Structural Basis for Substrate Specificity and Catalysis of Human Histone Acetyltransferase 1

Total Page:16

File Type:pdf, Size:1020Kb

Structural Basis for Substrate Specificity and Catalysis of Human Histone Acetyltransferase 1 Correction BIOCHEMISTRY Correction for “Structural basis for substrate specificity and ca- talysis of human histone acetyltransferase 1,” by Hong Wu, Natasha Moshkina, Jinrong Min, Hong Zeng, Jennifer Joshua, Ming-Ming Zhou, and Alexander N. Plotnikov, which appeared in issue 23, June 5, 2012, of Proc Natl Acad Sci USA (109:8925– 8930; first published May 21, 2012; 10.1073/pnas.1114117109). The authors note that the review article by M. R. Parthun (ref. 11) provided an excellent summary of the structure and bio- chemical function of HAT1 as a histone acetyltransferase, and served as background introduction for our study. As such, de- scription of some of the specific biochemical functions of HAT1 was not appropriately noted in our article and should be cited and quoted in the following sections: On page 8925, left column, second paragraph, lines 11–15, “In vitro, HAT1 specifically acetylates Lys5 and Lys12 of free (nonnucleosomal) histone H4, and “this specificity is entirely consistent with the pattern of acetylation found on newly syn- thesized histone H4” from many organisms (11).” On page 8925, left column, second paragraph, lines 18–22, “The p46/48 protein “is a WD40 repeat protein” involved in “a wide variety of chromatin-modifying complexes” (11). In yeast, “the association of HAT2 with HAT1 increases the catalytic activity of” HAT1 “by a factor of 10 and appears to function by increasing” HAT1 binding to histone H4 (2, 11).” On page 8925, right column, first full paragraph, lines 8–10, ““Once in the nucleus, the HAT1–HAT2 H3–H4 complex be- comes associated with the histone chaperone/chromatin assem- bly factor HIF1 to form the NuB4 complex” (11).” On page 8930, left column, first full paragraph, lines 1–9, “Because of the important role of HAT1 in chromatin assembly, “a number of studies have begun to link HAT1 to” different types of human cancer (11). “The levels of HAT1” have been found “to increase substantially in liver tumors” (11, 29). Also, “HAT1 mRNA and protein levels are elevated in primary and metastatic human colon cancer tissues” (11, 30). In addition, immunohistochemical studies show that HAT1 is primarily nu- clear in normal cells, but the localization of HAT1 largely shifted to cytoplasm in the tumor tissues (11, 30).” Additionally, Campos, et al. (ref. 12) should be quoted in the following section: On page 8925, right column, first full paragraph, lines 10–16, “In human cells, “the sNASP chaperone binds H3.1–H4 heter- odimers and presents the H4 carboxyl domain to RbAp46,” which “recruits HAT1 activity. After acetylation of histone H4, the complex is stabilized and the histones” are transferred to the ASF1B chaperone. “ASF1B associates with importin-4, and the histones are then transported into the nucleus” (12).” www.pnas.org/cgi/doi/10.1073/pnas.1317790110 CORRECTION www.pnas.org PNAS | November 5, 2013 | vol. 110 | no. 45 | 18339 Downloaded by guest on September 28, 2021 Correction BIOCHEMISTRY Correction for “Structural basis for substrate specificity and ca- talysis of human histone acetyltransferase 1,” by Hong Wu, Natasha Moshkina, Jinrong Min, Hong Zeng, Jennifer Joshua, Ming-Ming Zhou, and Alexander N. Plotnikov, which appeared in issue 23, June 5, 2012, of Proc Natl Acad Sci USA (109:8925– 8930; first published May 21, 2012; 10.1073/pnas.1114117109). Several readers raised allegations of plagiarism concerning the work noted above. The authors note: “The review of this matter was conducted by a subcommittee of the Research Integrity Committee at Icahn School of Medicine at Mount Sinai (New York). The subcommittee did not find that there was plagiarism, but there were findings of inadequate and improper citation of the work of others. Accordingly, we would like