Lithofacies of the Lower Cretaceous Mannville Group, West-Central

Total Page:16

File Type:pdf, Size:1020Kb

Lithofacies of the Lower Cretaceous Mannville Group, West-Central - 169 - Lithofacies of the Lower Cretaceou s Mannville Group , We st-Central Sa skatchewan by J . A. Lorsong A de t ail e d sedimentol ogical i nvestigation of the Mannvi l l e Group i n the Lloydminster a rea was ini t iat ed in earl y 1979 . The aim of the study is the development of a facies model which will aid in explor ati on f or and development of heavy oil-beari ng sandstone bodies. Preliminary descriptions of t he cons tit uent lithofacies of the Mannville Group a re presented here . Descr iptions a re based on det ailed study of 500 m of core from t he upper and middle parts of the s uccession (Colony , McLaren, Was e ca, Sparky , General Petroleum and Rex formations) in t he norther n por tion of the Lloydminster a r ea. Preliminary exami nation of cores f rom other f ormations and other areas s uggests that t he descr iptive sche me outlined below is applicable to the Mannville Group thr oughout west-centra l Saska t chewan. The Mannville Group compris e s a poorly consolidated sands tone-shale s equence approxima tel y 200 rn thick. The s uccessi on has been divided into nine f ormations for the purposes of geophysical l og interpretat ion and pr oduction accounting (Vigrass , 1977 ; White & Osinski, 1977). Oil is produced from numerous s andstone bodies which typicall y range f r om l m to 6 min t h ickness. A singl e vertical section of t he Mannvi lle Group may i nclude 30 or more s uch sands t one bodies . All sands tones ar e lateral ly disconti nuous; many pinch out over a di stance of 250 m or less. The limited a r eal ext ent of i ndividual sandstone bodies thus precludes accura t e delinea tion of r eservoir geometry by drilling, even at the minimum (f i ve- acre) well s pacing . De t ailed information i s r equire d, however, f or modelling of fluid b ehaviour and efficient reservoir deve lopment i n enhanced recovery project s . It is necessary theref ore, to deve lop a facies model with which probable reser voir geometries can be predicted on sedimentological criteri a. Description of Li t hofacies Facies L (low-angle cross-laminated s andstone ). Faci es L consists of ver y fine to fine- grained, well sorted quartz sands tone with very minor intercalations of shal e. The faci es is cha r acterised by low-angle (generally l ess t han 10°) multi- directional cross-lamination. The l amina e as s een in cor es appear to be planar. Individua l sets vary from 5 cm to 250 cm in thi ckness (mean 34 cm) . Low-angle cr oss­ lamination a c counts for about 60 pe r cent of facies L; t he r emainde r comprises lar ge scale (sets ~10 cm) and s mall scale (sets <10 cm) trough cross-lamination , - 170 - and high angle, apparently planar, cross-lamination in approximately equal pro­ portions (Fig. lA). Trough cross -lamination is t ypically most fully developed near the base of each facies L i n terva l and gradually diminishes in i mportance upward. Nearly all of the petroleum production in the Lloydrninster area is from facies L s andstone bodies. Facies T (trough cross-lami nated sandstone ). Facies T comprises very fine to fine­ grained, mode rately sorted quartz sandstone, generally with small proportions of silt and clay. The facies is charact eri sed by multidirectional trough cross­ lamination, low-angle cross-lamination, and horizontal laminati on (Fig. lB). Sets of trough cross-lamination are up to 100 cm and average about 20 cm thick. Facies M (massive sandstone) . Facies M s andstones are generally fine to medium­ grained, mode rately t o poorly sorted, and contain substantial quantities of silt and c l ay. Sedimentary structures are virt•1a lly absent, although remnant traces of cross-lamination suggest that some facies M i ntervals may represent intensely bioturbated equivalents of facies Tor L. Facies B (bioturbated s ands tone and sha l e). Facies B comprises very fine to fine­ grained, well sorted sandstones and interbedded shales. Bed thicknesses range from 0.5 cm to 25 cm (mean about 5 cm). The proportion of sandstone varies from 10 to 90 per cen t and averar,es approxill!ately 40 percent. Near ly all sandstone beds exh ibit small scale trough cross-lamination, either in multiple sets or in isolated bedforms. Preserved bedforms include symmetrical oscillati on ripples (more common) and asymmetrical ripples (less common). Orient­ ations