Practical Vhf/Uhf Antennas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving Wireless LAN Antenna Gain and Coverage
APPLICATION NOTE Improving Wireless LAN Antenna Gain and Coverage antenna, which can help mitigate interference between floors. The only drawback is that the longer antenna may be somewhat less aesthetic. Mounting a dipole antenna on a conductive ground plane has a similar effect as using a longer antenna. The elevation pattern is flattened, creating higher gain around the perimeter of the doughnut. Additionally, the ground plane mounted antennas pattern is maximized downward slightly (if the antenna is mounted beneath a ceiling ground plane). This is an ideal elevation pattern for a ceiling mounted antenna in a multi-story building. The ground plane has the effect of minimizing gain below and especially above Most of the antennas provided with Wi-Fi the antenna. access points, or purchased separately, are simple dipole antennas with an omni- Wi-Fi antennas may be classified as ground directional pattern. Omni-directional means plane dependent and ground plane that the gain is the same in a 360º circle independent. The ground plane dependent around the axis of the antenna. antenna must be mounted on a conductive, flat ground plane which is several However, the elevation gain pattern is wavelengths long and wide in order to different. In cross section, the elevation provide the rated gain and impedance pattern is that of a doughnut, with the match. The ground plane independent antenna axis running through the center of antenna does not need to be mounted on a the doughnut. In the absence of a ground ground plane to provide the rated gain and plane, the gain of the dipole is a maximum impedance match. -
Coplanar Stripline-Fed Wideband Yagi Dipole Antenna with Filtering-Radiating Performance
electronics Article Coplanar Stripline-Fed Wideband Yagi Dipole Antenna with Filtering-Radiating Performance Yong Chen 1, Gege Lu 2, Shiyan Wang 2 and Jianpeng Wang 2,* 1 School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China; [email protected] 2 Ministerial Key Laboratory of JGMT, Nanjing University of Science and Technology, Nanjing 210094, China; [email protected] (G.L.); [email protected] (S.W.) * Correspondence: [email protected] Received: 6 July 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: In this article, a wideband filtering-radiating Yagi dipole antenna with the coplanar stripline (CPS) excitation form is investigated, designed, and fabricated. By introducing an open-circuited half-wavelength resonator between the CPS structure and dipole, the gain selectivity has been improved and the operating bandwidth is simultaneously enhanced. Then, the intrinsic filtering-radiating performance of Yagi antenna is studied. By implementing a reflector on initial structure, it is observed that two radiation nulls appear at both lower and upper gain passband edges, respectively. Moreover, in order to improve the selectivity in the upper stopband, a pair of U-shaped resonators are employed and coupled to CPS directly. As such, the antenna design is finally completed with expected characteristics. To verify the feasibility of the proposed scheme, a filtering Yagi antenna prototype with a wide bandwidth covering from 3.64 GHz to 4.38 GHz is designed, fabricated, and measured. Both simulated and measured results are found to be in good agreement, thus demonstrating that the presented antenna has the performances of high frequency selectivity and stable in-band gain. -
Antenna Theory and Design SECOND EDITION
Antenna Theory and Design SECOND EDITION Warren L. Stutzman Gary A. Thiele WILEY Contents Chapter 1 • Antenna Fundamentals and Definitions 1 1.1 Introduction 1 1.2 How Antennas Radiate 4 1.3 Overview of Antennas 8 1.4 Electromagnetic Fundamentals 12 1.5 Solution of Maxwell's Equations for Radiation Problems 16 1.6 The Ideal Dipole 20 1.7 Radiation Patterns 24 1.7.1 Radiation Pattern Basics 24 1.7.2 Radiation from Line Currents 25 1.7.3 Far-Field Conditions and Field Regions 28 1.7.4 Steps in the Evaluation of Radiation Fields 31 1.7.5 Radiation Pattern Definitions 33 1.7.6 Radiation Pattern Parameters 35 1.8 Directivity and Gain 37 1.9 Antenna Impedance, Radiation Efficiency, and the Short Dipole 43 1.10 Antenna Polarization 48 References 52 Problems 52 Chapter 2 • Some Simple Radiating Systems and Antenna Practice 56 2.1 Electrically Small Dipoles 56 2.2 Dipoles 59 2.3 Antennas Above a Perfect Ground Plane 63 2.3.1 Image Theory 63 2.3.2 Monopoles 66 2.4 Small Loop Antennas 68 2.4.1 Duality 68 2.4.2 The Small Loop Antenna 71 2.5 Antennas in Communication Systems 76 2.6 Practical Considerations for Electrically Small Antennas 82 References 83 Problems 84 Chapter 3 • Arrays 87 3.1 The Array Factor for Linear Arrays 88 3.2 Uniformly Excited, Equally Spaced Linear Arrays 99 3.2.1 The Array Factor Expression 99 3.2.2 Main Beam Scanning and Beamwidth 102 3.2.3 The Ordinary Endfire Array 103 3.2.4 The Hansen-Woodyard Endfire Array 105 3.3 Pattern Multiplication 107 3.4 Directivity of Uniformly Excited, Equally Spaced Linear Arrays 112 3.5 Nonuniformly -
