Americorophium Spinicorne Class: Malacostraca Order: Amphipoda, Gammaridea Family: Corophiiadae

Total Page:16

File Type:pdf, Size:1020Kb

Americorophium Spinicorne Class: Malacostraca Order: Amphipoda, Gammaridea Family: Corophiiadae View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Oregon Scholars' Bank Phylum: Arthropoda, Crustacea Americorophium spinicorne Class: Malacostraca Order: Amphipoda, Gammaridea Family: Corophiiadae Taxonomy: Corophium spinicorne was Eyes: among the first corophiid amphipods Antenna 1: Reaching to the middle of described in North America by Stimpson the fifth segment of the second antenna. 1857. It was transferred to the genus Flagellum with 11 (female) or 14–16 joints Americorophium in 1997 based on (male). Female may have one to three spines morphological characters (Bousfield and on the first and second peduncular joints (Fig. Hoover 1997) (see Possible 5). Misidentifications). Not all researchers have Antenna 2: Long as or longer than followed this transition in other body in males. Fourth joint with large distal Americorophium species (e.g. Lester and half-moon tooth and no small accessory Clark 2002; Sakamaki and Richardson 2009), tooth. Fifth joint with distal spine and but we follow the nomenclature used in other proximal spine, which is well within tooth current local intertidal guides (Chapman when joint is flexed (Fig. 1). Females have 2007). similar toothed fourth joint (Fig. 5), with spines also on the fifth joint. The fifth joint has a Description proximal spine that opposes the large half- Size: Largest species of Americorophium on moon tooth when the joint is flexed. Both the west coast with females 8–10 mm, in sexes have prominent gland cones on the length (South Slough of Coos Bay) and males second article (Figs. 1, 5), but that of the 6 mm in length (Shoemaker 1949). female is acute and curves forward sharply Color: Clear, with dark brown markings on (Fig. 5). antennae and thoracic segments. Mouthparts: General Morphology: The body of Pereon: amphipod crustaceans can be divided into Coxae: Setose lamellae (pairs of three major regions. The cephalon (head) brood plates attached to bases of coxae) (Fig. includes antennules, antennae, mandibles, 6) are present in females only. Do not maxillae and maxillipeds (collectively the confuse with fleshy gills that are present on mouthparts). Posterior to the cephalon is the both sexes. pereon (thorax) with seven pairs of Gnathopod 1: pereopods attached to pereonites followed by Gnathopod 2: Filtering type, with fine the pleon (abdomen) with six segments long setae, present in both sexes, comprising three pleonites (together the morphology as in other Americorophium pleosome), three urosomites (together the species. urosome), and finally a telson at the animal Pereopods 3 through 7: posterior (see Plate 254, Chapman 2007). In Pleon: members of the genus Americorophium, the Pleonites: body is flattened dorso-ventrally and rarely Urosomites: Urosome and third exceeds 1 cm in total length (including uropod morphology as in other antennae) in local specimens (see Fig 46, Americorophium species (see A. brevis, Figs. Kozloff 1993). 3, 4). Cephalon: Epimera: Rostrum: Rounded in both sexes Telson: (Fig. 3b, 4), but male rostra are sometimes Sexual Dimorphism: Sexes share a more straight (Fig. 3a) (Shoemaker 1949). similar morphology,than other Americorophium species. Hiebert, T.C. 2015. Americorophium spinicorne. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12689 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Possible Misidentifications fourth article of the second antenna, but The gammarid family Corophiidae is without the small accessory tooth. characterized by individuals that build U- Americorophium spinicorne is also strongly shaped tubes in both soft sediments and on euryhaline and often found in fresh-water hard surfaces, sometimes forming dense habitats. Segments of urosome are aggregations. Species can be dramatically separate and no fused in A. spinicorne and sexually dimorphic and and, although males males and females can be distinguished by may be easier to identify with taxonomically the second antennal features (see Antenna relevant characters including the rostrum 2) and by the presence of lamellae and/or and peduncle of second antennae, most eggs in females. females can be reliably identified to species Males: Of the Americorophium as well (Chapman 2007). Five corophiid species in which males have urosome genera occur locally, Americorophium, segments dissimilar to females, A. Corophium, Crassicorophium, stimpsoni, A. brevis, and