to respond and provide corrections to these specific citations as listed below. As this matter was addressed in a previously published correction (1) we will only address newly found issues here. “On page 8925, right column, lines 2–6, the following section should be quoted: ‘combined with specific mutations in the N terminus of histone H3, caused defects in both telomeric gene silencing and resistance to DNA-damaging agents (7–9). Such defects are reproduced by the substitution of Lys for Arg at position 12 of histone H4, but not at position 5,’ and the article by Poveda and Sendra (2) should be cited. “We wish to apologize for any confusion caused by these cita- tions. Please be assured that interpretation of the experiments and the conclusions of this PNAS article are not affected by these clarifications.” 1. Wu H, et al. (2012) Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc Natl Acad Sci USA 109(23):8925–8930, and correction (2013) 110:18339. 2. Poveda A, Sendra R (2008) Site specificity of yeast histone acetyltransferase B complex in vivo. FEBS J 275:2122–2136. www.pnas.org/cgi/doi/10.1073/pnas.1424013112 E340 | PNAS | January 20, 2015 | vol. 112 | no. 3 www.pnas.org Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1 Hong Wua, Natasha Moshkinab, Jinrong Mina, Hong Zenga, Jennifer Joshuab, Ming-Ming Zhoub, and Alexander N. Plotnikovb,1 aStructural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7; and bDepartment of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029 Edited by Ronen Marmorstein, The Wistar Institute, Philadelphia, PA, and accepted by the Editorial Board April 19, 2012 (received for review August 29, 2011) Histone acetyltransferase 1 is the founding member of the histone HIF1 alone produced no apparent phenotypic effect (1, 2, 6, 7), acetyltransferase superfamily and catalyzes lysine acetylation of but when combined with specific mutations in the N terminus of newly synthesized histone H4. Here we report a 1.9-Å resolution histone H3, caused defects in both telomeric gene silencing and crystal structure of human histone acetyltransferase 1 in complex resistance to DNA-damaging agents (7–9). Such defects are with acetyl coenzyme A and histone H4 peptide. The crystal struc- reproduced by the substitution of Lys for Arg at position 12 of ture reveals that the cofactor and the side chain of lysine 12 of histone H4, but not at position 5 (8, 9). HAT1 and HAT2 have histone H4 peptide are placed in the canyon between the central been found to interact with the origin recognition complex, and C-terminal domains. Histone H4 peptide adopts a well-defined suggesting a unique role for the HAT1–HAT2 complex at the conformation and establishes an extensive set of interactions with replication fork and likely a role in replication-dependent chro- the enzyme including invariant residues Glu64 and Trp199, which matin assembly (10). together govern substrate-binding specificity of histone acetyltrans- On the basis of the available results, working models have ferase 1. Our structure-guided enzyme kinetic study further demon- emerged to describe the activity of HAT1 in the cell (11, 12). In strates a cumulative effect of the active-site residues Glu187, yeast, the HAT1–HAT2 complex binds to and acetylates newly Glu276, and Asp277 on deprotonation of the ɛ-amino group of synthesized histone H4 in the cytoplasm and remains associated reactive Lys12 for direct attack of the acetyl group of the cofactor. with histone H4. At a certain point, the newly synthesized his- tone H3 joins the complex. The HAT1–HAT2 complex is then istone acetylation is the most prominent posttranslational imported into the nucleus in association with histones H3-H4. Hmodification leading to activation of gene expression, DNA Once in the nucleus, the HAT1–HAT2–H3–H4 complex replication, and DNA repair. It is postulated that histone acet- becomes associated with the histone chaperone/chromatin as- ylation, through charge neutralization