FOX Hunting Basics FOX Hunting Basics
FOX Hunting Basics FOX Hunting Basics Steps in a transmiter hunt •Signal acquisiton •Triangulaton –Plot bearings on map to get an estmated directon of the transmiter •Homing –“follow your nose” •Snifng –Up close and personal FOX Hunting Basics Following Clues •Finding the transmiter is a process of following clues to the source of the signal. Important clues include: –Directon –Signal Strength –Rate of change in directon –Rate of change in signal strength –Terrain shadowing –Non-radio clues: keep your eyes open! FOX Hunting Basics Tools for Determining Directon •Antenna with directonal patern •Some way to measure signal strength •Some way to reduce signal strength as you get close to avoid receiver overload –“Atenuator” Bearings Bearings Waldo ©DreamWorks Distribution Limited.All rights reserved. Imagery §>2018 Google, Msg data ©2Q1S Google United States Terms Send feel Bearings Equipment Used for DF’ing Equipment Used for DF’ing Equipment Used for DF’ing Radio Attenuator Directional Antenna Equipment Used for DF’ing The attenuator is used to reduce signals so the S meter is in the middle of the scale in the presence of a strong signal Attenuator Strong Signal Equipment Used for DF’ing The attenuator is used to reduce signals so the S meter is in the middle of the scale in the presence of a strong signal Attenuator Strong Signal Equipment Used for DF’ing Time Difference of Arrival TDOA Equipment Used for DF’ing Time Difference of Arrival TDOA How it works •Time Difference of Arrival RDF sets work by switching your receiver between two antennas at a rapid rate. -
Radiation Pattern of Yagi-Uda Antenna Using Usrp on Gnu Radio Platform
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 RADIATION PATTERN OF YAGI-UDA ANTENNA USING USRP ON GNU RADIO PLATFORM Sreethivya1 M, Dhanya.M.G2, Nimisha.C3, Gandhiraj.R4, Soman.K.P5 1M.Tech Student, Department of CEN, Amrita Vishwa Vidyapeetham, Tamilnadu, India 2M.Tech Student, Department of CEN, Amrita Vishwa Vidyapeetham, Tamilnadu, India 3M.Tech Student, Department of CEN, Amrita Vishwa Vidyapeetham, Tamilnadu, India 4Assistant Professor, Department of ECE, Amrita Vishwa Vidyapeetham, Tamilnadu, India 5Head of Department, Department of CEN, Amrita Vishwa Vidyapeetham, Tamilnadu, India Abstract In this paper we are planning to realize radiation pattern of a Unidirectional Yagi-Uda antenna using USRP2 which is connected with GNU Radio. Our basic approach is to get radiation pattern for H-plane structured Yagi-Uda antenna at different angles (0-360). The proposed method is of low cost and easy to implement with two USRP, two PC and a Yagi-Uda antenna. The platform which we have used for getting radiation pattern values is GNU Radio which is open source software.Yagi-Uda antenna is used for long distance communication since it has good directivity. It is designed with three pairs of oscillator, directors and active transducer. Oscillator is connected to the voltage feeder and active transducer incapacitates the wave from different sides of antenna. Keywords: Yagi-Uda antenna, GNU Radio, Radiation pattern, USRP2, Folded Dipole antenna. -----------------------------------------------------------------------***----------------------------------------------------------------------- 1. INTRODUCTION directors a yagi has, greater the forward gain. We have used a single director along with a reflector and a driven element. In this paper we present radiation pattern of a unidirectional Yagi [2] antenna. -
25. Antennas II
25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is a linear d << antenna which is much shorter than the free-space wavelength: V(t) Far field: jk0 r j t 00Id e ˆ Er,, t j sin 4 r Radiation resistance: 2 d 2 RZ rad 3 0 2 where Z 000 377 is the impedance of free space. R Radiation efficiency: rad (typically is small because d << ) RRrad Ohmic Radiation patterns Antennas do not radiate power equally in all directions. For a linear dipole, no power is radiated along the antenna’s axis ( = 0). 222 2 I 00Idsin 0 ˆ 330 30 Sr, 22 32 cr 0 300 60 We’ve seen this picture before… 270 90 Such polar plots of far-field power vs. angle 240 120 210 150 are known as ‘radiation patterns’. 180 Note that this picture is only a 2D slice of a 3D pattern. E-plane pattern: the 2D slice displaying the plane which contains the electric field vectors. H-plane pattern: the 2D slice displaying the plane which contains the magnetic field vectors. Radiation patterns – Hertzian dipole z y E-plane radiation pattern y x 3D cutaway view H-plane radiation pattern Beyond the Hertzian dipole: longer antennas All of the results we’ve derived so far apply only in the situation where the antenna is short, i.e., d << . That assumption allowed us to say that the current in the antenna was independent of position along the antenna, depending only on time: I(t) = I0 cos(t) no z dependence! For longer antennas, this is no longer true. -
