Ants of Tonga

Total Page:16

File Type:pdf, Size:1020Kb

Ants of Tonga See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/29737844 Ants of Tonga ARTICLE in PACIFIC SCIENCE · JANUARY 2002 Impact Factor: 0.92 · DOI: 10.1353/psc.2002.0019 · Source: OAI CITATIONS READS 29 46 1 AUTHOR: James K. Wetterer Florida Atlantic University 146 PUBLICATIONS 2,009 CITATIONS SEE PROFILE Available from: James K. Wetterer Retrieved on: 19 January 2016 Ants of Tonga1 James K. Wetterer2 Abstract: This paper presents combined published, unpublished, and new ant records from 17 islands of Tonga representing all four island groups: Tongatapu (Tongatapu, ‘Eua, ‘Onevai, Pangaimotu), Ha‘apai (Lifuka, Kao, Tofua, ‘Uonu- kahahake, Nomuka, Nomuka-iki, Mango, Telekitonga), Vava‘u (Vava‘u, Nua- papu, Kapa), and the Niuas (Niuatoputapu, Niuafo‘ou). These records increase the list of ants known from Tonga to 53 species. Ten species, including six un- described species, are local endemics found only in Tonga or only in Tonga and Samoa: Adelomyrmex sp., Camponotus conicus, Camponotus nigrifrons, Hypoponera sp., Monomorium sp., Ochetellus sp., Pheidole sp., Pristomyrmex sp., Strumigenys zakharovi, and Vollenhovia samoensis. Another 21 species are broadly distributed Pacific natives: Anochetus graeffei, Camponotus chloroticus, Hypoponera confinis, Monomorium liliuokalanii, Monomorium talpa, Odontomachus simillimus, Oligo- myrmex atomus, Pheidole oceanica, Pheidole sexspinosa, Pheidole umbonata, Ponera incerta, Ponera tenuis, Pyramica dubia, Rogeria stigmatica, Solenopsis papuana, Stru- migenys godeffroyi, Tapinoma minutum, Technomyrmex albipes, Tetramorium in- solens, Tetramorium pacificum, and Tetramorium tonganum. Finally, 22 species are not native to the Pacific region, but were brought to the region by human com- merce: Anoplolepis gracilipes, Cardiocondyla emeryi, Cardiocondyla nuda, Hypoponera opaciceps, Hypoponera punctatissima, Monomorium floricola, Monomorium pharaonis, Monomorium sechellense, Paratrechina bourbonica, Paratrechina longicornis, Paratre- china vaga, Pheidole fervens, Pheidole megacephala, Plagiolepis alluaudi, Pyramica membranifera, Solenopsis geminata, Strumigenys emmae, Strumigenys rogeri, Tapi- noma melanocephalum, Tetramorium bicarinatum, Tetramorium lanuginosum, and Tetramorium simillimum. The number of ant species now known from Tonga is much as would be expected based on the species-area relationship for the neighboring island groups of Fiji, Wallis and Futuna, and Samoa. Differences in ant species richness among these island groups is primarily due to a greater number of local endemics in the island groups with greater land area. The Kingdom of Tonga consists of about 40 of the Tongan islands are inhabited year- 170 islands with a total land area of @700 round. km2 spread across 350,000 km2 of western Due to the difficulty and expense of travel Polynesia between 15–23 S and 173–177 to distant and unpopulated islands, most W. Tonga is divided into four major island Tongan ant records come from the three groups (from south to north): Tongatapu, largest and most accessible islands: Tonga- Ha‘apai, Vava‘u, and the Niuas. Only about tapu, ‘Eua, and Vava‘u. On these islands, hu- man activity has heavily impacted most flatter areas (Drake et al. 1996, Steadman and Frei- 1 feld 1998, Franklin et al. 1999). Tongatapu, Financial support was provided by Harvard Univer- 2 sity, Florida Atlantic University, and Edward O. Wilson. by far the largest island of Tonga (259 km ), Manuscript accepted 10 July 2001. makes up 37% of the total land area of the 2 Honors College, Florida Atlantic University, 5353 kingdom. Tongatapu is very flat, tilting only Parkside Drive, Jupiter, Florida 33458. slightly up to 30-m cliffs along the southern shore (maximum elevation, 82 m). About Pacific Science (2002), vol. 56, no. 2:125–135 two-thirds of Tonga’s 100,000 people live on : 2002 by University of