A. salmonis all Laticorophium and Monocorophium. The have a half-moon and accessory tooth on three common estuarine species in this the fourth article of the second antenna. guide (A. brevis, A. salmonis, A. spinicorne) Americorophium brevis and A. salmonis were previously members of the genus often have similar rostrums, but that of A. Corophium (see Shoemaker 1949), but stimpsoni has a prominent central lobe were transferred to the genus nearly as long as the ocular lobes. In A. Americorophium in 1997 (Bousfield and salmonis the first antenna reaches only to Hoover 1997). the middle of the fourth article. All Americorophium species have Americorophium brevis does not have the filtering-type second gnathopods and long flat expanded first articles of the first setae on the third uropods. Of the four local antenna and A. salmonis usually has 14–16 Americorophium species, sexual articles in the flagellum, (though occasional dimorphism is strong in the three species A. specimens will have 11–12). In A. brevis, brevis, A. salmonis, and A. stimpsoni. In the males have about 11 articles in the particular, the second antenna and fourth flagellum of the first antenna. The uropods segment differ between males and females of A. salmonis and A. brevis are quite (Shoemaker 1949). This is not the case, dissimilar. In A. salmonis, the peduncle of however, for the fourth Americorophium the first uropod is armed on the outside species, A. spinicorne, where male and edge with three to six long, slender spines female morphologies are similar. Additional and at the distal edge with two to three characteristics that differ between species short, blunt spines. Americorophium brevis (particularly A. brevis and A. salmonis) has instead only eight short, blunt spines. include first antenna, telson, first uropods The third uropods of A. salmonis have many and third uropods. more and longer setae than those of A. Americorophium stimpsoni, brevis. The telson shape and spination of principally a northern California species, the two species are also quite different does not seem to occur in Oregon. Its chief (compare Figs. 4, A. brevis, and Fig. 5, A. key characteristic is a prominent male salmonis in this guide). rostrum, almost as long as the ocular lobes. Females: A. salmonis and A. The females are much like those of A. stimpsoni females are very much alike, salmonis. with no strong distinguishing Americorophium spinicorne, another characteristics, so the species should not prominent northwest species, has less be differentiated solely by female sexual dimorphism that other specimens. The only Americorophium Americorophium species. Both males and female of this group to have the half-moon females have a half-moon tooth on the hook is A. spinicorne, so this species is Hiebert, T.C. 2015. Americorophium spinicorne. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. easily distinguished from others. of the San Joaquin river estuary (Aldrich Americorophium brevis has three pairs of 1961). spines, as well as a spine on the gland cone, instead of having two single spines Life-History Information on the underside of the fourth article of the Reproduction: Development in most second antenna. The first antenna has amphipods is direct, lacking a larval stage, eight joints in the flagellum, while that of A. and little is known about the reproduction and salmonis has ten. development in A. spinicorne. Ovigerous females have been observed in February, Ecological Information March, May and December (Eriksen 1968). Range: Type locality is San Francisco, In the European species, Corophium California (Bousfield and Hoover 1997). volulator, breeding occurs in February (over- Known range includes estuaries and brackish wintering population) and again in July– waters from Santa Cruz, California to Alaska August. Young remain in brood pouch four (Chapman 2007). Additionally, A. spinicorne weeks and females produce up to four broods has been reported from two locations along per year (Green 1968). the Snake River in Idaho (Lester and Clark Larva: Since most amphipods develop 2002). directly, they lack a definite larval stage. Local Distribution: Oregon estuaries and Instead the young developmental stage lakes including South Slough of Coos Bay, resembles small adults (e.g. Fig. 39.1, Wolff Tillamook Bay and Floras Lake. 2014). Habitat: Members of the Corophiidae inhabit Juvenile: small U-shaped tubes in soft sediments, or on Longevity: hard surfaces (Chapman 2007). Muddy Growth Rate: Amphipod growth occurs in substrates as well as sandy beaches conjunction with molting where the (Barnard
