Melanopsis wilhelmi n. sp. and Valvata ducati n. sp., two new freshwater snails in relation to environmental factors and the presence of the com- Pleistocene gastropods from a section of the Stirone River (Emilia, North Italy) petitor snail tuberculatus (Müller, 1774). Mem. Inst. Oswaldo Cruz 100, (Gastropoda: Melanopsidae, Valvatidae). Arch. Molluskenkd. 144, 149–154. http:// 169–176. dx.doi.org/10.1127/arch.moll/1869-0963/144/149-154. Glaubrecht, M., 1993. Mapping the diversity: geographical distribution of the freshwater Esu, D., Kotsakis, T., 1983. Les vertebres et les mollusques continentaux du Tertiaire de la snail Melanopsis (Gastropoda: ?Cerithioidea: Melanopsidae) with focus on its sys- Sardeigne: paleobiogeographie et biostratigraphie. Geol. Romana 22, 177–206. tematics in the Mediterranean Basin. Mitt. Hamburger Zool. Museum Inst. 90, 41–97. Féher, Z., 2013. Melanopsis parreyssii. The IUCN Red List of Threatened Species Glaubrecht, M., 1996. Evolutionsökologie und Systematik am Beispiel von Süß- und 2013: e.T155737A4835365 http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS. Brackwasserschnecken (Mollusca: Caenogastropoda: Cerithioidea): Ontogenese- T155737A4835365.en (Accessed on 08 October 2015). Strategien, Paläontologische Befunde und Zoogeographie. Backhuys, Leiden. Férussac, J.B.L.d'A.d., Férussac, A.E.J.P.J.F.d'A.d., 1807. Essai d'une méthode Glaubrecht, M., 2011. Toward solving Darwin's “mystery”: speciation and radiation in conchyliologique appliquée aux mollusques fluviatiles et terrestres d'après la considér- freshwater gastropods. Am. Malacol. Bull. 29, 187–216. ation de l' et de son test. Nouvelle édition augmentée d'une synonymie des Glibert, M., 1962. Les Mesogastropoda fossiles du Cénozoïque étranger des collections de espèces les plus remarquables, d'une table de concordance systématique de celles qui l'Institut Royal des Sciences Naturelles de Belgique. Première partie. à ont été décrites par Géoffroy, Poiret et Draparnaud, avec Müller et Linné, et terminée Stiliferidae (inclus). Inst. R. Sci. Nat. Belg. Mém. Deuxième Sér. 69, 1–305. par un catalogue d'espèces observées en divers lieux de la France. Delance, Paris. González Delgado, J.A., Civis, J., Valle, M.F., Sierro, F.J., Flores, J.A., 1986. Distribución de los Fischer, W., 1993. Melanopsis hennersdorfensis n. sp., eine neue fossile Melanopside Foraminíferos, Moluscos y Ostrácodos en el Neógeno de la Cuenca del Duero. (Gastropoda: Thiaridae) aus dem Wiener Becken (Miocän/Pannon). Club Conchylia Aspectos más significativos. Studia Geol. Salmanticensia 22, 277–291. Inform. 25, 179–183. Gozhik, P.F., Datsenko, L.N., 2007. Presnovodnyye Mollyuski pozdnego kaynozoya yuga Fischer, W., 1996a. Beiträge zur Kenntnis der rezenten und fossilen Melanopsidae VI. Über Vostochnoy Yevropy. Chast' II. Semeystva Sphaeridae, Pisidiidae, Corbiculidae, Melanopsis coaequata Handmann 1887 und Melanopsis rugosa Handmann 1887 sowie Neritidae, , Valvatidae, Bithyniidae, , Melanopsidae. ein Nachtrag zu Teil V. (Gastropoda, Prosbranchia). Club Conchylia Inform. 28, 19–26. Natsional'naya Akademiya Nauk Ukrainy, Institut Geologicheskikh Nauk, Kiev. Fischer, W., 1996b. Beiträge zur Kenntnis der rezenten und fossilen Melanopsidae V. Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), 2012. The Geologic Time Scale Melanopsis handmanniana nov. nomen und Melanopsis fossilis (Gmelin 1790) 2012 2 vols. Elsevier, Oxford. (Gastropoda, Prosobranchia). Club Conchylia Inform. 28, 25–38. Grateloup, J.-P.S.d., 1840. Conchyliologie fossile des terrains tertiaires du bassin de l'Adour Fischer, J.-C., 2000. La malacofauna de Sansan. In: Ginsburg, L. (Ed.), La faune miocéne de (environs de Dax). Tome 1: Univalves. Atlas. Th. Lafargue, Bordeaux. Sansan et son environment. Mémoires du Muséum national d'Histoire naturelle 183, Grossowicz, M., Sivan, N., Heller, J., 2003. Melanopsis from the Pleistocene of the Hula pp. 129–154. Valley (Gastropoda: Cerithioidea). Isr. J. Earth Sci. 52, 221–234. Fischer, W., Reischütz, A., 1995. Beiträge zur Kenntnis der rezenten und fossilen Gümbel, C.W.v., 1875. Abriss der geognostischen Verhältnisse der Tertiärschichten bei Melanopsidae III. Melanopsis vitalisi STRAUSZ 1942 - neu für die fossile pontische Miesbach und des Alpengebietes zwischen Tegernsee und Wendelstein. Staub, Gastropodenfauna Österreichs. Nachrichtenbl. Ersten Vorarlberger Malakologischen München. Ges. 3, 1. Halaváts, G.v., 1914. Geologischer Aufbau der Gegend von Ujegháza, Holczmány und Fischer, P., Oehlert, D.P., Woodward, S.P., 1880–1887. Manuel de conchyliologie et de Oltszakadát. Jahresber. Kg. Ungarischen Geol. Anstalt 1913, 410–422. paléontologie conchyliologique ou histoire naturelle des mollusques vivants et Handmann, R., 1882. Die fossile Molluskenfauna von Kottingbrunn. Jahrb. K. K. Geol. fossiles suivi d'un appendice sur les brachipodes. Avec 23 planches contenant 600 Reichsanst. 32, 543–564. figures et 1138 gravures dans le texte. Savy, Paris. Handmann, R., 1887. Die fossile Conchylienfauna von Leobersdorf im Tertiärbecken von Fontannes, F., 1881. Les terrains tertiaires du bassin de Crest. Annales de la Société Wien. Aschendorff, Münster. d'Agriculture. Hist. Nat. Arts Utiles Lyon 3, 827–1046. Harzhauser, M., 2004. Oligocene Gastropod Faunas of the Eastern Mediterranean Fontannes, F., 1884. Description sommaire de la faune malacologique des formations (Mesohellenic Trough/Greece and Esfahan-Sirjan Basin/Central Iran). Cour. saumâtres et d'eau douce du groupe d'Aix (Bartonien-Aquitanien) dans le Bas- Forschungsinst. Senckenb. 248, 93–181. Languedoc, la Provence et le Dauphiné. Georg, F. Savy, Lyon, Paris. Harzhauser, M., Kowalke, T., Mandic, O., 2002. Late Miocene (Pannonian) Gastropods of Forbes, E., 1856. On the Tertiary Fluvio-marine Formation of the Isle of Wight. Longman, Lake Pannon with special emphasis on Early Ontogenetic Development. Ann. Brown, Green, and Longmans, London. Naturhist. Mus. Wien Ser. A 103, 75–141. Fordinál, K., 1993. Genus Melanopsis (Gastropoda) in Upper Miocene sediments in the Harzhauser, M., Mandic, O., Latal, C., Kern, A., 2012. Stable isotope composition of the Mio- Bratislava area. Západn. Karp. Sér. Paleontol. 