Hawai‘i Press. Tongatapu. ‘Eua, also part of the Tongatapu All rights reserved group, is the third largest island (87 km2) and 125 (V7 15/3 14:08) UHP/U J-9577 Pacific, 56:2 AC:(1)1/3/2002 (0).3.05.05 Janson pp. 125–136 Ch02_P (p. 125) 126 PACIFIC SCIENCE . April 2002 eastern Polynesia (Niue, the Cook Islands, and French Polynesia combined) to the east (Taylor 1967, Wilson and Taylor 1967, Morrison 1996a,b, 1997). In this study, I in- crease the list of ants known from Tonga to 53 species. materials and methods In addition to published records of ants from Tonga, I searched for ant specimens from Tonga in the collections of several museums: the U.S. National Museum of Natural His- tory (usnm) in Washington, D.C.; the Amer- ican Museum of Natural History (amnh) in New York; the Museum of Comparative mcz Figure 1. Number of known ant species from Tonga in Zoology ( ) in Cambridge, Massachusetts; relation to total land area, compared with values for and the New Zealand Arthropod Collection Tonga from Wilson and Taylor (1967), and for sur- (nzac) in Auckland. rounding island groups. Also, from 16 to 31 August 1995, I col- lected ants on the three largest islands (Ton- gatapu, ‘Eua, and Vava‘u), plus Lifuka and the southernmost inhabited island of Tonga. Kapa. Lifuka, the administrative center of the ‘Eua rises gradually from west to east in a se- Ha‘apai island group, is small, flat (11 km2; ries of terraces up to a 250- to 300-m eastern maximum elevation, 14 m), and highly dis- ridge (maximum elevation, 328 m) and then turbed throughout. Kapa is a small island (6.4 drops steeply down to the east coast (Drake km2; maximum elevation, 96 m) in the Vava‘u et al. 1996). All people on ‘Eua live on the group. west side of the island, and the steep eastern I collected by visual search, turning over slope has much intact forest (Drake et al. rocks and logs, stripping the bark off logs, and 1996). Vava‘u, the second largest Tongan is- breaking logs apart, piece by piece. Many land (104 km2), is hilly. The highest points of areas throughout Tongatapu and western the island of Vava‘u are Mount Mo‘ungalafa ‘Eua had the exotic big-headed ant, Pheidole (204 m) and Mount Talau (130 m). On megacephala (Fabr.), under almost every rock Vava‘u there are many areas of forest at vari- and log and virtually no other ants. In con- ous stages of regeneration from agricultural trast, P. megacephala was much less common use (Steadman and Freifeld 1998, Franklin on Vava‘u and Kapa, and rare on Lifuka. The et al. 1999). primary objective of my collection was to The ant fauna of Tonga is a mix of native document as fully as possible the diversity of Pacific species and exotic ‘‘tramp’’ species. ants in Tonga. I therefore usually skipped Wilson and Taylor’s (1967) review of the ants over most areas with extremely high P. mega- of Polynesia reported 21 ant species from cephala density. Instead, I concentrated my Tonga. This is a low value compared with collecting efforts in relatively undisturbed records from the immediately surrounding forests that had few or no P. megacephala island groups (Figure 1): 88 ant species from present. I am currently preparing a more de- Fiji to the west (Wilson and Hunt 1967), 37 tailed, ecologically based account of these from Wallis and Futuna to the northwest collections, documenting the impact of P. (Wilson and Hunt 1967, Gutierrez 1981 in megacephala and other exotic ants in Tonga Jourdan 1997), 67 from Samoa to the north (unpubl. data). (Wilson and Hunt 1967, Wilson and Taylor I divided the Tongan ant species into three 1967; unpubl. data), and @50 from south- categories based on their distributions and (V7 15/3 14:08) UHP/U J-9577 Pacific, 56:2 AC:(1)1/3/2002 (0).3.05.05 Janson pp. 125–136 Ch02_P (p. 126) Ants of Tonga . Wetterer 127 presumed origins, following Wilson and Mayr (1870, 1876) listed 17 ant species Hunt (1967): (1) local endemics, found only from the ‘‘Tonga Islands’’ based on speci- in Tonga or only in Tonga and Samoa, (2) mens at the Godeffroy Museum in Hamburg, broadly distributed Pacific natives, found Germany. Mayr (1870, 1876) gave no collec- continuously from the Indo-Australian area tor information for any specimen, and listed into Polynesia, and (3) exotic ‘‘tramp’’ spe- Tongatapu Island as the collection site for cies, distributed in the Pacific by recent hu- two species. I have assumed, perhaps erro- man commerce. neously, that all of Mayr’s records came from Tongatapu (Tables 1–3). Wheeler (1935), results in his review of the ants of Oceania, listed 16 species from Tonga, identical to Mayr’s I found published and unpublished records of (1876) list except for the unexplained omis- ant species from numerous collections (Table sion of Tapinoma melanocephalum (Fabr.). 1) conducted on 17 Tongan islands repre- Wilson and Taylor (1967) reported rec- senting all four island groups: Tongatapu ords of 21 ant species from Tonga, including (Tongatapu, ‘Eua, ‘Onevai, Pangaimotu), Mayr’s (1876) records, plus new records from Ha‘apai (Lifuka, Kao, Tofua, ‘Uonukaha- three collectors: W. Cottrell-Darmer, G. P. hake, Nomuka, Nomuka-iki, Mango, Tele- Wilder, and N. L. H. Krauss (Tables 2 and kitonga), Vava‘u (Vava‘u, Nuapapu, Kapa), 3). Wilson and Taylor (1967) deleted one and the Niuas (Niuatoputapu, Niuafo‘ou). species from Mayr’s list: Camponotus rufifrons (Mayr). Although C. rufifrons is considered a valid Melanesian species (Bolton 1995), Wil- Published Ant Records son and Taylor (1967) concluded that the I found reliable published records of a total record of C. rufifrons from Tonga was a mis- of 49 ant species from Tonga (Tables 1–3; identification of C. conicus (Mayr). Mayr 1870, 1876, Wheeler 1935, Wilson Dlussky (1994a) listed ants collected dur- and Taylor 1967, Carver et al. 1993, Dlussky ing two visits to Tonga of the Soviet research 1994a,b, Swaney 1994, Zakharov 1994, Stech- ship Kallisto (Tables 2 and 3).
Recommended publications
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Taxonomic Studies on Ant Genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India
    ASIAN MYRMECOLOGY Volume 7, 37 – 51, 2015 ISSN 1985-1944 © HIMENDER BHARTI, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Taxonomic studies on ant genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India HIMENDER BHARTI*, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Department of Zoology and Environmental Sciences, Punjabi University, Patiala – 147002, India *Corresponding author's e-mail: [email protected] ABSTRACT. The Indian species of the ant genus Hypoponera Santschi, 1938 are treated herewith. Eight species are recognized of which three are described as new and two infraspecific taxa are raised to species level. The eight Indian species are: H. aitkenii (Forel, 1900) stat. nov., H. assmuthi (Forel, 1905), H. confinis (Roger, 1860), H. kashmirensis sp. nov., H. shattucki sp. nov., H. ragusai (Emery, 1894), H. schmidti sp. nov. and H. wroughtonii (Forel, 1900) stat. nov. An identification key based on the worker caste of Indian species is provided. Keywords: New species, ants, Formicidae, Ponerinae, Hypoponera, India. INTRODUCTION genus with use of new taxonomic characters facilitating prompt identification. The taxonomy of Hypoponera has been in a From India, three species and two state of confusion and uncertainty for some infraspecific taxa ofHypoponera have been reported time. The small size of the ants, coupled with the to date (Bharti, 2011): Hypoponera assmuthi morphological monotony has led to the neglect (Forel, 1905), Hypoponera confinis (Roger, of this genus. The only noteworthy revisionary 1860), Hypoponera confinis aitkenii (Forel, 1900), work is that of Bolton and Fisher (2011) for Hypoponera confinis wroughtonii (Forel, 1900) and the Afrotropical and West Palearctic regions. Hypoponera ragusai (Emery, 1894).
