Comparative Analysis Reveals the Complex Role of Histoblast Nest Size
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4. -
F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera
F. Christian Thompson Neal L. Evenhuis and Curtis W. Sabrosky Bibliography of the Family-Group Names of Diptera Bibliography Thompson, F. C, Evenhuis, N. L. & Sabrosky, C. W. The following bibliography gives full references to 2,982 works cited in the catalog as well as additional ones cited within the bibliography. A concerted effort was made to examine as many of the cited references as possible in order to ensure accurate citation of authorship, date, title, and pagination. References are listed alphabetically by author and chronologically for multiple articles with the same authorship. In cases where more than one article was published by an author(s) in a particular year, a suffix letter follows the year (letters are listed alphabetically according to publication chronology). Authors' names: Names of authors are cited in the bibliography the same as they are in the text for proper association of literature citations with entries in the catalog. Because of the differing treatments of names, especially those containing articles such as "de," "del," "van," "Le," etc., these names are cross-indexed in the bibliography under the various ways in which they may be treated elsewhere. For Russian and other names in Cyrillic and other non-Latin character sets, we follow the spelling used by the authors themselves. Dates of publication: Dating of these works was obtained through various methods in order to obtain as accurate a date of publication as possible for purposes of priority in nomenclature. Dates found in the original works or by outside evidence are placed in brackets after the literature citation. -
Development and Genetic Regulation of the Novel Abdominal
DEVELOPMENT AND GENETIC REGULATION OF THE NOVEL ABDOMINAL APPENDAGES IN THE MALE SEPSID FLY, THEMIRA BILOBA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Bodini Jeevanthika Herath In Partial Fulfillment for the Degree of MASTER OF SCIENCE Major Program: Environmental & Conservation Sciences July 2013 Fargo, North Dakota North Dakota State University Graduate School Title DEVELOPMENT AND GENETIC REGULATION OF THE NOVEL ABDOMINAL APPENDAGES IN THE MALE SEPSID FLY, THEMIRA BILOBA By Bodini Jeevanthika Herath The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Julia Bowsher Chair Dr. Craig Stockwell Dr. Katie Reindl Dr. Stephen Foster Approved: 06.27.2013 Craig Stockwell Date Department Chair ABSTRACT Evolutionary novel structures do not have a known homology. They often provide a novel function to the organism. Some species of sepsid flies (family Sepsidae) have evolved novel abdominal appendages on the fourth segment in males and are thought to be used during mating, to stimulate the female abdomen. Controlled laboratory experiments were conducted to identify the necessity of these appendages in sepsid Themira biloba. Surgical manipulation of the bristle length of the appendages, specifically the manipulation of long bristles; prevented successful mating. In-situ hybridization was done to examine the expression of abdominal-A and Abdominal-B genes in sepsid T. biloba, and to determine whether their expression has deviated in forming the appendages. However, the expression domains of these genes are conserved in T. -
A Report on Some Miocene Diptera from Florissant, Colorado
AMEIR]ICAN MUSEUM NOVITATES PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CITY OF NEW YORK FEBRUARY 3, 1949 NIJMBER 1407 A REPORT ON SOME MIOCENE DIPTERA FROM FLORISSANT, COLORADO BY AXEL LEONARD MELANDERI Florissant, Colorado, is justly famous for the multitude of fossils that have been discovered there. In Miocene times the region was the scene of intense volcanic activity. Subterranean explosions now and again showered poisonous fumes and fine ashes on the creatures of the area to overwhelm and bury them. Outbursts of molten lava descending on shallow Lake Florissant and the adjacent swamps boiled the water and baked the silt into shale. Ants and beetles crawling over the marshland were en- tombed. Insects flying over the water instantaneously perished, dropping to the surface, and then were carried down by the cloud of volcanic dust falling upon them. As they lay sprawled out, some flat, others on their side, many left an imprint in the accumulating silt. Perhaps the sulphurous gases preserved them from immediate decay, or their bodies were sterilized in the boiling water, which might account for the astounding number of fossilized specimens now being uncovered in this locality. It is interesting to note that frequently the expanded abdo- mens of the fossils, evidenced by the wide interstices between the sclerites, suggest an internal bloating while the insects were being encased in the drying mud, as if they had been boiled. In Yellowstone National Park, insects can be seen to drop in their flight over the fumaroles and hot pools. Their bodies when seen in the water show a similar puffing of the abdominal segments. -
PROVISIONAL ATLAS of the Is.11L4 SEPSIDAE(DIPTERA) S OF
PROVISIONAL ATLAS OF THE REF sis.11L4 SEPSIDAE(DIPTERA) OF THE BRITISH ISLES ADRIAN PONT BIOLOGICAL RECORDS CENTRE NATURAL ENVIRONMENT RESEARCH COUNCIL Printed in Great Britain by Middletons of Ambleside C NERC Copyright 1987 Published in 1987 by Institute of Terrestrial Ecology Merlewood Research Station Orange-over-Sands Cumbria 1411 7H/4 ISBN 1 870393 00 7 The Institute of Terrestrial Ecology was (CIE) established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 14 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes ef land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man-made change. The results of this research are available to those respensible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research. The Biological Records Centre is operated by ITE, and receives financial support from the Nature Conservancy Council. It seeks to help naturalists and research biologists to co-ordinate their efforts in studying the occurrence of plants and animals in the British Isles, and to make the results of these studies available to others. -