17, 57–67. cene Dinaride Lake System deduced from its endemic mollusc fauna. Hydrobiologia Förster, B., 1892. Geologischer Führer für die Umgebung von Mühlhausen i. E. 682, 27–46. http://dx.doi.org/10.1007/s10750-011-0618-3. Mitteilungen der Geologischen Landesanstalt von Elsass-Lothringen 3, Harzhauser, M., Neubauer, T.A., Georgopoulou, E., Esu, D., D'Amico, C., Pavia, G., Giuntelli, pp. 199–309. P., Carnevale, G., 2015. Late Messinian continental and Lago-Mare gastropod assem- Frank, C., 1997. Die Molluskenfauna der Insel Rhodos, 2. Teil. Stapfia48,1–179. blages from the Tertiary Piedmont Basin, NW. Boll. Soc. Paleontol. Ital. 54, 1–53. Frogley, M.R., Preece, R.C., 2004. A faunistic review of the modern and fossil molluscan http://dx.doi.org/10.4435/BSPI.2015.1. fauna from lake Pamvotis, Ioannina, an ancient lake in NW Greece: implications for Heller, J., 2007. A historic biogeography of the aquatic fauna of the Levant. Biol. J. Linn. Soc. endemism in the Balkans. In: Griffiths, H.I., Kryštufek, B., Reed, J.M. (Eds.), Balkan 92, 625–639. BiodiversityPattern and Process in the European Hotspot. Springer, Netherlands, Heller, J., Abotbol, A., 1997. Litter shredding in a desert oasis by the snail Melanopsis Dordrecht, pp. 243–260. praemorsa. Hydrobiologia 344, 65–73. Fuchs, T., 1870a. III. Beiträge zur Kenntniss fossiler Binnenfaunen. III. Die Fauna der Heller, J., Sivan, N., 2000. A new species of Melanopsis from the Golan heights, Southern Congerienschichten von Radmanest im Banate. Jahrb. K. K. Geol. Reichsanst. 20, Levant (Gastropoda: Melanopsidae). J. Conchol. 37, 1–5. 343–364. Heller, J., Sivan, N., 2001. Melanopsis from the Mid-Pleistocene site of Gesher Benot Fuchs, T., 1870b. VII. Beiträge zur Kenntniss fossiler Binnenfaunen. IV. und V. Die Fanna Ya'aqov (Gastropoda: Cerithioidea). J. Conchol. 37, 127–147. der Congerienschichten von Tihany am Plattensee und KśpbeiPįpa in Ungarn. Heller, J., Sivan, N., 2002a. Melanopsis from the Pleistocene site of 'Ubeidiya, Jordan Valley: Jahrb. K. K. Geol. Reichsanst. 20, 531–548. direct evidence of early hybridization (Gastropoda: Cerithioidea). Biol. J. Linn. Soc. 75, Fűköh, L., 2012. Adatok az egri édesvízi mészkő üledékek pleisztocén Mollusca- 39–57. faunájához. Malakológiai Tájékoztató (Malacol. Newsl.) 30, 21–30. Heller, J., Sivan, N., 2002b. Melanopsis from the Pliocene site of 'Erq el-Ahmar, Jordan Garcia-Castellanos, D., Villaseñor, A., 2011. Messinian salinity crisis regulated by compet- Valley (Gastropoda: Cerithioidea). J. Conchol. 37, 607–625. ing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363. http://dx.doi.org/ Heller, J., Sivan, N., Motro, U., 1999. Systematics, distribution and hybridization of 10.1038/nature10651. Melanopsis from the Jordan Valley (Gastropoda: Prosobranchia). J. Conchol. 36, Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernàndez, M., Vergés, J., De 49–81. Vicente, R., 2009. Catastrophic flood of the Mediterranean after the Messinian salinity Heller, J., Sivan, N., Ben-Ami, F., 2002. Systematics of Melanopsis from the coastal plain of crisis. Nature 462, 778–781. Isral (Gastropoda: Cerithioidea). J. Conchol. 37, 589–606. Geary, D.H., 1990. Patterns of evolutionary tempo and mode in the radiation of Melanopsis Heller, J., Mordan, P., Ben-Ami, F., Sivan, N., 2005. Conchometrics, systematics and (Gastropoda: Melanopsidae). Paleobiology 16, 492–511. distribution of Melanopsis (Mollusca: Gastropoda) in the Levant. Zool. J. Linnean Geary, D.H., 1992. An unusual pattern of divergence between two fossil gastropods: Soc. 144, 229–260. ecophenotypy, dimorphism, or hybridization. Paleobiology 18, 93–109. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, Geary, D.H., Rich, J., Valley, J.W., Baker, K., 1989. Stable isotopic evidence of salinity 87–112. http://dx.doi.org/10.1111/j.1095-8312.1999.tb01160.x. change: influence on the evolution of melanopsid gastropod in the late Miocene Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution Pannonian basin. Geology 17, 981–985. interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. Geary, D.H., Staley, A.W., Müller, P., Magyar, I., 2002. Iterative changes in Lake Pannon Hodgson, A.N., Heller, J., 2000. Spermatozoon structure and spermiogenesis in four Melanopsis reflect a recurrent theme in gastropod morphological evolution. Paleobi- species of Melanopsis (Gastropoda, Prosobranchia, Cerithioidea). Int. J. Invertebr. ology 28, 208–221. Reprod. Dev. 37, 185–200. http://dx.doi.org/10.1080/07924259.2000.9652419. 140 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Hofmann, K., 1870. A Zsily-völgyi szénteknö. A Magyarhoni Földtani Társulat Munkálatai Landau, B.M., Harzhauser, M., Islamoglu, Y., da Silva, C.M., 2013. Systematics and 5, pp. 1–57. palaeobiogeography of the gastropods of the middle Miocene (Serravallian) Karaman Hörnes, M., 1851–1856. Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Univalven. Basin, Turkey. Cainozoic Res. 11–13, 1–584. Abh. Geol. Reichsanst. 3, 185–296 (1853), 385–460 (1855), 461–736 (1856). Lebküchner, R.F., 1974. Beitrag zur Kenntnis der Geologie des Oligozäns von Hummel, K., Wenz, W., 1924. Eine Maar-Ausfüllung mit obermiocaener Schneckenfauna Mittelthrakien (Türkei). Bull. Mineral Res. Explor. Inst. Turk. 83, 1–29. bei Hornberg a. d. Ohm. Notizblatt des Vereins für Erdkunde und der Hessischen Locard, A., 1883. Recherches paléontologiques sur les dépôts tertiaires à Milne-Edwardsia Geologischen Landesanstalt zu Darmstadt, 5 Folge 6, 285–298. et Vivipara du Pliocène inférieur du département de l'Ain. Ann. Acad. Mâcon IIe Sér. 6, Iljina, L.B., Frolov, P.D., 2010. Shell morphology and microstructure of Neogene Melanopsis 2–166. Ferussac (Gastropoda). Paleontol. J. 44, 489–493. Locard, A., 1893. Monographie des mollusques tertiaires terrestres et fluviatiles de la İslamoğlu, Y., 2008. Molluscan biostratigraphy and paleoenvironmental reconstruction Suisse. Deuxième partie. Mém. Soc. Paléont. Suisse 19 (1892), 131–275. of Oligocene deposits in the Denizli and Kale-Tavas subbasins (SW Turkey). Łomnicki, A.M., 1886. Słodkowodny utwór trzeciorzędny na Podolu galicyjskiém. Geodiversitas 30, 261–285. Sprawozdania Komisji Fizjograficznej Polskiej Akad. Umiejętności 20, 48–119. İslamoğlu, Y., Harzhauser, M., Gross, M., Jiménez-Moreno, G., Ćorić, S., Kroh, A., Rögl, F., Lozouet, P., 2004. The European Tertiary Neritiliidae (Mollusca, Gastropoda, Neritopsina): van der Made, J., 2010. From Tethys to Eastern Paratethys: Oligocene depositional en- indicators of tropical submarine cave environments and freshwater faunas. Zool. vironments, paleoecology and paleobiogeography of the Thrace Basin (NW Turkey). J. Linnean Soc. 140, 447–467. http://dx.doi.org/10.1111/j.1096-3642.2003.00099.x. Int. J. Earth Sci. 99, 183–200. http://dx.doi.org/10.1007/s00531-008-0378-0. Lydeard,C.,Holznagel,W.E.,Glaubrecht,M.,Ponder,W.F.,2002.Molecularphylogeny Jaskó, S., Krolopp, E., 1991. Negyedidőszaki kéregmozgások és folyóvízi üledékfelhalmozódás of a circum-global, diverse gastropod superfamily (Cerithioidea: Mollusca: a Duna-völgyben Paks és Mohács között. Magyar Állami Földtani Intézet Évi Jelentése Caenogastropoda): pushing the deepest phylogenetic limits of mitochondrial 1989, 65–84. LSU rDNA sequences. Mol. Phylogenet. Evol. 22, 399–. 