W5GI MYSTERY ANTENNA (Pdf)
W5GI Mystery Antenna A multi-band wire antenna that performs exceptionally well even though it confounds antenna modeling software Article by W5GI ( SK ) The design of the Mystery antenna was inspired by an article written by James E. Taylor, W2OZH, in which he described a low profile collinear coaxial array. This antenna covers 80 to 6 meters with low feed point impedance and will work with most radios, with or without an antenna tuner. It is approximately 100 feet long, can handle the legal limit, and is easy and inexpensive to build. It’s similar to a G5RV but a much better performer especially on 20 meters. The W5GI Mystery antenna, erected at various heights and configurations, is currently being used by thousands of amateurs throughout the world. Feedback from users indicates that the antenna has met or exceeded all performance criteria. The “mystery”! part of the antenna comes from the fact that it is difficult, if not impossible, to model and explain why the antenna works as well as it does. The antenna is especially well suited to hams who are unable to erect towers and rotating arrays. All that’s needed is two vertical supports (trees work well) about 130 feet apart to permit installation of wire antennas at about 25 feet above ground. The W5GI Multi-band Mystery Antenna is a fundamentally a collinear antenna comprising three half waves in-phase on 20 meters with a half-wave 20 meter line transformer. It may sound and look like a G5RV but it is a substantially different antenna on 20 meters. -
California State University, Northridge
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Design of a 5.8 GHz Two-Stage Low Noise Amplifier A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical Engineering By Yashika Parwath August 2020 The graduate project of Yashika Parwath is approved: Dr. John Valdovinos Date Dr. Jack Ou Date Dr. Brad Jackson, Chair Date California State University, Northridge ii Acknowledgement I would like to express my sincere gratitude to Dr. Brad Jackson for his unwavering support and mentorship that aided me to finish my master’s project. With his deep understanding of the subject and valuable inputs this design project has been quite a learning wheel expanding my knowledge horizons. I would also like to thank Dr. John Valdovinos and Dr. Jack Ou for being the esteemed members of the committee. iii Table of Contents Signature page ii Acknowledgement iii List of Figures v List of Tables vii Abstract viii Chapter 1: Introduction 1 1.1 Communication System 1 1.2 Low Noise Amplifier 2 1.3 Design Goals 2 Chapter 2: LNA Theory and Background 4 2.1 Introduction 4 2.2 Terminology 4 2.3 Design Procedure 10 Chapter 3: LNA Design Procedure 12 3.1 Transistor 12 3.2 S-Parameters 12 3.3 Stability 13 3.4 Noise and Noise Figure 16 3.5 Cascaded Noise Figure 16 3.6 Noise Circles 17 3.7 Unilateral Figure of Merit 18 3.8 Gain 20 Chapter 4: Source and Load Reflection Coefficient 23 4.1 Reflection Coefficient 23 4.2 Source Reflection Coefficient 24 4.3 Load Reflection Coefficient 26 Chapter 5: Impedance Matching -
Open Bradley Sherman Spring 2014.Pdf
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF ELECTRICAL ENGINEERING HIGH FREQUENCY ANTENNA COUPLING STUDY BRADLEY SHERMAN SPRING 2014 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Electrical Engineering with honors in Electrical Engineering Reviewed and approved* by the following: James K. Breakall Professor of Electrical Engineering Thesis Supervisor John D. Mitchell Professor of Electrical Engineering Honors Adviser Keith A. Lysiak Senior Research Associate Thesis Reader * Signatures are on file in the Schreyer Honors College. i ABSTRACT The objective of this project was to develop a methodology to accurately predict antenna coupling through the use of numerical electromagnetic modeling. A high-frequency (HF) ionospheric sounder is being developed for HF propagation studies. This sounder requires high power transmissions on one antenna while receiving on another antenna. In order to minimize the coupling of high power energy back into the receiver, the transmit and receive antenna coupling must be minimized. The results of this research effort have shown that the current antenna setup can be improved by choosing a co-polarization setup and changing the frequency to 6.78 MHz. Rotating the receive antenna so that it runs parallel to the receive antenna decreases the antenna coupling by 8 dB. Typically the cross-polarization created by putting two antennas perpendicular to each other would decrease the antenna coupling dramatically, but that does not work if the feeds are along the perpendicular access. Attaining the ideal perpendicular setup is not possible in this case due to space restrictions. ii TABLE OF CONTENTS List of Figures ......................................................................................................................... -