of cross-laminae and of ripple crests vary considerably between adjacent beds. Mass ive and parallel-laminated sha l e beds are about e qually common. Shale layers commonly conform to the shapes of subjacent bedforms to form intervals of lenticul ar , wavy and f l aser bedding (in order of decreasing abundance; see Reineck & Wunderlich, 1968 for terminology). Upper parts of shale l ayers are commonly cut by sand-filled desiccation cracks . Facies Bis characterised by pervasive bioturbation. Intensity of bioturbation ranges from isolated burrows (both horizontal and vertical; filled with either sandstone or shale) to i ntervals of thoroughly intermixed sandstone and shale in which primary depositional structures cannot b e distinguished. Facies S (shale). Facies S includes massive intervals of grey shale (subfacies - 171 - S1) and simila r intervals marked by nume rous lami nae of white or l ight gr ey s ilt (subf acies s2). Subfacies s2 dis play s many f eatures common in facie s B, but on a s malle r scale. Silt layers are t ypi cally 0 . 1 cm to 0.5 cm thick, and generally exhibit isola ted r i pples (mor e commonly) or horizontal lamin­ ati on (le s s commonly). Graded laminae a r e obser ved occasion- a lly. Lent icula r, wavy and f laser bedding a re commonly developed, as are desiccation cracks filled wi th silt. Facies C (coal). Facies C compri ses thin beds of black vitreous lignite and carbon­ aceous black s hales which commonly overlie lignite layers . Organic ma t e rial consists primarily ofte r­ r e strial plant debris . Coal Fi g. 1 - Typi cal appearance of predominantly l ow-angle beds a re typically a ssociated cross-l ami nation in f aci es L (sec tion A) and trough cross-l amination in fac ies T (Section B). with l ea ched zones (in sand­ Heavy l ines i ndi cate erosional surfa ces ; l i ghter lines show incl inations an d sha pes of laminae . s tone ) into which root tra ces extend 50 cm or farther. Distribution of Lithofacies Relative proportions of lithof acie s in the upper part of the Mannville Group are s hown in Table 1 . Faci es L, B and Sare the most abunda nt; faci es Tis ubiqui tous , but less important volumetri cally ; f acies C int erva ls are mode rately common, but are s ubs tantially thinner t han other fac ies; facies Mis not commonly developed. Although s everal f acies share conunon charac t eris tics, each is discre te in - 172 - verti cal section and is easil y distinguished from adjacent i ntervals . Facies L, T and Mare composed almost ent irely of s andstone; t he f aci es differ somewhat i n grain size and sorting, but the primary dif ferences a re i n sedimentary s tructures . This suggests that the faci es may be spatia l l y associated. Howeve r, such a rel ation­ shi p i s not observed in vertical sequence: nearl y ever y s andstone body corresponds uniquely to a single facies . Lateral a ssociations of facies a re more di fficult to assess . Tentative correl ation of closely spaced cores s uggests t hat facies L sandstone bodie s may gr a de into faci es T over dis tances of 100 m or less in some instances. Other facies are apparently independent over similar distances . Table 1 facies vol ume tric numerical t hickness (cm) proportion prorortion* maximum mini mum mean L (low angle cr oss- lamin- 37% 24% 744 26 231 ated sandstone) T (trough cross- l aminated 13% 13% 431 24 143 sandstone) M (massive sandstone ) 3% 3% 252 16 142 B (bioturba t ed sandstone 28% 27% 486 20 158 and s ha l e) S1 (massive shale) 8% 13% 697 17 90 S2 (laminated shale) 10% 14% 459 20 l i)3 c (coal) 1% 6% 154 6 28 * pr oportion of 286 measured intervals Discussion Six distinct lithofacies ar e represented i n the Mannville Group in the Ll oydminster area . Although a thorough interpretation will depend upon f urther study, t he sali ent cha racteristics of the facies suggest some prel iminary inter ­ pretations. Low angl e cross- lamination in faci es Lis typical of swash and hummocky stratificati on associated with beaches and shallow offshore enviromnents (Harms & others , 1975 ; Hamblin & othe rs, 1979). Evidence for migration of sand waves - 173 - (high-angle c ross- lamination) and dunes and ripples (trough cross-lamination) is present in both facies Land T. Wave action and possibly unidirectional currents are indicated by oscillation and asymmetr ical r ipples in facies Band s 2. Lamination in subfacies s2 closely resembles the pin- stripe bedding characteristic of tida l flats (Reif & Slatt, 1979; Thompson, 1968).