    [Show full text]
  • Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea
    - - -- Aust. J. Zool., 1975, 23, 71-89 Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea P. M. Room Department of Agriculture, Stock and Fisheries, Papua New Guinea; present address: Cotton Research Unit, CSIRO, P.M.B. Myallvale Mail Run, Narrabri, N.S.W. 2390. Abstract Thirty samples of ants were taken in each of seven habitats: primary forest, rubber plantation, coffee plantation, oilpalm plantation, kunai grassland, eucalypt savannah and urban grassland. Sixty samples were taken in cocoa plantations. A total of 156 species was taken, and the frequency of occurrence of each in each habitat is given. Eight stenoecious species are suggested as habitat indicators. Habitats fell into a series according to the similarity of their ant faunas: forest, rubber and coffee, cocoa and oilpalm, kunai and savannah, urban. This series represents an artificial, discontinuous succession from a complex stable ecosystem to a simple unstable one. Availability of species suitably preadapted to occupy habitats did not appear to limit species richness. Habitat heterogeneity and stability as affected by human interference did seem to account for inter-habitat variability in species richness. Species diversity was compared between habitats using four indices: Fisher et al.; Margalef; Shannon; Brillouin. Correlation of diversity index with habitat hetero- geneity plus stability was good for the first two, moderate for Shannon, and poor for Brillouin. Greatest diversity was found in rubber, the penultimate in the series of habitats according to hetero- geneity plus stability ('maturity'). Equitability exceeded the presumed maximum in rubber, and was close to the maximum in all habitats.
    [Show full text]
  • Том 16. Вып. 2 Vol. 16. No. 2
    РОССИЙСКАЯ АКАДЕМИЯ НАУК Южный научный центр RUSSIAN ACADEMY OF SCIENCES Southern Scientific Centre CAUCASIAN ENTOMOLOGICAL BULLETIN Том 16. Вып. 2 Vol. 16. No. 2 Ростов-на-Дону 2020 Кавказский энтомологический бюллетень 16(2): 381–389 © Caucasian Entomological Bulletin 2020 Contribution of wet zone coconut plantations and non-agricultural lands to the conservation of ant communities (Hymenoptera: Formicidae) in Sri Lanka © R.K.S. Dias, W.P.S.P. Premadasa Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600 Sri Lanka. E-mails: [email protected], [email protected] Abstract. Agricultural practices are blamed for the reduction of ant diversity on earth. Contribution of four coconut plantations (CP) and four non-agricultural lands (NL) for sustaining diversity and relative abundance of ground-dwelling and ground-foraging ants was investigated by surveying them from May to October, 2018, in a CP and a NL in Minuwangoda, Mirigama, Katana and Veyangoda in Gampaha District that lies in the wet zone, Sri Lanka. Worker ants were surveyed by honey baiting and soil sifting along two transects at three, 50 m2 plots in each type of land. Workers were identified using standard methods and frequency of each ant species observed by each method was recorded. Percentage frequency of occurrence observed by each method, mean percentage frequency of occurrence of each ant species and proportional abundance of each species in each ant community were calculated. Species richness recorded by both methods at each CP was 14–19 whereas that recorded at each NL was 17–23. Shannon-Wiener Diversity Index values (Hʹ, CP: 2.06–2.36; NL: 2.11–2.56) and Shannon- Wiener Equitability Index values (Jʹ, CP: 0.73–0.87; NL: 0.7–0.88) showed a considerable diversity and evenness of ant communities at both types of lands.
    [Show full text]
  • Ants (Hymenoptera: Fonnicidae) of Samoa!
