<<

FOREST RESPONSES TO CLIMATE CHANGE ALONG AN -TO-AMAZON ELEVATIONAL GRADIENT

BY

WILLIAM FARFAN RIOS

A Dissertation Submitted to the Graduate Faculty of the

WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Biology

August 2019

Winston-Salem, North Carolina

Approved By:

Miles R. Silman, Ph.D., Advisor

Nigel C. Pitman, Ph.D., Chair

T. Michael Anderson, Ph.D.

Kathleen A. Kron, Ph.D.

William K. Smith, Ph.D.

Clifford W. Zeyl, Ph.D. DEDICATION

To my beloved parents Julio Farfan and Visitacion I. Rios, and my brothers Maikol and

Henry Farfan

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my advisor, Miles R. Silman, for his continuous support of my research, for his encouragement, knowledge, patience and for being a great mentor and friend over the past several years. I deeply appreciate his time, enthusiasm, and encouragement in pushing me beyond the limits my own mind to develop my critical thinking. If I had to do it all over again, undoubtedly, I would do it with Miles. Likewise, I thank my committee members, Dr. Kathleen A. Kron, Dr.

William K. Smith, Dr. Michael T. Anderson, Dr. Clifford W. Zeyl, and Dr. Nigel C.

Pitman for their time, helpful ideas and comments that enriched my research.

I have been immensely blessed by a wonderful and incredibly , their love with unwavering support were essential to finish graduate school and perform my research. I owe so much gratitude to my beloved parents Julio Farfan, Visitacion I. Rios and my brothers Maikol and Henry Farfan.

Collaboration is important to do science and I was extremely fortunate to work closely with great scientists that enriched my research on so many levels. My sincere gratitude to professors Kenneth Feeley, Yadvinder Malhi, Sassan Saatchi, Oliver Phillips,

Norma Salinas, Patrick Meir, Greg Asner, Timothy Baker, Paul Baker, Sherilyn Fritz,

James Pease, Brian Enquist and Alexander Shenkin.

Thanks to my old and new Silman lab friends for their support, comments on the different drafts of the dissertation chapters and helpful ideas to improve my research,

iii thanks to Josh Rapp, Danny Lough, Karina Garcia, Rachel Hillyer, Noah Yavit, Cassie

Freund, Ellen Quinlan, Max Messinger, Stephanie Bilodeau, John Gorelick, Jared Beaver and Jorge Caballero. Likewise, thanks for the support to my Deacon friends Jenny

Howard, Emily Tompkins, Nicholas Huffeldt, Yoyi Fernandez, Scott Cory, Deusdedith

Rugemalila, Robbie Baldwin, Felipe Estela, and Mary J. Carmichael. Thanks to the

Causita’s group members Jorge Ortiz, Ciro Astete, Armando Alfaro, Jorge Curo, Juan

Gibaja, Victor Chama, Juan Costa, Vicky Huaman, Javier Silva, Johnny Farfan, Jean

Latorre and Saul Zuñiga for their support and encouragement to finish graduate school and complete my research. Thanks to Alex Nina for his thoughtful assistance translating the abstract in Quechua. Finally, thanks to my friends Leydi, Gaile, Gerald, Janell,

Richard and Craig for their support during my graduate school life.

I express my deep gratitude to Robin Foster, Abel Monteagudo, Paul Mass,

Ronald Liesner, Jun Wen, Kenneth Wurdack, Nancy Hensold, Henk van der Werff,

Fabian A. Michelangeli, Lucia Kawasaki, Percy Nuñez, Karina Garcia, Felipe Sinca and

Charlote M. Taylor for the help in the botanical identifications. Likewise, my recognition and thanks to the directors and curators of the different herbaria, including the Herbario

Vargas (CUZ), Herbario del Museo de Historia Natural- Universidad Nacional Mayor de

San Marcos (USM), Herbario Nacional de (LPB), al Field Museum (F) and the

Missouri Botanical Garden Herbarium (MO), Herbario Selva Central - Oxapampa

(HOXA), Herbario Augusto Weberbauer (MOL) for access and permission to work with the botanical collections. Thanks to GBIF, JSTOR, TROPICOS, TNRS and to all the institutions that made available the botanical data essential for this research.