Recommended publications
  • Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada)
    Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada). R. Deschamps, Eric Kohler, M. Gasparrini, O. Durand, T. Euzen, Fati Nader To cite this version: R. Deschamps, Eric Kohler, M. Gasparrini, O. Durand, T. Euzen, et al.. Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada).. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2012, 67 (1), pp.31-58. 10.2516/ogst/2011153. hal-00702841 HAL Id: hal-00702841 https://hal-ifp.archives-ouvertes.fr/hal-00702841 Submitted on 31 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ogst110074_Deschamps 22/02/12 14:54 Page 31 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 1, pp. 31-58 Copyright © 2012, IFP Energies nouvelles DOI: 10.2516/ogst/2011153 Dossier Diagenesis - Fluid-Rocks Interactions Diagenèse minérale - Équilibres fluides-roches Impact of Mineralogy and Diagenesis on Reservoir Quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada) R. Deschamps1*, E. Kohler1, M. Gasparrini1, O. Durand2, T. Euzen3 and F.
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Physical and Numerical Modeling of SAGD Under New Well Configurations
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-09-23 Physical and Numerical Modeling of SAGD Under New Well Configurations Tavallali, Mohammad Tavallali, M. (2013). Physical and Numerical Modeling of SAGD Under New Well Configurations (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27348 http://hdl.handle.net/11023/1002 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Physical and Numerical Modeling of SAGD Under New Well Configurations by Mohammad Tavallali A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING CALGARY, ALBERTA SEPTEMBER, 2013 © Mohammad Tavallali, 2013 ii ABSTRACT This research was aimed at investigating the effect of well configuration on SAGD performance and developing a methodology for optimizing the well configurations for different reservoir characteristics. The role of well configuration in determining the performance of SAGD operations was investigated with help of numerical and physical models. Since mid 1980’s, SAGD process feasibility has been field tested in many successful pilots and subsequently through several commercial projects in various bitumen and heavy oil reservoirs. Although SAGD has been demonstrated to be technically successful and economically viable, it still remains very energy intensive, extremely sensitive to geological and operational conditions, and an expensive oil recovery mechanism.
    [Show full text]
  • General Geology of Lower Cretaceous Heavy Oil
    POOR IMAGE DUE TO ORIGINAL DOCUMENT QUALITY -JC.plt, 5 - ot/-oI General Geology of Lower Cretaceous Heavy • Oil Accumulations In Western Canada By L W. VIGRASS* (Heavy Oil Semillur, The Petrolell1n Society of C.l.~I., Calgary. llIay .5, 1.965) ABSTRACT The oil throughout the belt is asphaltic and contain.'3Downloaded from http://onepetro.org/jcpt/article-pdf/4/04/168/2165766/petsoc-65-04-01.pdf by guest on 01 October 2021 large amounts of sulphur. nitrogen and oxygen. Gra­ Lower Cretaceous sand reservoirs contain about 750 billion barrels of "lscous, heavy oil along a broad arcuate vities range from 6° to 18° API and viscosities from belt that extends from northwestern Alberta into west­ several hundred to several million centipoise at GO°F, central Saskatchewan_ The heavy on is pooled in the Studies of sulphur isotopes, trace metal content and Mannville Group and, in a gross sense. occurs in a marine­ continental transition facies. The accumulation at Peace high molecular weight compounds show a fundamen­ River is in a regional onlap feature. The accumulations in tal similarity between Athabasca, Bonn.yville und the Athabasca-Llo}'dminster region occur across the Lloydminster crude oils. crest and on the southwest flank of a regional anticlinal feature associated with the solution of salt from Middle The change in character of the oil with geographic Devonian beds. These re~ional features had already position and depth is not ' ...·ell documented, but oils formed by the end of Early Cretaceous time. from deeper reservoirs at the south end of the bell Chemical and physical I)rOperties of oils from differ­ are more paraffinic, have higher API gravities and ent accumulations show that they belong to a single oil s:,.,stem and suggest a common mode of origin.