406 http://dx.doi.org/10. Jekelius, E., 1944. Sarmat und Pont von Soceni (Banat). Mem. Inst. Geol. României 5, 1–167. 1006/mpev.2001.1072. Jiménez-Moreno, G., Mandic, O., Harzhauser, M., Pavelić, D., Vranjković,A.,2008.Vegeta- Macarovici, N., 1940. Recherches géologiques et paléontologiques dans la Bessarabie tion and climate dynamics during the early Middle Miocene from Lake Sinj (Dinaride méridionale (Roumanie). Ann. Sci. Univ. Jassy 36, 177–422. Lake System, SE Croatia). Rev. Palaeobot. Palynol. 152, 237–245. http://dx.doi.org/10. Magrograssi, A., 1928. La fauna levantina di Coo e di Rodi. Atti Soc. Ital. Sci. Nat. Museo 1016/j.revpalbo.2008.05.005. Civico Storia Nat. Milano 67, 249–264. Jiménez-Moreno, G., De Leeuw, A., Mandic, O., Harzhauser, M., Pavelić, D., Krijgsman, W., Magyar, I., Geary, D.H., Müller, P., 1999. Paleogeographic evolution of the Late Miocene Vranjković, A., 2009. Integrated stratigraphy of the early Miocene lacustrine deposits Lake Pannon in Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 147, of Pag Island (SW Croatia): Palaeovegetation and environmental changes in the 151–167. Dinaride Lake System. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 193–206. Magyar, I., Radivojević, D., Sztanó, O., Synak, R., Ujszászi, K., Pócsik, M., 2013. Progradation Jipa, D.C., Olariu, C., 2009. Dacian Basin — depositional architecture and sedimentary of the paleo-Danube shelf margin across the Pannonian Basin during the Late Mio- history of a Paratethys Sea. GeoEcoMar, Bucharest. cene and Early Pliocene. Glob. Planet. Chang. 103, 168–173. http://dx.doi.org/10. Jodot, P., 1958. Les faunes des mollusques continentaux reparties dans le sud-est de 1016/j.gloplacha.2012.06.007. l'Espagne entre le Miocène supérieur et le Quaternaire. Mem. Comunicaciones Inst. Mandic, O., Pavelić, D., Harzhauser, M., Zupanič, J., Reischenbacher, D., Sachsenhofer, R.F., Geol. 17, 3–133. Tadej, N., Vranjković, A., 2009. Depositional history of the Miocene Lake Sinj Kaasschieter, J.P.H., 1961. Foraminifera of the Eocene of Belgium. Inst. R. Sci. Nat. Belg. (Dinaride Lake System, Croatia): a long-lived hard-water lake in a pull-apart tectonic Mém. 147, 1– 271. setting. J. Paleolimnol. 41, 431–452. http://dx.doi.org/10.1007/s10933-008-9235-1. Kadolsky, D., 1975. Zur Paläontologie und Biostratigraphie des Tertiärs im Neuwieder Mandic, O., Kurečić, T., Neubauer, T.A., Harzhauser, M., 2015. Stratigraphic and Becken.I.Taxonomieundstratigrafische Bedeutung von Mollusken. Decheniana palaeogeographic significance of lacustrine mollusks from the Pliocene 128, 113–137. beds in central Croatia. Geol. Croat. 68. http://dx.doi.org/10.4154/gc.2015.12. Kappes, H., Haase, P., 2012. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., Henriksen, M., 74, 1–14. http://dx.doi.org/10.1007/s00027-011-0187-6. Hjort, C., Krinner, G., Lunkka, J.-P., Möller, P., Murray, A., Nikolskaya, O., Saarnisto, M., Katzer, F., 1903. Geologischer Führer durch Bosnien und die Hercegovina. Svendsen, J.I., 2004. Ice-dammed lakes and rerouting of the drainage of northern Landesdruckerei, Sarajevo. Eurasia during the Last Glaciation. Quat. Sci. Rev. 23, 1313–1332. http://dx.doi.org/ Kecskeméti-Körmedy, A., 1980. La faune des mollusques du faciès de bassin Éocène du 10.1016/j.quascirev.2003.12.009. Bakony nord-oriental. A Magyar Állami Földtani Intézet Évkönyve 63, pp. 1–227. Marinescu, F., 1973. Les mollusques pontiens de Tirol (Banat Roumain). Mém. Inst. Géol. Kecskeméti-Körmedy, A., 1990. La faune de mollusques éocènes du Bassin Nagyegyháza- Géophys. 18, 7–56. Csordakút-Mány. A Magyar Állami Földtani Intézet Évkönyve 71, pp. 1–269. Martínez-Ortí, A., 2011. Melanopsis penchinati. The IUCN Red List of Threatened Species Kókay, J., 2006. Nonmarine mollusc fauna from the Lower and Middle Miocene, Bakony 2011: e.T155561A4798342. http://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS. Mts., W Hungary. Geol. Hung. Ser. Palaeontol. 56, 1–196. T155561A4798342.en (Accessed on 08 October 2015). Kolev, I., Georgiev, D., Dedov, I., 2015. Malacofauna of the catchment area of Rusenski Lom Matsukura, K., Tsumuki, H., Izumi, Y., Wada, T., 2009. Physiological response to low tem- River (North Bulgaria). ZooNotes 76, 1–12. perature in the freshwater apple snail, canaliculata (Gastropoda: Kollmann, H.A., 1979. Gastropoden aus den Losensteiner Schichten der Umgebung von ). J. Exp. Biol. 212, 2558–2563. http://dx.doi.org/10.1242/jeb.031500. Losenstein (Oberösterreich). 3. Teil: Cerithiacea (Mesogastropoda). Ann. Naturhist. Mayer, C., 1871. Découverte des couches à Congéries dans le bassin du Rhône. Mus. Wien 82, 11–51. Vierteljahrsschrift Naturforschenden Ges. Zürich 16, 185–203. Kollmann, H.A., 1984. Megalonoda n. gen. (Melanopsidae, Gastropoda) aus der Oberkreide Mazzini, I., Hudáčková, N., Joniak, P., Kováčová, M., Mikes, T., Mulch, A., Rojay, B., Lucifora, der Nördlichen Kalkalpen (Österreich). Ann. Naturhist. Mus. Wien Ser. A 86, 55–62. S., Esu, D., Soulié-Märsche, I., 2013. Palaeoenvironmental and chronological con- Kormos, T., 1903. Beitrage zur Kenntnis der Melanopsis-Arten aus den Thermen von straints on the Tuğlu Formation (Çankır ı Basin, Central Anatolia, Turkey). Turk. Püspökfürdő bei Nagyvárad. Földtani Közlöny 33, 496–503. J. Earth Sci. 22, 747–777. http://dx.doi.org/10.3906/yer-1207-10. Kormos, T., 1905. Über den Ursprung der Thermenfauna von Püspökfürdő. Földtani Meijer, T., Preece, R.C., 1996. Malacological evidence relating to the stratigraphical