    Ants (Hymenoptera: Fonnicidae) of Samoa! James K Wetterer 2 and Donald L. Vargo 3 Abstract: The ants of Samoa have been well studied compared with those of other Pacific island groups. Using Wilson and Taylor's (1967) specimen records and taxonomic analyses and Wilson and Hunt's (1967) list of 61 ant species with reliable records from Samoa as a starting point, we added published, unpublished, and new records ofants collected in Samoa and updated taxonomy. We increased the list of ants from Samoa to 68 species. Of these 68 ant species, 12 species are known only from Samoa or from Samoa and one neighboring island group, 30 species appear to be broader-ranged Pacific natives, and 26 appear to be exotic to the Pacific region. The seven-species increase in the Samoan ant list resulted from the split of Pacific Tetramorium guineense into the exotic T. bicarinatum and the native T. insolens, new records of four exotic species (Cardiocondyla obscurior, Hypoponera opaciceps, Solenopsis geminata, and Tetramorium lanuginosum), and new records of two species of uncertain status (Tetramorium cf. grassii, tentatively considered a native Pacific species, and Monomorium sp., tentatively considered an endemic Samoan form). SAMOA IS AN ISLAND CHAIN in western island groups, prompting Wilson and Taylor Polynesia with nine inhabited islands and (1967 :4) to feel "confident that a nearly numerous smaller, uninhabited islands. The complete faunal list could be made for the western four inhabited islands, Savai'i, Apo­ Samoan Islands." Samoa is of particular in­ lima, Manono, and 'Upolu, are part of the terest because it is one of the easternmost independent country of Samoa (formerly Pacific island groups with a substantial en­ Western Samoa).
    [Show full text]
  • Plates for Ants of Micronesia.Pdf
    276 Micronesica 39(2), 2007 Figure 1. A–Anochetus graeffei; B–Cryptopone butteli; C–Eurhopalothrix procera (not to relative scale). Clouse: Ants of Micronesia 277 Figure 2. Camponotus mesosoma lateral profiles (not to scale): A– sp. 121958, B–chloroticus, C– eperiamorum, D–erythrocephalus, E–marianensis, F–reticulatus. 278 Micronesica 39(2), 2007 Figure 3. A–Cardiocondyla obscurior lateral, B–Cerapachys 91952 lateral anterior, C–lateral posterior, D–Crematogaster biroi / emeryi propodeal spine; E–Crematogaster fritzi propodeal spine; F–Cryptopone butteli head side. Clouse: Ants of Micronesia 279 Figure 4. A–Cryptopone butteli node lateral; B– C. testacea node lateral; C–Hypoponera confinis head lateral; D–H. punctatissima node lateral; E–Monomorium chinense-group petiole and postpetiole lateral; F–M. floricola petiole and postpetiole lateral 280 Micronesica 39(2), 2007 Figure 5. A–Monomorium australicum lateral; B–M. sechellense lateral; C–Myrmecina sp. 7121952 head side, D–front; E–Paratrechina bourbonica lateral mesonotum; F–P. vaga lateral mesonotum. Clouse: Ants of Micronesia 281 Figure 6. A–Paratrechina clandestina lateral, B–front, C–propodeum, D–nozzle. 282 Micronesica 39(2), 2007 Figure 7. A–Pheidole sp. 24041958 lateral, B–front; C–P. fervens major front close-up, D–minor propodeum; E–P. oceanica major front close-up, F–minor propodeum. Clouse: Ants of Micronesia 283 Figure 8. A–Pheidole megacephala propodeum; B–Pheidole recondita minor; C–Platythyrea parallela tarsal claw; D–Polyrachis sp. 91952; E–Ponera sp. 10091995 dorsal; F–P. tenuis dorsal. 284 Micronesica 39(2), 2007 Figure 9. A–Ponera tenuis; B–Prionopelta opaca (not to relative scale). Clouse: Ants of Micronesia 285 Figure 10.