    [Show full text]
  • Incised Valley-Fill System Development and Stratigraphic
    INCISED VALLEY-FILL SYSTEM DEVELOPMENT AND STRATIGRAPHIC ANALYSIS OF THE LOWER CRETACEOUS KOOTENAI FORMATION, NORTHWEST MONTANA by Casey Ryan Reid A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April 2015 ©COPYRIGHT by Casey Ryan Reid 2015 All Rights Reserved ii ACKNOWLEDGEMENTS I would like to thank the Big Sky Carbon Sequestration Partnership and Vecta Oil and Gas for the financial and technical support received during this project. I would also like to thank my committee Dr. Jim Schmitt, Dr. Dave Bowen and Dr. Dave Lageson for their support and guidance throughout the duration of this thesis. Montana State University and the American Association of Petroleum Geologists are also acknowledged for financial support received and continued excellence in the geosciences. Without the support of my family and friends this project would surely never have been completed. While I am indebted to numerous people a number of specific words of thanks are necessary: to my parents whose love, guidance, and unwavering encouragement has never yielded, to my sisters who always supplied a welcome break from work and to my fellow geoscientists Jack Borksi, Nick Atwood, Nate Corbin, Ryan Hillier, and Colter Anderson. iii TABLE OF CONTENTS 1. INTRODUCTION, OBJECTIVES, & SIGNIFICANCE OF STUDY ...........................1 Introduction ......................................................................................................................1
    [Show full text]
  • Forensic Chemostratigraphy in Geosteering Multilateral Wells: an Example from Devonian to Carboniferous-Aged Sequences in Southe
    URTeC Control ID # 1579996 1 URTeC Control ID Number: 1579996 Forensic Chemostratigraphy in Geosteering Multilateral Wells: An example from Devonian to Carboniferous-aged sequences in Southern Alberta Heather Stilwell1*, Nahysa Martinez1, Gemma Hildred1, Brian Zaitlin2 1. Chemostrat, Houston, TX, United States. 2. Native American Resource Partners, Calgary, AB, Canada. Copyright 2013, Unconventional Resources Technology Conference (URTeC) This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, 12-14 August 2013. The URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted by the author(s). The contents of this paper have not been reviewed by URTeC and URTeC does not warrant the accuracy, reliability, or timeliness of any information herein. All information is the responsibility of, and, is subject to corrections by the author(s). Any person or entity that relies on any information obtained from this paper does so at their own risk. The information herein does not necessarily reflect any position of URTeC. Any reproduction, distribution, or storage of any part of this paper without the written consent of URTeC is prohibited. Summary The results presented in this study test the efficacy of using whole-rock elemental data to characterize the stratigraphy penetrated when drilling lateral wells and use this information along with comparisons to a vertical offset well to stay in zone. This approach is tested in the Alberta Bakken Petroleum System (ABPS) in Southwestern Alberta, Canada, focusing on the Banff, Exshaw, Big Valley, and Stettler formations (Hildred et al 2013, Zaitlin 2013).