Közlöny 35, 421–450. position of the Cromerian. In: Turner, C. (Ed.), The Early Middle Pleistocene in Kowalke, T., 2002. Systematic revision of Palaeocene brackish water Gastropoda from Europe. A.A. Balkema, Rotterdam, Brookfield, pp. 53–82. Mons, Belgium, based on their early ontogenetic shells. Bull. Inst. R. Sci. Nat. Belg. Melleville, M., 1843. Mémoire sur les Sables tertiaires inférieures du bassin de Paris, avec 72, 111–134. la description de 78 espèces de coquilles fossiles inédites de ce terrain. Ann. Sci. Géol. Krach, W., 1963. Mollusca of the Babica Clays (Paleocene) of the Middle Carpathians. Pt. I. 2(1–29), 77–120. Gastropoda. Studia Geol. Pol. 14, 1–151. Meon, H., 1963. Revision du Pliocene lacustre de la partie sud du Plateau de Dombes Krauss, F., 1852. Die Mollusken der Tertiärformation von Kirchberg an der Iller. (gisements de Mollon et de Sermenaz) (Doctoral thesis) Lyon, Université de Lyon Jahreshefte Ver. Vaterländische Naturkunde Württemberg 8, 136–157. (77 pp.). Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilson, D.S., 1999. Chronology, causes and Mertin, H., 1939. Über Brackwasserbildungen in der Oberen Kreide des nördlichen progression of the Messinian salinity crisis. Nature 400, 652–655. Harzvorlandes. Nova Acta Leopoldina, Neue Folge 7, 142–263. Krolopp, E., 1977. Alföldi mélyfúrások Zsigmondy-Halaváts-féle Mollusca anyagának Mikhaylovskiy, G.P., 1903. Das Pliocän einiger Gegenden des westlichen Kaukasus. Zapiski revíziója. III. A zombori (Sombor), szabadkai (Subotica), nagybecskerei Imperatorskago S.-Petersburgskago Mineralogicheskago Obshchestva, seriya 2 40, (Zrenjanin) artézikút-fúrások. Magyar Állami Földtani Intézet Évi Jelentése pp. 129–164 (164–177). 1975, 145–155. Mikuž, V., 2005. Panonijski mehkuzci iz okolice Canja pri Sevnici. Geologija 48, 225–243. Krolopp, E., 1981. Negyedidő szaki sztratotípusaink Mollusca-faunája Kisláng. Magyar http://dx.doi.org/10.5475/geologija.2005.019. Állami Földtani Intézet Évi Jelentése 1979, 477–482. Mintaş, O., Vicaş,G.,Mintaş,I.,2012.The influence of the natural factors on the evolution Krolopp, E., 1985. Az egri édesvizi mészkő rétegsor pleisztocén Mollusca-faunája. of the Pețea thermal hydro-geo-ecosystem in the period 2009–2012. Analele Malakológiai Tájékoztató (Malacol. Newsl.) 5, 5–8. Universității din Oradea, Fascicula Protecția Mediului 19, pp. 733–738. Krstić, N., Savić, L., Jovanović, G., Bodor, E., 2003. Lower Miocene lakes of the Balkan Land. Mouahid, A., Idaghdour, M., Ghamizi, M., Moné, H., 1996. Observation of spawn in Acta Geol. Hung. 46, 291–299. Melanopsis praemorsa (Prosobranchia: Melanopsidae). J. Molluscan Stud. 62, 398–402. Kühn, O., 1946. Das Alter der Prominaschichten und der innereozänen Gebirgsbildung. Ndifon, G.T., Ukoli, F.M.A., 1989. Ecology of freshwater snails in south-western Nigeria. I: Jahrb. Geol. Bundesanst. 91, 49–94. Distribution and habitat preferences. Hydrobiologia 171, 231–253. Kühn, O., 1951. Süsswassermiozän von bosnischem Typus in Griechenland. Ann. Géol. Nenadić,D.,Knežević,S.,Bogićević, K., 2009. Stratigraphical and palaeogeographical Pays Hellén. 3, 185–192. characteristics of Pleistocene series in the Sava riparian area at Belgrade (Serbia). Kühn, O., 1963. Das Süsswasserrniozän von Attika. Prakt. Akad. Athinon 38, 370–400. Bull. Nat. Hist. Mus. 2, 63–80. Kuper, R., Kröpelin, S., 2006. Climate-Controlled Holocene Occupation in the Sahara: Neubauer, T.A., Mandic, O., Harzhauser, M., 2011. Middle Miocene freshwater mollusks Motor of Africa's Evolution. Science 313, 803–807. http://dx.doi.org/10.1126/ from Lake Sinj (Dinaride Lake System, SE Croatia; Langhian). Arch. Molluskenkd. science.1130989. 140, 201–237. http://dx.doi.org/10.1127/arch.moll/1869-0963/140/201-237. T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 141

Neubauer, T.A., Harzhauser, M., Kroh, A., 2013a. Phenotypic evolution in a fossil gastropod Pallary, P., 1939. Deuxième addition à la faune malacologique de la Syrie. Mém. Inst. species lineage: evidence for adaptive radiation? Palaeogeogr. Palaeoclimatol. Égypte 39, 1–141. Palaeoecol. 370, 117–126. http://dx.doi.org/10.1016/j.palaeo.2012.11.025. Pană, I., Enache, C., Andreescu, I., 1981. Fauna de moluste a depozitelor cu ligniti din Neubauer, T.A., Mandic, O., Harzhauser, M., Hrvatović, H., 2013b. A new Miocene lacus- Oltenia. Institutul de cercetări, inginerie tehnologică și proiectări miniere pentru trine mollusc fauna of the Dinaride Lake System and its palaeobiogeographic, lignit, Craiova. palaeoecologic, and taxonomic implications. Palaeontology 56, 129–156. http://dx. Pantanelli, D., 1879. Sugli strati miocenici del Casino (Siena) e considerazioni sul miocene doi.org/10.1111/j.1475-4983.2012.01171.x. superiore. Atti della Reale Accademia dei Lincei, Ann. 276, Memorie, Ser. 3 3, Neubauer, T.A., Mandic, O., Harzhauser, M., 2013c. The Middle Miocene freshwater mol- pp. 309–327 lusk fauna of Lake Gacko (SE Bosnia and Herzegovina): taxonomic revision and Pantanelli, D., 1886a. Melanopsis fossili e viventi d'Italia. Boll. Soc. Malacol. Ital. 12, 63–82. paleoenvironmental analysis. Fossil Rec. 16, 77–96. http://dx.doi.org/10.1002/ Pantanelli, D., 1886b. Monografia degli strati pontici del Miocene superiore nella Italia mmng.201300003. settentrionale e centrale. Memorie della Reale Accademia di Scienze, Lettere e d'Arti Neubauer, T.A., Harzhauser, M., Georgopoulou, E., Mandic, O., Kroh, A., 2014a. Replace- di Modena, Ser. 2a 4, pp. 127–231. ment names and nomenclatural comments for problematic species-group names in Papaianopol, I., Marinescu, F., 2003. Les gastropodes. In: Papaianopol, I., Marinescu, F., Europe's Neogene freshwater Gastropoda. Zootaxa 3785, 453–468. http://dx.doi. Krstić, N., Macalet, R. (Eds.), Chronostratigraphie und Neostratotypen. Neogen der org/10.11646/zootaxa.3785.3.7. Zentrale Paratethys, Bd. X, Pl2. Romanien. Editura Academiei Române, București, Neubauer, T.A., Harzhauser, M., Kroh, A., Georgopoulou, E., Mandic, O., 2014a. The pp. 262–295. FreshGEN database: freshwater gastropods of the European Neogene. Available Papp, A., 1953. Die Molluskenfauna des Pannon des Wiener Beckens. Mitt. Geol. Ges. from http://www.marinespecies.org/freshgen. Wien 44, 85–222. Neubauer, T.A., Kroh, A., Harzhauser, M., Georgopoulou, E., Mandic, O., 2014b. Synopsis of Papp, A., 1955. Brack- u. Süsswasserfaunen Griechenlands. V. Bemerkungen über valid species-group taxa for freshwater Gastropoda recorded from the European Melanopsiden der Untergattung Melanosteira Oppenheim, 1891. Ann. Géol. Pays Neogene. ZooKeys 435, 1–6. http://dx.doi.org/10.3897/zookeys.435.8193. Hellén. 