    [Show full text]
  • Invasive Ant Pest Risk Assessment Project: Preliminary Risk Assessment
    Invasive ant pest risk assessment project: Preliminary risk assessment Harris, R. 1) Aim To assess the threat to New Zealand of a wide range of ant species not already established in New Zealand and identify those worthy of more detailed assessment. 2) Scope 2.1. Specific exclusions Solenopsis invicta was specifically excluded from consideration as this species has already been subject to detailed consideration by Biosecurity New Zealand. 2.2 Specific inclusions Biosecurity New Zealand requested originally that the following taxa be included in the assessment: Solenopsis richteri Solenopsis geminata Wasmannia auropunctata Anoplolepis gracilipes Paratrechina longicornis Carpenter ants (Camponotus spp.) Leaf cutting ants (Atta spp.) Myrmecia pilosula Tapinoma melanocephalum Monomorium sydneyense (incursion found in New Zealand) Hypoponera punctatissima (incursion found in New Zealand) Big headed ants (Pheidole spp.) M. sydneyense and H. punctatissima have since been deemed not under official control and are now considered established in New Zealand. Profiles of these species have been prepared as part of the Ants of New Zealand section (see http://www.landcareresearch.co.nz/research/biosecurity/stowaways/Ants/antsinnewzealand.asp). INVASIVE ANT PEST RISK ASSESSMENT PROJECT: Preliminary risk assessment 3) Methodology A risk assessment scorecard was developed (Appendix 1) in consultation with a weed risk assessment expert (Dr Peter Williams) and with Simon O’Connor and Amelia Pascoe of Biosecurity New Zealand, to initially separate
    [Show full text]
  • Of Christmas Island (Indian Ocean): Identification and Distribution
    DOI: 10.18195/issn.0312-3162.25(1).2008.045-085 Records of the Western Australian Museum 25: 45-85 (2008). Ants (Hymenoptera: Formicidae) of Christmas Island (Indian Ocean): identification and distribution Volker w. Framenau1,2 andMelissa 1. Thomas2,3,* 1 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. E-mail: [email protected] 2 School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia. 3 Parks Australia North, PO Box 867, Christmas Island, Indian Ocean 6798, Australia. Abstract - The composition of the Christmas Island (Indian Ocean) ant fauna is reviewed, leading to the recognition of 52 species in 24 genera and 7 subfamilies. This account amalgamates previously published records and recent extensive surveys of Christmas Island's ant fauna. Eight species represent new records for Christmas Island: Technomyrmex vitiensis, Camponotus sp. (novaehollandiae group), Cardiocondyla kagutsuchi, Monomorium orientale, M. cf. subcoecum, Tetramorium cf. simillimum, T. smithi and T. walshi. Although some of these new species records represent recent taxonomic advances rather than new introductions, we consider four species to be true new records to Christmas Island. These include Camponotus sp. (novaehollandiae group), M. orientale, T. smithi and T. walshi. None of the 52 species reported here are considered endemic. In general, the Christmas Island ant fauna is composed of species that are regarded as worldwide tramps, or that are widespread in the Indo-Australian region. However, Christmas Island may fall within the native range of some of these species. We provide a key to the ant species of Christmas Island (based on the worker caste), supplemented by comprehensive distribution maps of these ants on Christmas Island and a short synopsis of each species in relation to their ecology and world-wide distribution.