    [Show full text]
  • Bedrock Geology of Alberta
    Alberta Geological Survey Map 600 Legend Bedrock Geology of Alberta Southwestern Plains Southeastern Plains Central Plains Northwestern Plains Northeastern Plains NEOGENE (± PALEOGENE) NEOGENE ND DEL BONITA GRAVELS: pebble gravel with some cobbles; minor thin beds and lenses NH HAND HILLS FORMATION: gravel and sand, locally cemented into conglomerate; gravel of sand; pebbles consist primarily of quartzite and argillite with minor amounts of sandstone, composed of mainly quartzite and sandstone with minor amounts of chert, arkose, and coal; fluvial amygdaloidal basalt, and diabase; age poorly constrained; fluvial PALEOGENE PALEOGENE PALEOGENE (± NEOGENE) PALEOGENE (± NEOGENE) UPLAND GRAVEL: gravel composed of mainly white quartzite cobbles and pebbles with lesser amounts of UPLAND GRAVEL: gravel capping the Clear Hills, Halverson Ridge, and Caribou Mountains; predominantly .C CYPRESS HILLS FORMATION: gravel and sand, locally cemented to conglomerate; mainly quartzite .G .G and sandstone clasts with minor chert and quartz component; fluvial black chert pebbles; sand matrix; minor thin beds and lenses of sand; includes gravel in the Swan Hills area; white quartzite cobbles and pebbles with lesser amounts of black chert pebbles; quartzite boulders occur in the age poorly constrained; fluvial Clear Hills and Halverson Ridge gravels; sand matrix; ages poorly constrained; extents poorly defined; fluvial .PH PORCUPINE HILLS FORMATION: olive-brown mudstone interbedded with fine- to coarse-grained, .R RAVENSCRAG FORMATION: grey to buff mudstone
    [Show full text]
  • Assessment of Undiscovered Conventional Oil and Gas Resources of the Western Canada Sedimentary Basin, Canada, 2012
    Assessment of Undiscovered Conventional Oil and Gas Resources of the Western Canada Sedimentary Basin, Canada, 2012 The U.S. Geological Survey mean estimates of undiscovered conventional oil and gas resources from provinces in the Western Canada Sedimentary Basin of central Canada are 1,321 million barrels of oil, 25,386 billion cubic feet of gas, and 604 million barrels of natural gas liquids. Introduction Basin Province of Saskatchewan, southeastern Alberta, and southern Manitoba; and (3) the Rocky Mountain Deformed The U.S. Geological Survey (USGS) recently completed Belt Province of western Alberta and eastern British Colum- a geoscience-based assessment of undiscovered oil and gas bia (fig. 1). This report is part of the USGS World Petroleum resources of provinces within the Western Canada Sedimentary Resources Project assessment of priority geologic provinces Basin (WCSB) (table 1). The WCSB primarily comprises the of the world. The assessment was based on geoscience ele- (1) Alberta Basin Province of Alberta, eastern British Columbia, ments that define a total petroleum system (TPS) and associated and the southwestern Northwest Territories; (2) the Williston assessment unit(s) (AU). These elements include petroleum 129° 125° 121° 117° 113° 109° 105° 101° 97° 93° 89° Mackenzie Northern Interior Basins Foldbelt NUNAVUT NORTHWEST TERRITORIES 60° Hudson Bay HUDSON CANADA Basin BAY 58° EXPLANATION ALBERTA SASKATCHEWAN Middle and Upper Cretaceous Reservoirs AU Triassic through Lower Cretaceous Reservoirs AU 56° Alberta Basin Mississippian through Canadian Permian Reservoirs AU Shield Upper Devonian and Older Reservoirs AU 54° BRITISH MANITOBA COLUMBIA Williston Basin Edmonton 52° Rocky Mountain Deformed Belt Saskatoon ONTARIO CANADA 50° Area Calgary of map Regina Winnipeg UNITED STATES 48° 0 100 200 MILES WASHINGTON NORTH MONTANA UNITED STATES DAKOTA 0 100 200 KILOMETERS IDAHO Figure 1.