6, 122–132. Neubauer, T.A., Mandic, O., Harzhauser, M., 2014d. A new melanopsid species from Papp, A., 1979. Zur Kenntnis neogener Süßwasserfaunen in Attika (Griechenland). Ann. the Middle Miocene Kupres Basin (Bosnia and Herzegovina). Nautilus 128, Géol. Pays Hellén. 29, 664–678. 51–54. Papp, A., Jámbor, Á., Steininger, F.F. (Eds.), 1985. Chronostratigraphie und Neostratotypen. Neubauer, T.A., Harzhauser, M., Georgopoulou, E., Wrozyna, C., 2014e. Population bottle- Miozän der Zentralen Paratethys, Bd. VII, M6. Pannonien (Slavonien und Serbien). neck triggering millennial-scale morphospace shifts in endemic thermal-spring Verlag der Ungarischen Akademie der Wissenschaften, Budapest. melanopsids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 116–128. http://dx.doi. Paucă, M., 1937. Les Mollusques pléistocènes de Băile Episcopești. Bull. Soc. Roumanie org/10.1016/j.palaeo.2014.08.015. Geol. 3, 130–142. Neubauer, T.A., Harzhauser, M., Kroh, A., Georgopoulou, E., Mandic, O., 2015a. A Pavlović, P.S., 1903. Građa za poznavanje tercijara u Staroj Srbiji. Ann. Géol. Péninsule gastropod-based biogeographic scheme for the European Neogene freshwater sys- Balkanique 6, 155–189. tems. Earth Sci. Rev. 143, 98–116. http://dx.doi.org/10.1016/j.earscirev.2015.01.010. Pavlović, P.S., 1927. Donjopontiski mekušci iz okoline Beograda (s narocitim obzirom na Neubauer, T.A., Georgopoulou, E., Kroh, A., Harzhauser, M., Mandic, O., Esu, D., 2015b. fosilnu faunu okoline sela Vrcina). Sprska Akademija nauka, posebna izdanja 66, Synopsis of European Neogene freshwater gastropod localities: updated stratigraphy pp. 1– 121. and geography. Palaeontol. Electron. 18, 3T (7 p.). Pavlović,P.S.,1931.O fosilnoj fauni mekusaca iz Skopske Kotline. Glasnik Skopskog Neubauer, T.A., Harzhauser, M., Georgopoulou, E., Kroh, A., Mandic, O., 2015c. Tectonics, cli- naucnog društva, Odeljenje prirodnih Nauka 9, pp. 1–28. mate, and the rise and demise of continental aquatic species richness hotspots. Proc. Pavlović, P.S., 1932. Novi prilošci za poznavanje fosilne faune iz Kosovske i Natl. Acad. Sci. U. S. A. 112, 11478–11483. http://dx.doi.org/10.1073/pnas.1503992112. Metohiskopodrimske Kotline. Bulletin du Service Géologique du Royaume de Neubauer, T.A., Mandic, O., Harzhauser, M., 2015d. The freshwater mollusk fauna of the Yougoslavie 1, pp. 231–253. Middle Miocene Lake Drniš (Dinaride Lake System, Croatia): a taxonomic and sys- Pavlović, P.S., 1935. Sur la faune fossile de Mollusques des environs de Pec (Serbie du tematic revision. Aust. J. Earth Sci. 108. http://dx.doi.org/10.17738/ajes.2015.0013 Sud). Bulletin de l'Académie serbe des sciences mathématiques et naturelles, B. Sci. (in press). Nat. 2, 43–50. Neubauer, T.A., Harzhauser, M., Mandic, O., Kroh, A., Georgopoulou, E., 2015e. Evolution, Penecke, K.A., 1884. Beiträge zur Kenntniss der Fauna der slavonischen Paludinenschichten. turnovers and spatial variation of the gastropod fauna of the Late Miocene biodiver- II. Congeria, Pisidium, Cardium und die Gasteropoden. Beitr. Paläontol. Österr.-Ungarns sity hotspot Lake Pannon. Palaeogeogr. Palaeoclimatol. Palaeoecol. Orients 4, 15–44. Neumayr, M., 1869. II. Beiträge zur Kenntniss fossiler Binnenfaunen. Jahrb. Kaiserlichen Penecke, K.A., 1885. Das Eocan des Krappfeldes in Kärnten. Sitzungsberichte der Königlichen Geol. Reichsanst. 19, 355–382. Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe 15, Neumayr, M., 1876. Ueber einige neue Vorkommnisse von jungtertiären Binnenmollusken. pp. 327–371. Verh. K. K. Geol. Reichsanst. 1876, 366–368. Petronio, C., Argenti, P., Caloi, L., Esu, D., Girotti, O., Sardella, R., 2003. Updating Neumayr, M., 1880. V. Tertiäre Binnenmollusken aus Bosnien und der Hercegovina. Jahrb. Villafranchian mollusc and mammal faunas in Umbria and Latium (Central Italy). Kaiserlichen Königlichen Geol. Reichsanst. 30, 463–486. Geol. Romana 36, 369–387. Neumayr, M., Paul, C.M., 1875. Die Congerien- und Paludienschichten Slavoniens und Philippi, R.A., 1847. Abbildungen und Beschreibungen neuer oder wenig gekannter deren Faunen. Abh. K. K Geol. Reichsanst. 7, 1–106. Conchylien. Zweiter Band. Th. Fischer, Cassel. Nevesskaya, L.A., 1990. The Pontian in Ukraine, Ciscaucasia and Western Georgia (Euxinic Piller, W.E., Harzhauser, M., 2005. The myth of the brackish Sarmatian Sea. Terra Nova 17, basin). In: Stevanović, P., Nevesskaya, L.A., Marinescu, F., Sokač, A., Jámbor, Á. (Eds.), 450–455. http://dx.doi.org/10.1111/j.1365-3121.2005.00632.x. Chronostratigraphie und Neostratotypen. Neogen der Westlichen (“Zentrale”) Plint, A.G., 1984. A regressive coastal sequence from the Upper Eocene of Hampshire, Paratethys, Bd. VIII, Pl1. Pontien. Verlag der Jugoslawischen Akademie der southern England. Sedimentology 31, 213–225. http://dx.doi.org/10.1111/j.1365- Wissenschaften und Künste und der Serbischen Akademie der Wissenschaften und 3091.1984.tb01960.x. Künste, Zagreb, Beograd, pp. 333–340. Pohlert, T., 2015. The pairwise multiple comparison of mean ranks package (PMCMR). R Noulet, J.-B., 1854. Mémoires sur les coquilles fossiles des terrains d'eau douce du Sud- package. Available from http://CRAN.R-project.org/package=PMCMR. Ouest de la France. Victor Masson, Paris. Popescu-Voiteşti, I., 1910. Contribution à l'étude stratigraphique du Nummulitique de la Novaković, B., Marković, V., Tomović, J., 2013. Distribution of the snail Amphimelania Dépression Gétique (Roumanie occidentale). Thèse Faculté des Sciences de Paris, holandrii Pfeiffer, 1828 (Melanopsidae; Gastropoda) in Serbia in the 2009–2012 peri- Bucarest (98 pp.). od. Water Res. Manag. 3, 21–26. Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G., Kováč, M., 2004. Litho- Odabaşi, D.A., Arslan, N., 2015. Description of a new subterranean nerite: Theodoxus gloeri logical–Paleogeographic maps of Paratethys. 10 Maps. Late Eocene to Pliocene. n. sp. with some data on the freshwater gastropod fauna of Balikdami Wetland (Sa- Cour. Forschungsinst. Senckenberg. 