    [Show full text]
  • Actes Des Colloques Insectes Sociaux
    U 2 I 0 E 0 I 2 S ACTES DES COLLOQUES INSECTES SOCIAUX Edité par l'Union Internationale pour l’Etude des Insectes Sociaux - Section française (sous la direction de François-Xavier DECHAUME MONCHARMONT et Minh-Hà PHAM-DELEGUE) VOL. 15 (2002) – COMPTE RENDU DU COLLOQUE ANNUEL 50e anniversaire - Versailles - 16-18 septembre 2002 ACTES DES COLLOQUES INSECTES SOCIAUX Edité par l'Union Internationale pour l’Etude des Insectes Sociaux - Section française (sous la direction de François-Xavier DECHAUME MONCHARMONT et Minh-Hà PHAM-DELEGUE) VOL. 15 (2002) – COMPTE RENDU DU COLLOQUE ANNUEL 50e anniversaire - Versailles - 16-18 septembre 2002 ISSN n° 0265-0076 ISBN n° 2-905272-14-7 Composé au Laboratoire de Neurobiologie Comparée des Invertébrés (INRA, Bures-sur-Yvette) Publié on-line sur le site des Insectes Sociaux : : http://www.univ-tours.fr/desco/UIEIS/UIEIS.htm Comité Scientifique : Martin GIURFA Université Toulouse Alain LENOIR Université Tours Christian PEETERS CNRS Paris 6 Minh-Hà PHAM-DELEGUE INRA Bures Comité d'Organisation : Evelyne GENECQUE F.X. DECHAUME MONCHARMONT Et toute l’équipe du LNCI (INRA Bures) Nous remercions sincèrement l’INRA et l’établissement THOMAS qui ont soutenu financièrement cette manifestation. Crédits Photographiques Couverture : 1. Abeille : Serge CARRE (INRA) 2. Fourmis : Photothèque CNRS 3. Termite : Alain ROBERT (Université de Bourgogne, Dijon) UIEIS Versailles Page 1 Programme UNION INTERNATIONALE POUR L’ETUDE DES INSECTES SOCIAUX UIEIS Section Française - 50ème Anniversaire Versailles 16-18 Septembre 2002 PROGRAMME Lundi 16 septembre 9 h ACCUEIL DES PARTICIPANTS - CAFE 10 h Présentation du Centre INRA de Versailles – Président du Centre Session Plasticité et Socialité- Modérateur Martin Giurfa 10 h 15 - Conférence Watching the bee brain when it learns – Randolf Menzel (Université Libre de Berlin) 11 h 15 Calcium responses to queen pheromones, social pheromones and plant odours in the antennal lobe of the honey bee drone Apis mellifera L.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Jurnal Biologi Indonesia
    J. Biol. Indon. Vol 7, No.2 (2011) ISSN 0854-4425 ISSNISSN 0854-44250854-4425 JURNAL BIOLOGI INDONESIA Akreditasi: No 816/D/08/2009 Vol. 7, No. 2 Desember 2011 Deforestation in Bukit Barisan Selatan National Park, Sumatra, Indonesia 195 Suyadi Study of Pteridophyte Diversity and Vegetation Analysis in Jatikerep Legonlele and 207 Nyamplung, Karimunjawa Island Central Jawa Fahreza Saputra & Labibah Qotrunnada Javan Leaf Monkey (Trachypithecus auratus) Movement in a Fragmented Habitat, at 213 Bromo Tengger Semeru National Park, East Java, Indonesia M.Hari Subarkah, Novianto Bambang Wawandono, Satyawan Pudyatmoko, Subeno , Sandy Nurvianto, & Arif Budiman Impact of Invasive Ant Species in Shaping Ant Community Structure on Small Islands in 221 Indonesia Akhmad Rizali, Abdul Rahim, Bandung Sahari, Lilik Budi Prasetyo, & Damayanti Buchori Relationship Different Riparian Vegetation Cover with Stream Conditions in Cikapinis 231 Stream, West Jawa Della Kemalasari & Devi N. Choesin Affect of Canopy Stratum and Methods of Breaking Seed Dormancy on Seedling 243 Growth of Calliandra tetragona Beth. and Acacia tamarindifolia (L.) Willd. Indriani Ekasari Shoot Tip Culture of Nepenthes albomarginata Lobb ex Lindl. In Vitro 251 Lazarus Agus Sukamto, Mujiono, Djukri, & Victoria Henuhili Variasi Gen Mitokondria Cytochrome b pada Dua Jenis Burung Kakatua Putih (Cacatua 263 alba dan C. moluccensis) Dwi Astuti BOGOR, INDONESIA J. Biol. Indon. Vol 7, No. 2 (2011) Jurnal Biologi Indonesia diterbitkan oleh Perhimpunan Biologi Indonesia. Jurnal ini memuat hasil penelitian ataupun kajian yang berkaitan dengan masalah biologi yang diterbitkan secara berkala dua kali setahun (Juni dan Desember). Editor Pengelola Dr. Ibnu Maryanto Dr. I Made Sudiana Deby Arifiani, S.P., M.Sc Dr.
    [Show full text]