Supplemental Information for an Amateur Radio Facility
COMMONWEALTH O F MASSACHUSETTS C I T Y O F NEWTON SUPPLEMENTAL INFORMA TION FOR AN AMATEUR RADIO FACILITY ACCOMPANYING APPLICA TION FOR A BUILDING PERMI T, U N D E R § 6 . 9 . 4 . B. (“EQUIPMENT OWNED AND OPERATED BY AN AMATEUR RADIO OPERAT OR LICENSED BY THE FCC”) P A R C E L I D # 820070001900 ZON E S R 2 SUBMITTED ON BEHALF OF: A LEX ANDER KOPP, MD 106 H A R TM A N ROAD N EWTON, MA 02459 C ELL TELEPHONE : 617.584.0833 E- MAIL : AKOPP @ DRKOPPMD. COM BY: FRED HOPENGARTEN, ESQ. SIX WILLARCH ROAD LINCOLN, MA 01773 781/259-0088; FAX 419/858-2421 E-MAIL: [email protected] M A R C H 13, 2020 APPLICATION FOR A BUILDING PERMIT SUBMITTED BY ALEXANDER KOPP, MD TABLE OF CONTENTS Table of Contents .............................................................................................................................................. 2 Preamble ............................................................................................................................................................. 4 Executive Summary ........................................................................................................................................... 5 The Telecommunications Act of 1996 (47 USC § 332 et seq.) Does Not Apply ....................................... 5 The Station Antenna Structure Complies with Newton’s Zoning Ordinance .......................................... 6 Amateur Radio is Not a Commercial Use ............................................................................................... 6 Permitted by -
"Eggbeater"Antenna Vhf/Uhf ~ Part 1
"EGGBEATER"ANTENNA VHF/UHF ~ PART 1 ON6WG / F5VIF For the enthusiastic listeners or the licensed amateur station wishing to experiment with satellite transmissions without investing a large sum of money in rotators and tracking systems, here is a very competitive antenna. It will appeal to those with no space for large arrays, or for those who simply wish to experiment with circular polarization for terrestrial transmissions. Introduction This antenna was conceived mainly for high-speed digital transmission via satellite. Another reason was the need for a compact system due to the local environment of my station (mountainous region with high hills and obstacles too close to my station, no space to safely place rotative YAGI antennas). If the horizon is unreachable for RF signals , that leaves only the sky above us. To use the high-speed digital satellites, the level of signal reaching the TNC must be high enough to correctly decode the packets. For example, I mainly use an AEA/PK-96 TNC which requires at least 200 millivolts p-p at the input. To have this level when receiving 9600 Bd packets, there must be at least an S-3 showing on the S-Meter of my receiver. Design The antenna is made of two full waves loops , mounted at right angles to each other. Then coupled together, 90 degrees out of phase over a horizontal circular reflector. With this configuration the antenna is omni directional and circularly polarized. Changing the feeder connection from one loop to the other loop will effectively change the polarization between RHCP and LHCP. -
Coordinate Transformations-Based Antenna Elements Embedded in a Metamaterial Shell with Scanning Capabilities
electronics Article Coordinate Transformations-Based Antenna Elements Embedded in a Metamaterial Shell with Scanning Capabilities Dipankar Mitra 1,*, Sukrith Dev 2, Monica S. Allen 2, Jeffery W. Allen 2 and Benjamin D. Braaten 1,* 1 Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58105, USA 2 Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542, USA; [email protected] (S.D.); [email protected] (M.S.A.); [email protected] (J.W.A.) * Correspondence: [email protected] (D.M.); [email protected] (B.D.B.) Abstract: In this work transformation electromagnetics/optics (TE/TO) were employed to realize a non-homogeneous, anisotropic material-embedded beam-steerer using both a single antenna element and an antenna array without phase control circuitry. Initially, through theory and validation with numerical simulations it is shown that beam-steering can be achieved in an arbitrary direction by enclosing a single antenna element within the transformation media. Then, this was followed by an array with fixed voltages and equal phases enclosed by transformation media. This enclosed array was scanned, and the proposed theory was validated through numerical simulations. Further- more, through full-wave simulations it was shown that a horizontal dipole antenna embedded in a metamaterial can be designed such that the horizontal dipole performs identically to a vertical Citation: Mitra, D.; Dev, S.; Allen, dipole in free-space. Similarly, it was also shown that a material-embedded horizontal dipole array M.S.; Allen, J.W.; Braaten, B.D.