of the cationic histone sembly factor HIF1 to form the NuB4 complex. In human cells, tails, weakens nucleosomal electrostatic interactions with anionic the sNASP chaperone binds H3.1–H4 heterodimers and presents DNA, thus destabilizing internucleosomal contacts and nucleo- the H4 carboxyl domain to RbAp46, which recruits HAT1 ac- somal structure and facilitating access to the promoter region for tivity. After acetylation of histone H4, the complex is stabilized RNA polymerase and transcription factors. Histone acetylation and the histones are transferred to the ASF1B chaperone. also plays a functional role in providing binding sites for regu- ASF1B associates with importin-4, and the histones are then latory proteins that mediate transcription and other chromatin- transported into the nucleus (12). These models suggest that based processes. HAT1 may not be functioning exclusively in a catalytic capacity – – Histone acetyltransferase 1 (HAT1; EC 2.3.1.48) is the and that the association of the HAT1 HAT2 (or HAT1 founding member of the family of histone acetyltransferases that RbAp46) complex with histones H4 and H3 may be involved in catalyze the transfer of an acetyl group from acetyl coenzyme A both the import of these histones into the nucleus and their (AcCoA) to the lysine ε-amino groups on the N-terminal tails of subsequent delivery to chromatin assembly factors. BIOCHEMISTRY histones (1, 2). HAT1 has a very broad function in many DNA Despite the fundamental importance of HAT1 in DNA rep- regulatory processes and is found in virtually all eukaryotic lication and chromatin assembly, we still have a limited un- organisms examined (3). Originally, HAT1 was identified as derstanding of its function and regulation as a HAT. The crystal a cytosolic enzyme (2) that acetylates newly synthesized histone structure of yeast HAT1 in complex with AcCoA was reported by H4 molecules before their deposition in replicating chromatin Dutnall et al. (13) who described an overall fold of the enzyme and was therefore suspected of being involved in replication- and its relationship to the structures of other HAT enzymes and dependent chromatin assembly.
Recommended publications
  • Expression of HAT1 and HDAC1, 2, 3 in Diffuse Large B-Cell Lymphomas, Peripheral T-Cell Lymphomas, and NK/T-Cell Lymphomas
    The Korean Journal of Pathology 2012; 46: 142-150 ▒ ORIGINAL ARTICLE ▒ http://dx.doi.org/10.4132/KoreanJPathol.2012.46.2.142 Expression of HAT1 and HDAC1, 2, 3 in Diffuse Large B-Cell Lymphomas, Peripheral T-Cell Lymphomas, and NK/T-Cell Lymphomas Soo Kee Min · Young Ho Koh1 Background: It has generally been proven that histone acetylation and deacetylation are involved Yunwoong Park1 · Hyo Jung Kim2 in the malignant transformation. To date, however, this has rarely been studied in cases of malig- Jinwon Seo · Hye-Rim Park nant lymphoma. Methods: We studied nine cases of reactive lymphoid hyperplasia, 78 cases of diffuse large B-cell lymphoma (DLBCL), 13 cases of peripheral T-cell lymphoma, not otherwise 3 4 Seong Jin Cho · In Sun Kim specified (PTCL-NOS), and 13 cases of extranodal NK/T-cell lymphoma, nasal type (NKTCL). Thus, we attempted to elucidate the associations of the degree of the expression of histone acetyltrans- Department of Pathology, Hallym University ferase 1 (HAT1), histone deacetylase (HDAC) 1, HDAC2, and HDAC3 with the clinical behaviors of Sacred Heart Hospital, Hallym University College above malignant lymphomas using the immunohistochemistry and a western blot analysis. of Medicine; 1Ilsong Institute of Life Science, Re- Hallym University; 2Department of Hemato- sults: The degree of the expression of HAT1 was higher in cases of DLBCL, PTCL-NOS or NKT- Oncology, Hallym University Sacred Heart CL as compared with reactive lymphoid hyperplasia (p< 0.05). The degree of the expression of Hospital, Hallym University College of Medicine, HAT1 was correlated with that of HDAC1 in cases of DLBCL or NKTCL (p< 0.05).