250, 1–46. karya River, Turkey). Ecol. Montenegrina 4, 327–333. Popov, S.V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L.A., Paramonova, N.P., Khondkarian, Olivier, G.A., 1804. Voyage dans l'Empire Othoman, l'Égypte et la Perse, fait par ordre du S.O., Magyar, I., 2006. Late Miocene to Pliocene palaeogeography of the Paratethys gouvernement, pendant les six premières années de la République. Tome second. and its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, Agasse, Paris. 91–106. http://dx.doi.org/10.1016/j.palaeo.2006.03.020. Olujić, J., 1999. O razvojnim nizovima nekoliko melanopsida i prozostenida iz sarmatskih Porumbaru, R.C., 1881. Étude géologique des environs de Craiova, parcours Bucovatzu– naslaga okolice Sinja (Dalmacija, Hrvatska). Hrvatski prirodoslovni muzej/ Cretzesci. Première partie. Gauthier-Villars, Imprimeur-Libraire, Paris. Provincijalat Franjevačke provincije presvetog Otkupitelja, Zagreb/Sinj. Prevost, C., 1821. Sur une nouvelle espèce de mollusque testacé du genre Mélanopside. Oppenheim, P., 1892. Ueber einige Brackwasser- und Binnenmollusken aus der Kreide Bull. Sci. Soc. Philomatique Paris 1821, 136–137. und dem Eocän Ungarns. Z. Dtsch. Geol. Ges. 44, 697–818. Pujante, A., Gallardo, A., 1990. Distribución del género Melanopsis Férussac, 1807 en Oppenheim, P., 1893. Beiträge zur Kenntniss des Neogen in Griechenland. N. Jahrb. Min- algunos ríos de Andalucia Occidental (España). Iberus 9, 439–447. eral. Geol. Paläontol. 2, 170–172. R Core Team, 2015. R: A language and environment for statistical computing. R Founda- Oppenheim, P., 1895. Neue Binnenschnecken aus dem Vicentiner Eocän. Z. Dtsch. Geol. tion for Statistical Computing, Vienna (Available from http://www.R-project.org). Ges. 47, 57–193. Radulescu, C., Enciu, P., Petculescu, A., 2000. On the presence of Prolagurus and Paget, O., 1976. Die Molluskenausbeute der Insel Rhodos. Ann. Naturhist. Mus. Wien 80, Allophaiomys in the Dacic Basin. Trav. Inst. Speologie 'Emole Racovitza' 36, 119–133. 681–780. Reyjol, Y., Hugueny, B., Pont, D., Bianco, P.G., Beier, U., Caiola, N., Casals, F., Cowx, I., Pallary, P., 1901. Sur les mollusques fossiles terrestres, fluviatiles et saumâtres de l'Algérie. Economou, A., Ferreira, T., Haidvogl, G., Noble, R., de Sostoa, A., Vigneron, T., Virbickas, Mém. Soc. Géol. Fr. Paléontol. Mém. 22 (9), 1–213. T., 2007. Patterns in species richness and endemism of European freshwater fish. Glob. Pallary, P., 1924. Révision des Melanopsis de l'Espagne. Bull. Soc. Hist. Nat. Afr. Nord 15, Ecol. Biogeogr. 16, 65–75. http://dx.doi.org/10.1111/j.1466-822x.2006.00264.x. 240–255. Robles, F., 1975. El género “Melanopsis” Férussac en el Neógeno continental de la cuenca Pallary, P., 1926. Répertoire des Melanopsis fossiles et vivantes connus en 1925. Bull. Soc. del río Júcar (1.a nota). Real Sociedad Española de Historia Natural, Vol. Extraordinario Hist.Nat.Afr.Nord17(73 –93), 126–136. Primer Centenario (1971) 1, pp. 357–369. 142 T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143

Rögl, F., 1999. Mediterranean and Paratethys. Facts and Hypotheses of an Oligocene to Stefanescu, S., 1896. Études sur les Terrains tertiaires de Roumanie. Contribution à l'étude Miocene Paleogeography (Short overview). Geol. Carpath. 50, 339–349. des faunes sarmatique, pontique et levantine. Mémoirs de la Société Géologique de Rollier, L., 1910. Nouvelles observations sur le sidérolithique et la molasse oligocène du France, Mémoir 15. Paléontologique 6, 1–147. Jura central et septentrionale. Matériaux pour la Carte Géologique de la Suisse. Stel'mashchuk, N.N., Stadnychenko, A.P., Izzatullaev, Z.I., 2012. Fagotia acicularis Nouvelle série 25, pp. 1–148. (Mollusca, Gastropoda, Pectinibranchia, Melanopsidae) Ukrayiny: deshcho pro Rosenbaum, G., Lister, G.S., Duboz, C., 2002. Reconstruction of the tectonic evolution of the rozmnozhennya i rozvytok. Naukovi Zapysky Ternopil's'koho Natsional'noho western Mediterranean since the Oligocene. In: Rosenbaum, G., Lister, G.S. (Eds.), Re- Pedahohichnoho Universytetu Imeni Volodymyra Hnatyuka. Ser. Biol. 51, 267–271. construction of the Evolution of the Alpine–Himalayan Orogen. Journal of the Virtual Stepanović, B., 1938. Gornji Miocen u Kamenom Potoku kod sela Kumodraža. Ann. Géol. Explorer 8, pp. 107–130. http://dx.doi.org/10.3809/jvirtex.2002.00053. Péninsule Balkanique 15, 51–102. Royo Gómez, J., 1922. El Mioceno continental ibérico y su fauna malacológica. Comisión Stevanović, P., Nevesskaya, L.A., Marinescu, F., Sokač, A., Jámbor, Á. (Eds.), 1990. de investigaciones paleontológicas y prehistóricas 30, pp. 1–230. Chronostratigraphie und Neostratotypen. Neogen der Westlichen (“Zentrale”) Ruddiman, W.F., Sarnthein, M., Backman, J., Baldauf, J.G., Curry, W., Dupont, L.M., Janecek, Paratethys, Bd. VIII, Pl1. Pontien. Verlag der Jugoslawischen Akademie der T., Pokras, E.M., Raymo, M.E., Stabell, B., Stein, R., Tiedemann, R., 1989. Late Miocene Wissenschaften und Künste und der Serbischen Akademie der Wissenschaften und to Pleistocene evolution of climate in Africa and the low-latitude Atlantic: overview Künste, Zagreb, Beograd. of Leg 108 results. Proc. Ocean Drill. Program Sci. Results 108, 463–484. Stewart, D.J., Ruffell, A., Wach, G., Goldring, R., 1991. Lagoonal sedimentation and fluctu- Rust, J., 1997. Evolution, Systematik, Paläoökologie und stratigraphischer Nutzen ating salinities in the Vectis Formation (Wealden Group, Lower Cretaceous) of the neogener Süß- und Brackwasser-Gastropoden im Nord-Ägäis-Raum. Palaeontogr. Isle of Wight, southern England. Sediment. Geol. 72, 117–134. http://dx.doi.org/10. Abt. A 243, 37–180. 1016/0037-0738(91)90126-X. Rzehak, A., 1883. Beiträge zur Kenntniss der Tertiärformation im ausseralpinen Wiener Stoica, M., Lazăr, I., Krijgsman, W., Vasiliev, I., Jipa, D., Floroiu, A., 2013. Paleoenvironmental Becken (Der Grunder Horizont in Mähren). Verhandlungen des naturforschenden evolution of the East Carpathian foredeep during the late Miocene-early Pliocene Vereins in Brünn 21, pp. 31–49. (Dacian Basin; Romania). Glob. Planet. Chang. 