iv

This fieldwork effort was not one-man labor, it was only possible thanks to an extraordinary group of people with high levels of enthusiasm and hard work. First, I thank Alex Nina, Jhonatan Sallo, Karina Garcia, Luis Imunda, Natividad Raurau, Judith

Huaman and Alberto Gibaja for their crucial help in getting everything done coordinating the different aspects of the fieldwork and identification process. Lastly but no less important, I thank the Peruvian students that shared with me the extreme fieldwork conditions, leaving sweat, blood, and tears in our field campaigns. Without them, I would not have been able to complete this research. My eternal gratitude to Adam J. Ccahuana,

Albino Quispe, Alex Nina, Alexander Quispe, Alex A. Caceres, Andrea Palomino,

Angela Rozas, Bryan G. Valencia, Carlos A. Salas, Catherine Bravo, Claudio Lipa,

Chaska Chavez, Cristian E. Solis, Cristian Alvarez Galvez, Cristhian Alvarez C., Darcy

F. Galiano, David Lopez, Dayana Suni, Dino Tapia, Edith R. Clemente, Erickson G.

Urquiaga, Felipe Sinca, Félix F. Farfan, Flor M. Perez, Flor M. Zamora, Fredy Guizado,

Ghylmar J. Tinoco, Giuliana M. Palomino, Gladys Castillo, Guido Vilcahuaman, Guisela

J. Zans, Irving C. Costas, Israel , Janet Mamani, Javier E. Silva, , Jesus Castaneda,

Jesus M. Banon, , Jhonatan Sallo, Jhoel Delgado, Jhon G. Quispe, Jhon S. Cansaya,

Jimmy R. Chambi, Jimy S. Mesicano, Joel Mendoza, Jonyer H. Zapata, Jose A.

Quintano, Jose L. Mancilla, Jose Sanchez, Juan A. Gibaja, Juan J. Calvo, Judit Huaman,

Julina Pelaes, , Karina Garcia, Karina Luna, Katherine Quispe, Katia Quispe, Kilmenia

Luna, Leonit Tueros, Leydi V. Auccacusi, Leyni Caballero, Lucely Vilca, Luis Imunda,

Luis Mancilla, Luz M. Cabrera, Manuel J. Marca, Marco A. Maldonado, Maria A.

Cuentas, Maria I. Manta, Mario V. Sanchez, Marlene Mamani, Miguel Salas, Milenka X.

Montoya, Mireya N. Raurau, Nohemi Lizarraga, Omar Tacusi, Omayra V. Colque, Paul

v

E. Santos, Paul Iturbe, Paul Ricardo, Percy O. Chambi, Reymerth Peña, Richard Tito,

Rosa M. Castro, Rosalbina Butron, Rudi S. Cruz, Ruly Pillco, Shirley J. Serrano, Tatiana

E. Boza, Vicky Huaman, Walter Huaraca, Washinton Luis, Wilson Huaman, Yan C.

Nina, Yaneth Quispe, Yeferson Davalos, Yessica Halanocca, Yezen Sanchez, Ylenia

Moron, Yovana Yllanes, and Yorka Gutierrez.

This study is a product of the Andes Biodiversity and Ecosystem Research Group

(ABERG; http://www.andesconservation.org/) with contributions for lowland plot data from John Terborgh and affiliated networks RAINFOR (http://www.rainfor.org/), GEM

(http://gem.tropicalforests.ox.ac.uk/), and the ForestPlots.net data management utility for permanent plots. SERFOR, SERNANP, and personnel of Manu National Park - provided assistance with logistics and permission to work in the buffer zone and protected areas in Peru. Pantiacolla Tours and the Amazon Conservation Association provided logistical support. Funding came from Wake Forest University through the

Vecellio Grant, Elton C. Cocke Travel Award, Alumni Student Travel Award, and

Richter Scholarship Award. Funding also came from the Gordon and Betty Moore

Foundation’s Andes to Amazon initiative and the US National Science Foundation (NSF)