Recommended publications
  • HELCOM Red List
    SPECIES INFORMATION SHEET Corophium multisetosum English name: Scientific name: – Corophium multisetosum Taxonomical group: Species authority: Class: Malacostraca Stock, 1952 Order: Amphipoda Family: Corophiidae Subspecies, Variations, Synonyms: Generation length: 2 years? Trophonopsis truncata Strøm, 1768 Trophon truncatus Strøm, 1768 Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): Fishing (bottom trawling; codes): Fishing (bottom trawling; F02.02.01), F02.02.01), Eutrophication (H01.05) Eutrophication (H01.05) IUCN Criteria: HELCOM Red List NT B2b Category: Near Threatened Global / European IUCN Red List Category Habitats Directive: – – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/G (endangered by unknown extent), Latvia –/–, Lithuania –/–-, Poland –/–, Russia –/–, Sweden: –/– Distribution and status in the Baltic Sea region C. multisetosum is reported mainly from coastal waters (bays) along southern shores of the Baltic Sea and those in the Danish straits, including adjacent fjords, canals, lagoons, e.g. the Curonian Lagoon, which is the easternmost area. However, there are also records from more open sea, and thus more saline areas such as the Hevring Bay, Arhus Bay, Arkona Basin by Darss-Zingst Peninsula, and the outer Puck Bay. Declining population trends are reported from the Szczecin Lagoon (Wawrzyniak-Wydrowska, pers. comm.). ©HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Corophium multisetosum Distribution map The georeferenced records of species compiled from the Danish national database for marine data (MADS), Russian monitoring data (Elena Ezhova, pers. comm), and the database of the Leibniz Institute for Baltic Sea Research (IOW), where also the Polish literature and monitoring data for the species are stored.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • THE REVIEW of ECOLOGICAL and GENETIC RESEARCH of PONTO-CASPIAN GOBIES (Pisces, Gobiidae) in EUROPE
    Croatian Journal of Fisheries, 2016, 74, 110-123 G. Jakšić et al: Ecological and genetic research of Ponto-Caspian gobies DOI: 10.1515/cjf-2016-0015 CODEN RIBAEG ISSN 1330-061X (print), 1848-0586 (online) THE REVIEW OF ECOLOGICAL AND GENETIC RESEARCH OF PONTO-CASPIAN GOBIES (Pisces, Gobiidae) IN EUROPE Goran Jakšić1, *, Margita Jadan2, Marina Piria3 1City of Karlovac, Banjavčićeva 9, 47000 Karlovac, Croatia 2Division of materials chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia 3University of Zagreb, Faculty of Agriculture, Department of Fisheries, Beekeeping, Game management and Special Zoology, Svetošimunska 25, 10000 Zagreb, Croatia *Corresponding Author, Email: [email protected] ARTICLE INFO ABSTRACT Received: 27 January 2016 Invasive Ponto-Caspian gobies (monkey goby Neogobius fluviatilis, round Received in revised form: 14 May 2016 goby Neogobius melanostomus and bighead goby Ponticola kessleri) have Accepted: 20 May 2016 recently caused dramatic changes in fish assemblage structure throughout Available online: 24 May 2016 European river systems. This review provides summary of recent research on their dietary habits, age and growth, phylogenetic lineages and gene diversity. The principal food of all three species is invertebrates, and more rarely fish, which depends on the type of habitat, part of the year, as well as the morphological characteristics of species. According to the von Bertalanffy growth model, size at age is specific for the region, but due to its disadvantages it is necessary to test other growth models. Phylogenetic Keywords: analysis of monkey goby and round goby indicates separation between the European river systems Black Sea and the Caspian Sea haplotypes. The greatest genetic diversity is Invasive gobies found among populations of the Black Sea, and the lowest among European Ecology invaders.
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Ecology and Impact of the Exotic Amphipod,Corophium Curvispinum