    [Show full text]
  • Stratigraphic Framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and Mclaren Alloformations) in the Lloyd
    Stratigraphic Framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and McLaren Alloformations) in the Lloydminster Area, West-central Saskatchewan Alireza Morshedian 1, James A. MacEachern 1, and Shahin E. Dashtgard 1 Morshedian, A., MacEachern, J.A., and Dashtgard, S.E. (2012): Stratigraphic framework for the Lower Cretaceous Upper Mannville Group (Sparky, Waseca, and McLaren alloformations) in the Lloydminster area, west-central Saskatchewan; in Summary of Investigations 2011, Volume 1, Saskatchewan Geological Survey, Sask. Ministry of Energy and Resources, Misc. Rep. 2011-4.1, Paper A-3, 17p. Abstract The Lower Cretaceous Sparky, Waseca, and McLaren alloformations (Upper Mannville Group) of west-central Saskatchewan comprise an interval up to 60 m thick, consisting of weakly consolidated sandstones, shales, heterolithic bedsets and minor coals, deposited in shallow-marine to coastal plain/delta plain environments. A sequence stratigraphic evaluation of the upper part of the Mannville Group is presented, based on the vertical and lateral distributions of facies associations and the presence of stratigraphic discontinuities. Thirteen facies are recognized. These facies are grouped into six spatially recurring facies associations. Facies Association 1 consists of a single facies, pervasively bioturbated silty/sandy mudstone. The facies contains marine trace fossil suites and is interpreted to record sediment accumulation in an open marine (offshore) environment. Wave-/storm-dominated shoreface deposits of Facies Association 2 (FA2) display sporadically distributed, but locally high bioturbation intensities. Units consist mainly of well-sorted, erosionally amalgamated hummocky cross-stratification and swaley cross-stratification sandstones with intervening bioturbated sandstone layers, passing into cross-stratified and planar-stratified sandstones. Facies Association 3 (FA3) corresponds to deltaic successions that lie laterally adjacent (along the same paleo-shoreline) to the wave-/storm-dominated shoreface deposits of FA2.
    [Show full text]
  • Uranium Geoscience in the Athabasca Basin and Western Canada Sedimentary Basin in Northwestern Saskatchewan (NTS 74F and 74K)
    Uranium Geoscience in the Athabasca Basin and Western Canada Sedimentary Basin in Northwestern Saskatchewan (NTS 74F and 74K) Sean A. Bosman 1, Jared Noll 2, Derek Johnson 3 and Brody Strocen 3 Information from this publication may be used if credit is given. It is recommended that reference to this publication be made in the following form: Bosman, S.A., Noll, J., Johnson, D. and Strocen, B. (2017): Uranium geoscience in the Athabasca Basin and Western Canada Sedimentary Basin in northwestern Saskatchewan (NTS 74F and 74K); in Summary of Investigations 2017, Volume 2, Saskatchewan Geological Survey, Saskatchewan Ministry of the Economy, Miscellaneous Report 2017-4.2, Paper A-4, 14p. Abstract The Patterson Lake region of northwest Saskatchewan, at the southwest margin of the Athabasca Basin, contains at least three high-grade uranium deposits, the Triple R, Arrow and Spitfire. This area is unique to the Athabasca region within Saskatchewan because of the presence of rocks of the Western Canada Sedimentary Basin, which overlie rocks of both the Taltson/Clearwater domains and the Athabasca supergroup. Phanerozoic stratigraphy in the area includes carbonate-rich rocks of the Lower to Middle Devonian Elk Point Group, sandstones and mudstones of the Lower Cretaceous Mannville Group, moderately lithified diamictites (probably Quaternary?) and unconsolidated Quaternary sediments. The Elk Point Group in this area can be further divided, from oldest to youngest, into the La Loche, Contact Rapids and Winnipegosis/Methy formations (Alberta nomenclature), or the Ashern and Winnipegosis formations (Saskatchewan nomenclature). The Mannville Group is divided, from lower to upper, into the McMurray, Clearwater and Grand Rapids formations (Alberta nomenclature), or the Cantuar and Pense formations (Saskatchewan nomenclature).