    [Show full text]
  • Cancer TNT Ashwin Ram 12/5/2017 Background: Chromatin Writers, Readers, Erasers
    Cancer TNT Ashwin Ram 12/5/2017 Background: Chromatin Writers, Readers, Erasers writer effector eg. HAT, HMT reader eg. bromodomain eraser eg. HDAC, KDM The writer HAT1: A known H4 lysine 5,12 di-acetyltransferase writer siHAT1 siControl HAT1 H4 K12Ac H4 K5Ac actin Western blot for histone H4 modifications after control and HAT1 siRNA transfections. HAT1: EGF-stimulated immunoprecipitation specific specific - - HAT1 IgG HAT1 IgG - - R α non R α non EGF: + + + - - - WB: HAT1 Immunoprecipitation / WB to measure HAT1 levels +/- Heatmap of gene expression changes of all human histone EGF acetyltransferases +/- EGF and siRNA treatments shows HAT1 expression is EGF-dependent Working model of HAT1 : The oldest “new” histone acetyltransferase EGF EGFR plasma membrane HAT1 H4 H3 Rbap46/48 a nuclear membrane H4 H2A H3 H2B HAT1 S phase Surprise: HAT1 also binds (a few sites) on chromatin HAT1 ChipSeq signal sits on Hist1 locus on Chromosome 6 Read Depth HAT1 bound sites (zoom) HAT1 ChIP-seq peaks cluster at Read Depth histone H4 promoters. Hist1H2BE Hist1H4D Hist1H3D Hist1H4E Is HAT1 a transcription factor for its substrate (H4)? EGF EGFR plasma membrane HAT1 H4 H3 Rbap46/48 a nuclear membrane H4 H2A H3 H2B HAT1 S phase HAT1 is required for S-phase burst of histone H4 mRNA HAT1 Hist1H4B mRNA level 50 Rbap46 45 shCont-3 H4 40 shHAT1-A7 35 shHAT1-B6 30 25 B6 A7 - - 20 15 shHAT1 shHAT1 shControl 10 Gene actin)Expression (versus 5 HAT1 0 0 2 4 6 8 10 actin hours after release from double thymidine block G1 S G2/M HAT1 loss: Life with less histones EGF
    [Show full text]
  • Recombinant Human HAT1 Protein Catalog Number: ATGP0507
    Recombinant human HAT1 protein Catalog Number: ATGP0507 PRODUCT INPORMATION Expression system E.coli Domain 20-341aa UniProt No. O14929 NCBI Accession No. NP_003633 Alternative Names Histone acetyltransferase 1, KAT1, Histone acetyltransferase 1 HAT 1, Histidine aminotransferase 1, Histone acetyltransferase type B catalytic subunit PRODUCT SPECIFICATION Molecular Weight 40.1 kDa (343aa) confirmed by MALDI-TOF Concentration 0.5mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 10% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description HAT1, also known as histone acetyltransferase 1, is a type B histone acetyltransferase (HAT) that is involved in the rapid acetylation of newly synthesized cytoplasmic histones, which are in turn imported into the nucleus for de novo deposition onto nascent DNA chains. Histone acetylation, particularly of histone H4, plays an important role in replication-dependent chromatin assembly. Specifically, this HAT can acetylate soluble but not nucleosomal histone H4 at lysines 5 and 12, and to a lesser degree, histone H2A at lysine 5. Recombinant HAT1 1 Recombinant human HAT1 protein Catalog Number: ATGP0507 protein was expressed in E. coli and purified by using conventional chromatography techniques. Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MKKLAEYKCN TNTAIELKLV RFPEDLENDI RTFFPEYTHQ LFGDDETAFG YKGLKILLYY IAGSLSTMFR VEYASKVDEN FDCVEADDVE GKIRQIIPPG FCTNTNDFLS LLEKEVDFKP FGTLLHTYSV LSPTGGENFT FQIYKADMTC RGFREYHERL QTFLMWFIET ASFIDVDDER WHYFLVFEKY NKDGATLFAT VGYMTVYNYY VYPDKTRPRV SQMLILTPFQ GQGHGAQLLE TVHRYYTEFP TVLDITAEDP SKSYVKLRDF VLVKLCQDLP CFSREKLMQG FNEDMAIEAQ QKFKINKQHA RRVYEILRLL VTD General References Verreault A., et al.