    Ecology and impact of the exotic amphipod, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the River Rhine and Meuse S. Rajagopal, G. van der Velde, B.G.P. Paffen and A. bij de Vaate Reports ofth e project "Ecological Rehabilitation of Rivers Rhine and Meuse" No.75-1998 Institute for Inland Water Management and Waste Water Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad, The Netherlands To be referred to as: Rajagopal, S., G. van der Velde, B.G.P. Paffen & A. bij de Vaate, 1997. Ecology and impact of exotic amphipod, Corophiumcurvispinum Sars , 1895 (Crustacea: Amphipoda), in the River Rhine and Meuse. Report (No. ) of the project "EcologicalRehabilitation of RiversRhine and Meuse" {with abstracts in Dutch, French and German). Institute for Inland Water Management and Waste Water Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad, The Netherlands. Contents Preface I Summary III Samenvatting VII Résumé XI Zusammenfassung XV Listo f figures XIX List oftable s XXIII 1. Introduction 1 1.1. Distribution and range extensiono f Corophium curvispinum 1 1.2.Reason sfo r the present study 1 1.3. Objectives 3 2. Materials andmethod s 3 2.1. Study area 3 2.2. Methods 5 2.2.1. Life history andreproductiv e biology 5 2.2.2. Growth rates 6 2.2.3. Production 7 2.2.4. Distribution andimpact s of C. curvispinum onothe r macroinvertebrates 7 2.2.5. Mud-fixation 7 2.2.6. Filtration capacity 9 2.2.7. Hydrographie parameters 10 2.2.8. Statistical analysis 10 3. Results 10 3.1.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Corophium Volutator Class
    These are year round inhabitants of the mudflats in Corophium volutator nearby areas. Class: Malacosstraca Order: Amphipoda Family: Corophiidae Genus: Corophium A female Corophium shown in its protective U-shaped burrow. Photo: Jim Wolford Distribution They occupy both sides of In North America, this specific species Corophium volutator occurs the North Atlantic on the only in the Bay of Fundy and the Gulf of Maine. In Europe they American and European occur from Scandinavia to the Mediterranean. coasts. This amphipod (not a true shrimp) occupies semi-permanent Habitat U-shaped burrows in the fine sediments of mud flats, salt marsh They tolerate a wide range pools and brackish ditches. When present in high densities the of salinities from nearly openings of the burrows are clearly visible on the surface of fully saline to almost fresh their habitat. water. They have different methods of feeding. Two methods may Food occur simultaneously; deposit and suspension feeding. Sediment They ingest particulate particles are retained and passed into mouth parts. Another matter, organic detritus and method is scraping organic material off the surface of sediment. diatoms. They feed at all Food must be of an appropriate size. There are seasonal stages of the tidal cycle. variations in what they consume. Diatoms (single-celled plants) flourish in the summer months. Reproduction Males initiate courtship. Males may visit as few as two burrows or as many as 18 before The timing of this is very choosing one. Conflict may occur between males when a burrow important. They emerge is entered already occupied by another single male or a paired from their burrows on female and male.
    [Show full text]
  • Distribución De Los Anfípodos (Crustacea, Malacostraca, Peracarida) De Los Subórdenes Gammaridea, Caprellidea E Hyperiidea, Presentes En El Archipiélago Cubano
    Distribución de los anfípodos (crustacea, malacostraca, peracarida) de los subórdenes gammaridea, caprellidea e hyperiidea, presentes en el archipiélago cubano Item Type Journal Contribution Authors Ortiz, M.; Lalana, R. Citation Revista de Investigaciones Marinas, 31 (2), p. 75-90 Download date 27/09/2021 06:30:40 Item License http://creativecommons.org/licenses/by-nc/3.0/ Link to Item http://hdl.handle.net/1834/4520 Rev. Invest. Mar. 31(2):75-90, 2010 DISTRIBUCIÓN DE LOS ANFÍPODOS (CRUSTACEA, MALACOSTRACA, PERACARIDA) DE LOS SUBÓRDENES GAMMARIDEA, CAPRELLIDEA E HYPERIIDEA, PRESENTES EN EL ARCHIPIÉLAGO CUBANO Manuel Ortiz y Rogelio Lalana Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16 No. 114, Playa, CP 11300, Ciudad Habana, Cuba Autor correspondiente: Email: [email protected] RESUMEN Se presenta la distribución espacial y vertical de las 152 especies (37 familias y 83 géneros) de los anfípodos gammarídeos; de las 11 especies (5 familias y 10 géneros) de caprélideos, así como las 36 especies (14 familias y 22 géneros) de hiperídeos, que se han registrado en el Archipiélago Cubano, desde 1970. Cada especie ha sido situada en una tabla que se corresponde con las ecorregiones marinas de Cuba, donde además se ofrece el número de veces que dicha especie ha sido colectada en cada localidad, así como el tipo de sustrato. Palabras clave: distribución de especies; Amphipoda; ASW, Cuba. ABSTRACT The spatial and vertical distribution of the 152 species (37 families and 83 genera) of the gammaridean amphipods; the 11 species (five families, 10 genera)of the caprellidean amphipods, as well as of the 36 species (14 families and 22 genera) of Hyperiidean amphipod crustaceans recorded for the Cuban waters, from 1970, are given.