103, 135–148. http://dx.doi.org/10. Sacco, F., 1889. Aggiunte alla fauna malacologica estramarina fossile del Piemonte e 1016/j.gloplacha.2012.04.004. della Ligura. Memorie della Reale Accademia delle Scienze di Torino, Serie II 39, Stoliczka, F., 1860. Über eine der Kreideformation angehörige Süsswasserbildung in den pp. 61–98. nordöstlichen Alpen. Sitzungsberichte der mathematisch-naturwissenschaftlichen Sacco, F., 1895. I molluschi dei terreni Terziarii del Piemonte e della Liguria. Parte Classe der Kaiserlichen Akademie der Wissenschaften 38, pp. 482–496. XVIII (Melaniidae, , Fossaridae, , , Paludinidae Strausz, L., 1941. Melanopsisok változékonysága. Földtani Közlöny 71 (135–146), e Valvatidae). Torino, Carlo Clausen. 163–170. Sandberger, C.L.F., 1858–1863. Die Conchylien des Mainzer Tertiärbeckens. C. W. Kreidel, Strong, E.E., Gargominy, O., Ponder, W.F., Bouchet, P., 2008. Global diversity of gastropods Wiesbaden. (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595, 149–166. http://dx.doi. Sandberger, C.L.F., 1870–1875. Die Land- und Süßwasser-Conchylien der Vorwelt. C. W. org/10.1007/s10750-007-9012-6. Kreidel, Wiesbaden. Strong, E.E., Colgan, D.J., Healy, J.M., Lydeard, C., Ponder, W.F., Glaubrecht, M., 2011. San'ko, A.F., 2007. Chetvertichnyye presnovodnyye mollyuski Belarusi i smezhnykh Phylogeny of the gastropod superfamily Cerithioidea using morphology and regionov Rossii, Litvy, Pol'shi (atlas-opredelitel') [Quaternary freshwater mollusks molecules. Zool. J. Linnean Soc. 162, 43–89. http://dx.doi.org/10.1111/j.1096- of Belarus and neighboring regions of Russia, Lithuania, Poland (field guide)]. Institut 3642.2010.00670.x. geokhimii i geofiziki NAN Belarusi, Minsk. Sümegi, P., Molnár, D., Sávai, S., Gulyás, S., 2012a. Malacofauna evolution of the Lake Pețea Schlickum, W.R., 1964. Die Molluskenfauna der Süßbrackwassermolasse Niederbayerns. (Püspökfürdő), Oradea region, Romania. Nymphaea - Folia Nat. Bihariae 34, 5–29. Arch. Molluskenkd. 93, 1–70. Sümegi, P., Molnár, D., Sávai, S., Töviskes, R.J., 2012b. Preliminary radiocarbon dated Schlickum, W.R., 1970a. Die Molluskenfauna der Kirchberger Schichten des Chiemsee- paleontological and geological data for the Quaternary malacofauna at Püspökfürdő Gebietes (Tagesaufschlüsse der Ratzinger Höhe und Kohlenbohrungen BI-B14 im (Baile 1 Mai, Oradea region, Romania). Malakológiai Tájékoztató 30, 31–37. Gebiet Endorf-Wasserburg/Inn-Obing). Geol. Bavarica 63, 143–158. Summesberger, H., Kennedy, W.J., 1996. Turonian ammonites from the Gosau Group Schlickum, W.R., 1970b. Die Molluskenfauna der Kirchberger Schichten der Bohrung (Upper Cretaceous; northern Calcareous Alps; Austria) with a revision of Barroisiceras Pliening 101–104 (nordöstlich München). Geol. Bavarica 63, 159–162. haberfellneri (Hauer, 1866). Beitr. Paläontol. 21, 105–177. Schlickum, W.R., Strauch, F., 1979. Die Land- und Süßwassermollusken der pliozänen Syrides, G.E., 1998. Paratethyan mollusc faunas from the Neogene of Macedonia and Deckschichten der rheinischen Braunkohle. Abh. Senckenb. Naturforsch. Ges. 536, Thrace, Northern Greece. Rom. J. Stratigr. 78, 171–180. 1–144. Syrides, G., Koliadimou, K., 1994. A new Pleistocene locality with continental mollusks Schréter, Z., 1975. Tanulmány az alsópleisztocén korú Melanopsidák körébő l. Földtani and micromammals in Strymon Basin (Macedonian, Greece). Proceedings of Közlöny 105, 1–22. the 7th Congress, Thessaloniki, Bulletin of the Geological Society of Greece 30, Schütt, H., 1965. Zur Systematik und Ökologie türkischer Süßwasserprosobranchier. Zool. pp. 331–339. Meded. 41, 43–72. Szőts, E., 1953. Mollusqes éocènes de la Hongrie. I. Les mollusques éocènes des environs Schütt, H., 1976. Zur Molluskenfauna der unterpliozänen Süßwasserkalke von Attika. de Gánt. Geol. Hung. Ser. Palaeontol. 22, 1–270. Arch. Molluskenkd. 107, 35–61. Taner, G., 1974. Denizli bölgesi Neojeninin paleontolojik ve stratigrafiketüdü.Bull.Miner. Schütt, H., 1988. Mollusken aus den tertiären Brackwasserschichten von Githion in Res. Explor. Inst. Turk. (MTA) 82, 89–126. Lakonia (Griechenland). Geol. Palaeontol. 22, 145–155. Tesakov, A.S., Titov, V.V., Leonova, N.B., Velichko, A.A., Simakova, A.N., Zastrozhnov, A.S., Schütt, H., Besenecker, H., 1973. Eine Molluskenfauna aus dem Neogen von Chios (Ägäis). Frolov, P.D., 2010. Quaternary Stratigraphy and Paleontology of the Southern Arch. Molluskenkd. 103, 1–29. Russia: Connections Between Europe, Africa and Asia: Programme and Guidebook Schütt, H., Bilgin, F.H., 1974. Recent Melanopsines of the Aegean. Arch. Molluskenkd. 104, of Excursions of the International INQUA-SEQS Conference (Rostov-on-Don, June 59–64. 21–26, 2010). Insitute of the Russian Academy of Sciences, Southern ScientificCentre Seninski, K., 1905. Novyya Dannyya o neogenovych' plastach' Yugozapadnogo RAS, Rostov-on-Don. Zakavkaz'ya. Trudy Obshchestva Estestvoispytateley pri Imperatorskom Yuryevskom Thomä, C., 1845. Fossile Conchylien aus den Tertiärschichten bei Hochheim und Wiesba- Universitete 16, pp. 1–80. den gesammelt und im naturhistorischen Museum zu Wiesbaden ausgestellt. Jahrb. Shevenell, A.E., Kennett, J.P., Lea, D.W., 2004. Middle Miocene Southern ocean cooling and Ver. Naturkunde Nassau 2, 125–162. Antarctic cryosphere expansion. Science 305, 1766–1770. http://dx.doi.org/10.1126/ Tian, J., Yang, M., Lyle, M.W., Wilkens, R., Shackford, J.K., 2013. Obliquity and long eccen- science.1100061. tricity pacing of the Middle Miocene climate transition. Geochem. Geophys. Geosyst. Shevenell, A.E., Kennett, J.P., Lea, D.W., 2008. Middle Miocene ice sheet dynamics, deep- 14, 1740–1755. http://dx.doi.org/10.1002/ggge.20108. sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem. Tsigenopoulos, C.S., Durand, J.D., Ünlü, E., Berrebi, P., 2003. Rapid radiation of the Geophys. Geosyst. 