    [Show full text]
  • HAT1 Sirna (Rat)
    For research purposes only, not for human use Product Data Sheet HAT1 siRNA (Rat) Catalog # Source Reactivity Applications CRR4463 Synthetic R RNAi Description siRNA to inhibit HAT1 expression using RNA interference Specificity HAT1 siRNA (Rat) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Form Lyophilized powder Gene Symbol HAT1 Alternative Names Histone acetyltransferase type B catalytic subunit; Histone acetyltransferase 1 Entrez Gene 296501 (Rat) SwissProt Q5M939 (Rat) Purity > 97% Quality Control Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency. Components We offers pre-designed sets of 3 different target-specific siRNA oligo duplexes of rat HAT1 gene. Each vial contains 5 nmol of lyophilized siRNA. The duplexes can be transfected individually or pooled together to achieve knockdown of the target gene, which is most commonly assessed by qPCR or western blot. Our siRNA oligos are also chemically modified (2’-OMe) at no extra charge for increased stability and enhanced knockdown in vitro and in vivo. Directions for Use We recommends transfection with 100 nM siRNA 48 to 72 hours prior to cell lysis. Application key: E- ELISA, WB- Western blot,
    [Show full text]
  • Table S6. Names and Functions of 44 Target Genes and 4 Housekeeping Genes Assessed for Gene Expression Measurements
    Table S6. Names and functions of 44 target genes and 4 housekeeping genes assessed for gene expression measurements. Gene Gene name Function Category Reference CD45 CD45 (leukocyte common antigen) Regulation of T-cell and B-cell antigen receptor signaling Adaptive NCBI, UniProt HIVEP2 Human immunodeficiency virus typeI enhancer2 Transcription factor, V(D)J recombination, MHC enhancer binding Adaptive (Diepeveen et al. 2013) HIVEP3 Human immunodeficiency virus typeI enhancer3 Transcription factor, V(D)J recombination, MHC enhancer binding Adaptive (Diepeveen et al. 2013) IgM-lc Immunoglobulin light chain Recognition of antigen or pathogen Adaptive NCBI, UniProt Integ-Bt Integrin-beta 1 Cell signaling and adhesion of immunoglobulin Adaptive NCBI, UniProt Lymph75 Lymphocyte antigen 75 Directs captured antigens to lymphocytes Adaptive (Birrer et al. 2012) Lympcyt Lymphocyte cytosolic protein 2 Positive role in promoting T-cell development and activation Adaptive NCBI, UniProt TAP Tap-binding protein (Tapasin) Transport of antigenic peptides, peptide loading on MHC I Adaptive NCBI, UniProt AIF Allograft inflammation factor Inflammatory responses, allograft rejection, activation of macrophages Innate (Roth et al. 2012) Calrcul Calreticulin Chaperone, promotes phagocytosis and clearance of apoptotic cells Innate NCBI, UniProt Cf Coagulation factor II Blood clotting and inflammation response Innate (Birrer et al. 2012) IL8 Interleukin 8 Neutrophil chemotactic factor, phagocytosis, inflammatory activity Innate NCBI, UniProt Intf Interferon induced transmembrane protein 3 Negative regulation of viral entry into host cell, antiviral response Innate NCBI, UniProt Kin Kinesin Intracellular transport Innate (Roth et al. 2012) LectptI Lectin protein type I Pathogen recognition receptors (C-type lectin type I) Innate NCBI, UniProt LectpII Lectin protein type II Pathogen recognition receptors (C-type lectin type II) Innate NCBI, UniProt Nramp Natural resistance-assoc macrophage protein Macrophage activation Innate (Roth et al.
    [Show full text]
  • Hat2p Recognizes the Histone H3 Tail to Specify the Acetylation of the Newly Synthesized H3/H4 Heterodimer by the Hat1p/Hat2p Complex
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex Yang Li,1,4 Li Zhang,1,4 Tingting Liu,1,4 Chengliang Chai,1,4 Qianglin Fang,2 Han Wu,1 Paula A. Agudelo Garcia,3 Zhifu Han,1 Shuai Zong,1 You Yu,1 Xinyue Zhang,1 Mark R. Parthun,3 Jijie Chai,1 Rui-Ming Xu,2 and Maojun Yang1,5 1Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; 2National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 3Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA Post-translational modifications of histones are significant regulators of replication, transcription, and DNA repair. Particularly, newly synthesized histone H4 in H3/H4 heterodimers becomes acetylated on N-terminal lysine residues prior to its incorporation into chromatin. Previous studies have established that the histone acetyltransferase (HAT) complex Hat1p/Hat2p medicates this modification. However, the mechanism of how Hat1p/Hat2p recognizes and facilitates the enzymatic activities on the newly assembled H3/H4 heterodimer remains unknown. Furthermore, Hat2p is a WD40 repeat protein, which is found in many histone modifier complexes. However, how the WD40 repeat proteins facilitate enzymatic activities of histone modification enzymes is unclear. In this study, we first solved the high-resolution crystal structure of a Hat1p/Hat2p/CoA/H4 peptide complex and found that the H4 tail interacts with both Hat1p and Hat2p, by which substrate recruitment is facilitated.