Vickermania Gen. Nov., Trypanosomatids That Use Two Joined Flagella to Resist Midgut Peristaltic Flow Within the Fly Host Alexei Y
Kostygov et al. BMC Biology (2020) 18:187 https://doi.org/10.1186/s12915-020-00916-y RESEARCH ARTICLE Open Access Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host Alexei Y. Kostygov1,2* , Alexander O. Frolov2, Marina N. Malysheva2, Anna I. Ganyukova2, Lyudmila V. Chistyakova2, Daria Tashyreva3, Martina Tesařová3, Viktoria V. Spodareva1,2, Jana Režnarová1, Diego H. Macedo1, Anzhelika Butenko1,3, Claudia M. d’Avila-Levy4, Julius Lukeš3,5 and Vyacheslav Yurchenko1,6 Abstract Background: The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector- transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. Results: Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host’s intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. Conclusions: We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. -
Evidence for Deep Regulatory Similarities in Early Developmental Programs Across Highly Diverged Insects
GBE Evidence for Deep Regulatory Similarities in Early Developmental Programs across Highly Diverged Insects Majid Kazemian1,2,y, Kushal Suryamohan3,4,y,Jia-YuChen1,y, Yinan Zhang1, Md. Abul Hassan Samee1, Marc S. Halfon3,4,5,6,*, and Saurabh Sinha1,7,* 1Department of Computer Science, University of Illinois at Urbana-Champaign 2Laboratory of Molecular Immunology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 3Department of Biochemistry, University at Buffalo-State University of New York 4NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 5Department of Biological Sciences, University at Buffalo-State University of New York 6Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 7Institute of Genomic Biology, University of Illinois at Urbana-Champaign *Corresponding author: E-mail: [email protected]; [email protected]. yThese authors contributed equally to this work. Accepted: August 17, 2014 Abstract Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila- like “long germband” development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied -
Diptera) and the Cost of Male Copulations in Saltella Sphondylii
Org Divers Evol (2011) 11:253–261 DOI 10.1007/s13127-011-0054-2 ORIGINAL ARTICLE New information on the evolution of mating behaviour in Sepsidae (Diptera) and the cost of male copulations in Saltella sphondylii Denise Siew Hoong Tan & Sheng Rong Ng & Rudolf Meier Received: 24 December 2010 /Accepted: 26 July 2011 /Published online: 13 August 2011 # Gesellschaft für Biologische Systematik 2011 Abstract Here we describe the hitherto unknown Introduction details of the highly unusual mating behaviour of Saltella sphondylii—a widely cited model for male TheSepsidae(“black scavenger flies”)are,withap- longevity costs caused by multiple copulations. When proximately 320 described species, a moderately large compared to the known mating behaviour of 28 sepsid family of acalyptrate flies (Diptera: Cyclorrhapha: species, we find five unique behavioural elements based Schizophora) occurring in all zoogeographic regions on frame-by-frame analyses of video-recordings. These (Ozerov 2005). Many species are attracted in large new behaviours are documented with video clips. We numbers to dung, carrion, and other decaying organic suggest that the male longevity costs could be due to substrates where they can be recognized readily based on copulation bouts that involve multiple insertions of a an ant-like habitus that is caused by the constriction of the comparatively membranous phallus into the female. We first two abdominal segments (Pont and Meier 2002). At compare the phallus of the Saltella sphondylii to those the substrate, the females will feed and oviposit while the from three other species (Themira putris, Parapaleosepsis males attempt to copulate with females. Many sepsid plebeia, Sepsis punctum). -
Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 28. sep.. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L. -
East Devon Pebblebed Heaths Providing Space for Nature Biodiversity Audit 2016 Space for Nature Report: East Devon Pebblebed Heaths
East Devon Pebblebed Heaths East Devon Pebblebed Providing Space for East Devon Nature Pebblebed Heaths Providing Space for Nature Dr. Samuel G. M. Bridgewater and Lesley M. Kerry Biodiversity Audit 2016 Site of Special Scientific Interest Special Area of Conservation Special Protection Area Biodiversity Audit 2016 Space for Nature Report: East Devon Pebblebed Heaths Contents Introduction by 22nd Baron Clinton . 4 Methodology . 23 Designations . 24 Acknowledgements . 6 European Legislation and European Protected Species and Habitats. 25 Summary . 7 Species of Principal Importance and Introduction . 11 Biodiversity Action Plan Priority Species . 25 Geology . 13 Birds of Conservation Concern . 26 Biodiversity studies . 13 Endangered, Nationally Notable and Nationally Scarce Species . 26 Vegetation . 13 The Nature of Devon: A Biodiversity Birds . 13 and Geodiversity Action Plan . 26 Mammals . 14 Reptiles . 14 Results and Discussion . 27 Butterflies. 14 Species diversity . 28 Odonata . 14 Heathland versus non-heathland specialists . 30 Other Invertebrates . 15 Conservation Designations . 31 Conservation Status . 15 Ecosystem Services . 31 Ownership of ‘the Commons’ and management . 16 Future Priorities . 32 Cultural Significance . 16 Vegetation and Plant Life . 33 Recreation . 16 Existing Condition of the SSSI . 35 Military training . 17 Brief characterisation of the vegetation Archaeology . 17 communities . 37 Threats . 18 The flora of the Pebblebed Heaths . 38 Military and recreational pressure . 18 Plants of conservation significance . 38 Climate Change . 18 Invasive Plants . 41 Acid and nitrogen deposition. 18 Funding and Management Change . 19 Appendix 1. List of Vascular Plant Species . 42 Management . 19 Appendix 2. List of Ferns, Horsetails and Clubmosses . 58 Scrub Clearance . 20 Grazing . 20 Appendix 3. List of Bryophytes . 58 Mowing and Flailing .