    [Show full text]
  • Behind Anemone Lines: Determining the Environmental Drivers Influencing Lagoonal Benthic Communities, with Special Reference to the Anemone Nematostella Vectensis
    Behind Anemone Lines: Determining the environmental drivers influencing lagoonal benthic communities, with special reference to the anemone Nematostella vectensis. by Jessica R. Bone Bournemouth University December 2018 Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i Behind Anemone Lines: Determining the environmental drivers influencing lagoonal benthic communities, with special reference to the anemone Nematostella vectensis. Jess R. Bone Abstract Climate change induced sea level rise and increase in associated storms is impacting the coastal zone worldwide. Lagoons are a transitional ecosystem on the coast that are threatened with habitat loss due to ingress of seawater, though conversely this also represents an opportunity for lagoon habitat creation. It is important to quantify the spatio-temporal trends of macrozoobenthic communities and abiotic factors to determine the ecological health of lagoon sites. Such information will ensure optimal and adaptive management of these rare and protected ecosystems. This thesis examines the spatial distribution of macrozoobenthic assemblages and the abiotic and biotic factors that may determine their abundance, richness and distribution at tidally restricted urban lagoon at Poole Park on the south coast of England. The macrozoobenthic assemblages were sampled using a suction corer during a spatially comprehensive survey in November 2017, in addition to aquatic and sediment variables such as salinity, temperature, organic matter content and silt content. Species richness and density were significantly lower in areas of high organic matter and silt content, indicative of hostile conditions.
    [Show full text]
  • Redalyc.Biodiversity of the Gammaridea and Corophiidea
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Chiesa, Ignacio L.; Alonso, Gloria M. Biodiversity of the Gammaridea and Corophiidea (Crustacea: Amphipoda) from the Beagle Channel and the Straits of Magellan: a preliminary comparison between their faunas Revista de Biología Tropical, vol. 55, núm. 1, 2007, pp. 103-112 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44909914 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biodiversity of the Gammaridea and Corophiidea (Crustacea: Amphipoda) from the Beagle Channel and the Straits of Magellan: a preliminary comparison between their faunas Ignacio L. Chiesa 1,2 & Gloria M. Alonso 2 1 Laboratorio de Artrópodos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; ichiesa@ bg.fcen.uba.ar 2 Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Div. Invertebrados, Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina; [email protected] Received 10-XI-2005. Corrected 25-IV-2006. Accepted 16-III-2007. Abstract: Gammaridea and Corophiidea amphipod species from the Beagle Channel and the Straits of Magellan were listed for the first time; their faunas were compared on the basis of bibliographic information and material collected in one locality at Beagle Channel (Isla Becasses). The species Schraderia serraticauda and Heterophoxus trichosus (collected at Isla Becasses) were cited for the first time for the Magellan region; Schraderia is the first generic record for this region.
    [Show full text]
  • Ring Test Bulletin – RTB#50
    www.nmbaqcs.org Ring Test Bulletin – RTB#50 Carol Milner Tim Worsfold David Hall Chris Ashelby Søren Pears (Images) APEM Ltd. March 2016 E-mail: [email protected] NMBAQC RTB#50 RING TEST DETAILS Ring Test #50 Type/Contents – General Circulated – 14/10/15 Results deadline – 18/12/15 Final results received date – 5/1/16 Number of Subscribing Laboratories – 22 Number of Participating Laboratories – 20 Number of Results Received – 21* *multiple data entries per laboratory permitted Summary of differences Total differences for 21 Specimen Genus Species returns Genus Species RT5001 Ampelisca diadema 0 8 RT5002 Pseudoprotella phasma 1 1 RT5003 Gammaropsis maculata 5 5 RT5004 Socarnes erythrophthalmus 4 6 RT5005 Stenothoe marina 1 1 RT5006 Abludomelita obtusata 4 5 RT5007 Gammarus crinicornis 0 5 RT5008 Unciola crenatipalma 3 3 RT5009 Leptocheirus tricristatus 1 1 RT5010 Harpinia crenulata 2 2 RT5011 Parametaphoxus fultoni 2 2 RT5012 Melita hergensis 0 1 RT5013 Caprella mutica 0 13 RT5014 Corophium volutator 0 3 RT5015 Parajassa pelagica 3 3 RT5016 Stenothoe monoculoides 4 4 RT5017 Dexamine thea 4 10 RT5018 Dexamine thea 3 6 RT5019 Aora gracilis 0 4 RT5020 Crassicorophium crassicorne 2 3 RT5021 Talitrus saltator 5* 5* RT5022 Nototropis swammerdamei 0 1 RT5023 Gammarus tigrinus 1 14 RT5024 Gammarus finmarchicus 2 5 RT5025 Melita hergensis 0 4 Total differences 47 115 Average differences /lab. 2.2 5.5 *A mixture of Talitrus saltator and Deshayesorchestia deshayesii was sent out in error. Specimens have been checked prior to this report being issued and labs marked correct. Please see RT5021 below for details.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]