    [Show full text]
  • Characterization of the Schizosaccharomyces Pombe Hat1 Complex: the Role of Histone H4 Acetylation in Telomeric Silencing
    Characterization of the Schizosaccharomyces Pombe Hat1 Complex: the Role of Histone H4 Acetylation in Telomeric Silencing Author: Kevin Tong Persistent link: http://hdl.handle.net/2345/2222 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Biology CHARACTERIZATION OF THE SCHIZOSACCHAROMYCES POMBE HAT1 COMPLEX: THE ROLE OF HISTONE H4 ACETYLATION IN TELOMERIC SILENCING a dissertation by KEVIN TONG Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August, 2009 Copyright by KEVIN TONG 2009 Abstract CHARACTERIZATION OF THE SCHIZOSACCHAROMYCES POMBE HAT1 COMPLEX: THE ROLE OF HISTONE H4 ACETYLATION IN TELOMERIC SILENCING Author: Kevin Tong Dissertation Advisor: Anthony T. Annunziato The Hat1 complex was characterized in S. pombe . Through tandem affinity purification and mass spectrometry, it was determined that Hat1 is associated with Mis16 (an orthologue of HAT2). Unlike HAT2 in S. cerevisiae , we confirm mis16 to be an essential gene in S. pombe . As expected, the S. pombe Hat1 complex was found to acetylate lysines 5 and 12 of histone H4. In contrast to budding yeast, deletion of hat1 alone resulted in the loss of telomeric silencing without concomitant mutations of the H3 N-terminal domain. Deletion of hat1 caused an increase of H4 acetylation at telomeres. Additionally, the hyperacetylation of histones also results in the loss of telomeric silencing. Loss of Hat1 did not affect silencing at the inner most repeat (imr) or outer repeat (otr) regions of the centromere, but did appear to increase silencing at the central core region (cnt) of the centromere.
    [Show full text]
  • Biocreative 2012 Proceedings
    Proceedings of 2012 BioCreative Workshop April 4 -5, 2012 Washington, DC USA Editors: Cecilia Arighi Kevin Cohen Lynette Hirschman Martin Krallinger Zhiyong Lu Carolyn Mattingly Alfonso Valencia Thomas Wiegers John Wilbur Cathy Wu 2012 BioCreative Workshop Proceedings Table of Contents Preface…………………………………………………………………………………….......... iv Committees……………………………………………………………………………………... v Workshop Agenda…………………………………………………………………………….. vi Track 1 Collaborative Biocuration-Text Mining Development Task for Document Prioritization for Curation……………………………………..……………………………………………….. 2 T Wiegers, AP Davis, and CJ Mattingly System Description for the BioCreative 2012 Triage Task ………………………………... 20 S Kim, W Kim, CH Wei, Z Lu and WJ Wilbur Ranking of CTD articles and interactions using the OntoGene pipeline ……………..….. 25 F Rinaldi, S Clematide and S Hafner Selection of relevant articles for curation for the Comparative Toxicogenomic Database…………………………………………………………………………………………. 31 D Vishnyakova, E Pasche and P Ruch CoIN: a network exploration for document triage………………………………................... 39 YY Hsu and HY Kao DrTW: A Biomedical Term Weighting Method for Document Recommendation ………... 45 JH Ju, YD Chen and JH Chiang C2HI: a Complete CHemical Information decision system……………………………..….. 52 CH Ke, TLM Lee and JH Chiang Track 2 Overview of BioCreative Curation Workshop Track II: Curation Workflows….…………... 59 Z Lu and L Hirschman WormBase Literature Curation Workflow ……………………………………………………. 66 KV Auken, T Bieri, A Cabunoc, J Chan, Wj Chen, P Davis, A Duong, R Fang, C Grove, Tw Harris, K Howe, R Kishore, R Lee, Y Li, Hm Muller, C Nakamura, B Nash, P Ozersky, M Paulini, D Raciti, A Rangarajan, G Schindelman, Ma Tuli, D Wang, X Wang, G Williams, K Yook, J Hodgkin, M Berriman, R Durbin, P Kersey, J Spieth, L Stein and Pw Sternberg Literature curation workflow at The Arabidopsis Information Resource (TAIR)…..……… 72 D Li, R Muller, TZ Berardini and E Huala Summary of Curation Process for one component of the Mouse Genome Informatics Database Resource …………………………………………………………………………....