9, Q02006. http://dx.doi.org/10.1029/2007GC001736. Mediterranean Luciobarbus species (Cyprinidae) after the Messinian salinity crisis Sinzov, I., 1883. Geologicheskoye izsledovanie Bessarabii i prilegayushchey k ney chasti of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis. Biol. khersonskoy gubernii. Mater. Geol. Ross. 11, 1–142. J. Linn. Soc. 80, 207–222. http://dx.doi.org/10.1046/j.1095-8312.2003.00237.x. Sîrbu, I., Sîrbu, M., Benedek, A.M., 2010. The freshwater Mollusca fauna from Banat Tytar, V., Makarova, N., 2015. Distribution of the species Fagotia (Romania). Travaux du Muséum National d'Histoire Naturelle “Grigore Antipa” 53, (Gastropoda, Melanopsidae) in Ukraine according to climatic factors. I. Fagotia esperi. pp. 21–43. http://dx.doi.org/10.2478/v10191-010-0003-x. Vestn. Zool. 49, 341–350. http://dx.doi.org/10.1515/vzoo-2015-0037. Sîrbu, I., Gagiu, A., Benedek, A.M., 2013. On the brink of extinction: fate of the Pețea ther- Van Damme, D., 1984. The Freshwater Mollusca of Northern Africa: Distribution, mal lake (Romania) and its endemic species. Tentacle 21, 34–37. Biogeography and Palaeoecology (Developments in Hydrobiology, 25). W. Junk, Smoleń, M., Falniowski, A., 2009. Molecular phylogeny and estimated time of divergence Dordrecht. in the Central European Melanopsidae: Melanopsis, Fagotia and Holandriana Van Damme, D., Van Bocxlaer, B., 2009. Freshwater Molluscs of the Nile Basin, Past and (Mollusca: Gastropoda: Cerithioidea). Folia Malacologica 17, 1–9. http://dx.doi.org/ Present. In: Dumont, H.J. (Ed.), The Nile: Origin, Environments, Limnology and 10.2478/v10125-009-0001-4. Human Use. Springer Netherlands, Dordrecht, pp. 585–629. Sowerby, G.B., 1821–1834. The genera of recent and fossil shells, for the use of students in Van Damme, D., Ghamizi, M., Soliman, G., McIvor, A., Seddon, M.B., 2010. The status and conchology and geology 2 volumes. Privately Published, London. dsitribution of freshwater molluscs. In: García, N., Cuttelod, A., Abdul Malak, D. Stache, G., 1889. Die Liburnische Stufe und deren Grenz-horizonte. Eine Studie über die (Eds.), The Status and distribution of Freshwater Biodiversity in Northern Africa. Schichtenfolgen der cretacisch-eocänen oder protocänen Landbildungsperiode im IUCN, Gland, Switzerland, Cambridge, UK, and Malaga, Spain, pp. 29–50. Bereiche der Küstenländer von Österreich-Ungarn. Abhandlungen der k. k. Geol. van Leeuwen, C.H.A., van der Velde, G., van Groenendael, J.M., Klaassen, M., 2012a. Gut Reichsanst. 13, 1–170. travellers: internal dispersal of aquatic organisms by waterfowl. J. Biogeogr. 39, Stampfli, G., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic 2031 –2040. http://dx.doi.org/10.1111/jbi.12004. constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. van Leeuwen, C.H.A., van der Velde, G., van Lith, B., Klaassen, M., 2012b. Experimental Earth Planet. Sci. Lett. 196, 17–33. http://dx.doi.org/10.1016/S0012-821X(01)00588-X. quantification of long distance dispersal potential of aquatic snails in the gut of T.A. Neubauer et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 444 (2016) 124–143 143

migratory birds. PLoS ONE 7, e32292. http://dx.doi.org/10.1371/journal.pone. Westerlund, C.A., 1886. Fauna der in der paläarctischen Region (Europa, Kaukasien, Sibirien, 0032292. Turan, Persien, Kurdistan, Armenien, Mesopotamien, Kleinasien, Syrien, Arabien, van Leeuwen, C.H.A., Huig, N., van der Velde, G., van Alen, T.A., Wagemaker, C.A.M., Egypten, Tripolis, Tunesien, Algerien und Marocco) lebenden Binnenconchylien. VI. Sherman, C.D.H., Klaassen, M., Figuerola, J., 2013. How did this snail get here? Several Fam. Ampullariidae, Paludinidae, Hydrobiidae, Melapiidae, Valvatidae & Neritidae. dispersal vectors inferred for an aquatic invasive species. Freshw. Biol. 58, 88–99. Håkan Ohlsson, Lund. http://dx.doi.org/10.1111/fwb.12041. Wilke, T., 2003. Salenthydrobia gen. nov. (: Hydrobiidae): a potential relict of Vidal, L.M., 1893. Nota geologica sobre la presencia de la formación lacustre de Rilly en el the Messinian salinity crisis. Zool. J. Linnean Soc. 137, 319–336. Pirineo Catalán. Boletín de la Real Academia de Ciencias y Artes de Barcelona. Época 3 Willmann, R., 1980. Die neogenen Süßwassergastropoden von Chersonisos (Kreta). (1), 135–141. Neues Jahrb. Geol. Palaontol. Abh. 159, 273–295. Vidal, L.M., 1974. Datos para el conocimiento del terreno garumnense de Cataluña. Boletín Willmann, R., 1981. Evolution, Systematik und stratigraphische Bedeutung der de la Comisión del mapa geológico de España 1, pp. 209–247. neogenen Süßwassergastropoden von Rhodos und Kos/Ägäis. Palaeontogr. Abt. Viquesnel, A., 1846. Journal d'un Voyage dans la Turquie d'Europe II. Mém. Soc. Géol. Fr. A 174, 10–235. Sér. 2 (1), 207–303. Willmann, R., 1982. Biostratigraphisch wichtige Süßwassergastropoden (Prosobranchia, Vranković, J., Labus-Blagojević, S., Csanyi, B., Makovinska, J., Cvetković,O.,Gačić,Z., Hydrobiidae) aus dem Neogen des Ägäis-Raumes. Neues Jahrb. Geol. Palaontol. Blagojević, D., Paunović, M., 2012. Antioxidant enzymes and GST activity in natural Abh. 162, 304–331. populations of Holandriana holandrii from the Bosna River. Turk. J. Biol. 36, Willmann, R., 1985. Responses of the Plio-Pleistocene freshwater gastropods of Kos 477–485. http://dx.doi.org/10.3906/biy-1111-43. (Greece, Aegean Sea) to environmental changes. In: Bayer, U., Seilacher, A. (Eds.), Wagreich, M., 2001. A 400-km-long piggyback basin (Upper Aptian-Lower Cenomanian) Sedimentary and Evolutionary Cycles. Springer-Verlag, Berlin, pp. 295–321. in the Eastern Alps. Terra Nova 13, 401–406. Zachos, J.C., Dickens, G.R., Zeeve, R.E., 2008. An early Cenozoic perspective on greenhouse Welter-Schultes, F.W., 2012. European non-marine molluscs, a guide for species identifi- warming and carbon-cycle dynamics. Nature 451, 279–283. http://dx.doi.org/10. cation. Planet Poster Editions, Göttingen. 1038/nature06588. Wenz, W., 1923–1930. Fossilium Catalogus I: Animalia. Gastropoda extramarina tertiaria Zeissler, H., 1968. Mollusken aus dem altpleistozänen Unstrutkies von Kalbsrieth. Berichte vol. IX. W. Junk, Berlin, pp. 2503–2886 (1929). der Deutschen Gesellschaft für Geologische Wissenschaften, Reihe A, Geologie und Wenz, W., 1924. Die Flammenmergel der Silvanaschichten und ihre Fauna. Jahresber. Paläontologie 13, pp. 401–413. Mitt. Oberrhein Geol. Ver. 13, 181–187. Živković, M., 1893. Über das Tertiär des mittleren Timok-Beckens. Ann. Géol. Péninsule Wenz, W., 1933. Zur Land- und Süßwassermolluskenfauna der subalpinen Molasse des Balkanique 4 (37–118), 147–168. Pfändergebiets. Senckenbergiana 15, 7–12. Zunino, M., Pavia, G., 2009. Lower to Middle Miocene mollusc assemblages from the Wenz, W., 1935. Weitere Beiträge zur Land- und Süßwasser-Molluskenfauna der Torino Hills (NW Italy): Synthesis of new data and chronostratigraphical arrange- subalpinen Molasse des Pfändergebietes. Senckenbergiana 17, 223–225. ment. Riv. Ital. Paleontol. Stratigr. 115, 349–370. Wenz, W., 1942. Die Mollusken des Pliozäns der rumänischen Erdöl-Gebiete als Leitversteinerungen für die Aufschluß-Arbeiten. Senckenbergiana 24, 1–293.