    [Show full text]
  • CO2 Sequestration and Coalbed-Methane Potential of Lower Mannville Group (Lower Cretaceous) Coals, Southern Saskatchewan – Preliminary Investigations
    CO2 Sequestration and Coalbed-Methane Potential of Lower Mannville Group (Lower Cretaceous) Coals, Southern Saskatchewan – Preliminary Investigations S.L. Bend 1 and M.C. Frank 1 Bend, S.L. and Frank, M.C. (2004): CO2 sequestration and coalbed-methane potential of lower Mannville Group (Lower Cretaceous) coals, southern Saskatchewan – preliminary investigations; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-12, 17p. Abstract The long-term storage of CO2 within deep non-mineable coal seams is widely considered to be a viable means of reducing greenhouse gas emissions. Recent studies have also shown that injection of CO2 into coal seams can enhance the production of coalbed methane (CBM), a more environmentally friendly fuel than oil. The Lower Cretaceous Mannville Group (Aptian-Albian) of southern Saskatchewan contains coals of sub- bituminous rank occurring within the Cantuar Formation. Because of their low economic importance, these coals have received only minimal attention in the past, and little is known of their distribution and character. A major project was recently initiated to assess the CO2 sequestration and CBM potential of the Mannville coals. Analysis of geophysical well logs, core, and drill cuttings was performed along with coal petrography in order to identify areas of the thickest, most extensive coal deposits, and to determine their petrographic characteristics. This report presents some preliminary data on coals of the lower Mannville Group interval (Dina to General Petroleums members). To date, regions of thick (up to 5.5 m), laterally continuous (up to 65 km) coal in the lower Mannville Group have been identified in four principal areas: Winter-Senlac, Kerrobert Paleovalley, Unity-Kindersley embayments, and the Empress Basin.
    [Show full text]
  • GEOLOGIC MAP of the BELT 30' X 60' QUADRANGLE, CENTRAL
    GEOLOGIC MAP OF THE BELT 30’ x 60’ QUADRANGLE, CENTRAL MONTANA Susan M. Vuke, Richard B. Berg, Roger B. Colton, and Hugh E. O’Brien Montana Bureau of Mines and Geology Open-File Report MBMG 450 2002 REVISIONS Text: 10/03 Map: 11/07 This report has had preliminary reviews for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards. Partial support has been provided by the STATEMAP component of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey under contract number 01-HQ-A6-0096. CORRELATION DIAGRAM BELT 30’x 60’ QUADRANGLE Qal Qaf Qac Qe Holocene Qat Qta Qls Qgt Qgl QTat QTab Quaternary QTdf Pleistocene unconformity Pliocene Tat Miocene Tbs Tla Tsh Tsy Tcgm Tmgm Tg Tqsp Tsh Tsy Tql Tqm Tr Tphm Direct correlation between Highwood Mountains and Little Belt Mountains not intended; relation not known. Tertiary Tl Eocene Highwood Mountains and vicinity unconformity Little Be l t Mountains and vicini ty ? Tcg ? unconformity Kjr Kcl Kmg Keu MONTANA GROUP Kev Ket Ktc Kmk Kmf Upper Cretaceous unconformity Kmc Cretaceous (part) unconformity Kmfl COLORADO GROUP unconformity Kbb Km Kac Kbv Lower Kt Kbt Cretaceous (part) Kbfl 2. Continued on next page. CORRELATION DIAGRAM (Continued) BELT 30’ x 60’ QUADRANGLE Kk5 Kk4 Lower Cretaceous Cretaceous (part) Kk s (part) Kk2 Kkc unconformity KJm Jurassic Je ELLIS GROUP unconformity Pennsylvanian IPMab AMSDEN GROUP Mt Mh Mo BIG SNOWY GROUP Mississippian Mk unconformity Mmc MADISON GROUP Ml MDt Dj Devonian Dm unconformity Єpi Єp Cambrian Єm Єw Єf unconformity pЄc pЄgg pЄpi Early Proterozoic pЄmg pЄa ? ? Precambrian Archean pЄga pЄh pЄmi 3.
    [Show full text]