    [Show full text]
  • KAT1 (HAT1) Antibody (C-Term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5600
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 KAT1 (HAT1) Antibody (C-term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5600 Specification KAT1 (HAT1) Antibody (C-term) - Product Information Application WB,E Primary Accession O14929 Reactivity Human Host Rabbit Clonality Polyclonal Calculated MW H=50,40;M=49;R =49 KDa Isotype Rabbit Ig Antigen Source HUMAN KAT1 (HAT1) Antibody (C-term) - Additional Information Gene ID 8520 All lanes : Anti-HAT1 Antibody (E404) at Antigen Region 389-419 1:2000 dilution Lane 1: A431 whole cell lysate Lane 2: MCF-7 whole cell lysate Lane Other Names 3: U-87 MG whole cell lysate Lane 4: Hela Histone acetyltransferase type B catalytic whole cell lysate Lysates/proteins at 20 µg subunit, Histone acetyltransferase 1, HAT1, per lane. Secondary Goat Anti-Rabbit IgG, KAT1 (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 50 kDa Dilution Blocking/Dilution buffer: 5% NFDM/TBST. WB~~1:2000 Target/Specificity KAT1 (HAT1) Antibody (C-term) - This KAT1 (HAT1) antibody is generated Background from rabbits immunized with a KLH conjugated synthetic peptide between Histone acetylation, particularly of histone H4, 389-419 amino acids from the C-terminal has been proposed to play an important role in region of human KAT1 (HAT1). replication-dependent nucleosome assembly. The HAT1 protein contains D, A, and B motifs, Storage which are present in many Maintain refrigerated at 2-8°C for up to 2 N-acetyltransferases, including those that weeks. For long term storage store at -20°C acetylate substrates other than histones.
    [Show full text]
  • Recombinant KAT1 / HAT1 Protein Catalog No: 81274, 81974 Quantity: 20, 1000 Μg Expressed In: Baculovirus Concentration: 0.25 Μg/Μl Source: Human
    Recombinant KAT1 / HAT1 protein Catalog No: 81274, 81974 Quantity: 20, 1000 µg Expressed In: Baculovirus Concentration: 0.25 µg/µl Source: Human Buffer Contents: Recombinant KAT1 / HAT1 protein supplied in 25 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 10% glycerol, 0.04% Triton X-100, and 0.5 mM TCEP. Background: KAT1 / HAT1 (Histone Acetyltransferase 1), is a type B histone acetyltransferase that is involved in the rapid acetylation of newly synthesized cytoplasmic histones, which are in turn imported into the nucleus for de novo deposition onto nascent DNA chains. It acetylates soluble but not nucleosomal histone H4 at ‘Lys-5’ (H4K5ac) and ‘Lys-12’ (H4K12ac) and, to a lesser extent, acetylates histone H2A at ‘Lys-5’ (H2AK5ac). It has intrinsic substrate specificity that modifies lysine in recognition sequence GXGKXG. HAT1 may be involved in nucleosome assembly during DNA replication and repair as part of the histone H3.1 and H3.3 complexes. It may also play a role in DNA repair in response to free radical damage. Protein Details: Full length KAT1 / HAT1 protein (accession number NP_003633.2) was expressed in baculovirus system with an N-terminal FLAG tag. The molecular weight of KAT1 / HAT1 is 50.8 kDa. Application Notes: Recombinant KAT1 / HAT1 protein is suitable for use in enzyme kinetics, inhibitor screening, and selectivity profiling. Storage and Guarantee: Recombinant proteins in solution are temperature sensitive and must be stored at -80°C to prevent degradation. Avoid repeated freeze/thaw cycles and keep on ice when not in storage. This product is guaranteed for 6 months from date of arrival.
    [Show full text]
  • Overexpressed Histone Acetyltransferase 1 Regulates
    Fan et al. Journal of Experimental & Clinical Cancer Research (2019) 38:47 https://doi.org/10.1186/s13046-019-1044-z RESEARCH Open Access Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer Ping Fan1†, Jingyuan Zhao1†, Zibo Meng1, Heyu Wu2, Bo Wang1, Heshui Wu1* and Xin Jin1* Abstracts Background: Pancreatic ductal adenocarcinoma is one of the leading causes of cancer-related death worldwide. Immune checkpoint blockade therapy, including anti-PD-1 and anti-PD-L1, is a new therapeutic strategy for cancer treatment but the monotherapy with PD-L1 inhibitors for pancreatic cancer is almost ineffective for pancreatic cancer. Thus, exploring the regulatory mechanism of PD-L1 in cancer cells, especially in pancreatic cancer cells, is one of the key strategies to improving cancer patient response to PD-L1 blockade therapy. Histone acetyltransferase 1(HAT1) is a classic type B histone acetyltransferase and the biological role of HAT1 in pancreatic cancer is unclear. Methods: The clinical relevance of HAT1 was examined by the GEPIA web tool, Western blotting and immunohistochemistry of pancreatic cancer tissue microarray slides. Tumor cell motility was investigated by MTS assay, colony formation assay and xenografts. The relationship between HAT1 and PD-L1 was examined by Western blot analysis, RT-qPCR and immunohistochemistry. Results: HAT1 was upregulated in PDAC and associated with poor prognosis in PDAC patients. The knockdown of HAT1 decreased the proliferation of pancreatic cancer cells in vivo and in vitro. Strikingly, we showed that HAT1 transcriptionally regulated PD-L1, and this process was mainly mediated by BRD4 in pancreatic cancer.
    [Show full text]
  • Yeast Genes Illuminate Human Cancer Gene Functions
    Oncogene (2007) 26, 5373–5384 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW MYST opportunities for growth control: yeast genes illuminate human cancer gene functions A Lafon, CS Chang, EM Scott, SJ Jacobson and L Pillus Section of Molecular Biology, Division of Biological Sciences, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA The MYST family of histone acetyltransferases (HATs) genes were identified with potential roles in chromatin- was initially defined by human genes with disease mediated gene control, even modest degrees of similarity connections and by yeast genes identified for their role to the acetyl-CoA-binding regions were viewed with in epigenetic transcriptional silencing. Since then, many special interest as candidate HATs. new MYST genes have been discovered through genetic Such interest was particularly the case when mutants and genomic approaches. Characterization of the com- of SAS2 (something about silencing) were discovered as plexes through which MYST proteins act, regions of enhancers of mutations in the epigenetic transcriptional the genome to which they are targeted and biological silencer factor Sir1 (Reifsnyder et al., 1996) and consequences when they are disrupted, all deepen the suppressors of defects in cis-regulatory sequences for connections of MYST proteins to development, growth silent chromatin (Reifsnyder et al., 1996; Ehrenhofer- control and human cancers. Many of the insights into Murray et al., 1997). The observation that SAS2 and the MYST family function have come from studies in model closely related SAS3 yeast genes shared similarity to organisms. Herein, we review functions of two of the acetyl-CoA-binding domains, and even more significant founding MYST genes, yeast SAS2 and SAS3, and the similarity to two human genes, MOZ (Borrow et al., essential yeast MYST ESA1.
    [Show full text]