DEB 0743666, NSF Frontiers in Systems Dynamics (FESD) 1338694, and NSF

Long-Term Research in Environmental Biology (LTREB) 1754647. The research was also supported by the National Aeronautics and Space Administration (NASA) Terrestrial

Ecology Program grant # NNH08ZDA001N-TE/ 08-TE08-0037. Support for RAINFOR and ForestPlots.net plot monitoring in Peru has come from a European Research Council

(ERC) Advanced Grant (T‐FORCES, “Tropical Forests in the Changing Earth System”,

vi

291585), Natural Environment Research Council grants (including NE/F005806/),

NE/D005590/1, and NE/N012542/1), and the Gordon and Betty Moore Foundation.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS....………..…………..………………………………...….iii

LIST OF TABLES...…………………………………………………………………...xi

LIST OF FIGURES.….……………………………………………………...……….xiii

ABSTRACT….……………………….……………………………………………...xvii

CHAPTER I

Introduction……..…..…………………………………………………………..1

CHAPTER II

Landscape-scale wood density variation across an Andes-to-Amazon

elevational gradient

ABSTRACT………………….………………………………….………..26

INTRODUCTION……………………………….…………………...... 28

METHODS…….…...………………………………………………...... 32

RESULTS….………...…………………………………………………...38

DISCUSSION………….…………………………………....…………....42

LITERATURE CITED.…………….……………………….……………55

SUPPORTING INFORMATION.…………………..………….…..…….84

CHAPTER III

Movement or mortality? Pervasive but slow upslope migration in the

Amazon to the Andes revealed through 38 years of forest monitoring

ABSTRACT…….……………………………………………….………129

viii

INTRODUCTION…………………………………………………...... 131

METHODS…………………………………………………………...... 135

RESULTS……………………………………………………………….143

DISCUSSION….……………………………………………………...... 148

LITERATURE CITED.……….……………………………..………….158

SUPPORTING INFORMATION …..…………………….…………….180

CHAPTER IV

Long-term stand and carbon dynamics along the Amazon-to-Andes elevation

gradient

ABSTRACT…………….……………………………………….………211

INTRODUCTION…………………………………………………...... 213

METHODS…………………………………………………………...... 217

RESULTS……………………………………………………………….224

DISCUSSION……………….…………………………………………..230

LITERATURE CITED……….…………………………………………238

SUPPORTING INFORMATION ………………………...... 263

CHAPTER V

An annotated checklist of and their relatives in tropical montane forests of

southeast Peru: the importance of continued botanical collecting

ABSTRACT………………..……………………………….…..….……277

INTRODUCTION…………………………………………………...... 279

METHODS………………………………………………………...... 281

RESULTS…………………………………………………………….....283

ix

DISCUSSION…………………….…………………………………..…283

LITERATURE CITED………………………………...………………..288

SUPPORTING INFORMATION ……………………………………....353

CURRICULUM VITAE…………………………………………………………..…357

x

LIST OF TABLES

Table II - 1. Sites description and mean wood density values across the Andes-to-

Amazon elevational gradient…………………………………………………..69

Appendix II – Table S1. list and basic wood specific gravity values along an

Andean-to-Amazon elevational gradient.………………………..…………….86

Appendix II – Table S2. Statistical moments of mean wood density distribution on

species and stem levels across the elevational gradient.…….……...………..119

Appendix III - Table S1. Description of the 40 permanent forests plots along the

Andes-to-Amazon elevational gradient…………...…………………………181

Appendix III - Table S2. The estimated plot-level thermophilization rates………....184

Appendix III - Table S3. The estimated -level thermal migration rates for genera

weighted by number of individuals………………..………………………....188

Appendix III - Table S4. The estimated genus-level thermal migration rates for genera

weighted by basal area…………………………………………….………....192

Appendix III - Table S5. The estimated species-level thermal migration rates weighted

by number of individuals…………………………..………………………....196

Appendix III - Table S6. The estimated species-level thermal migration rates weighted

by basal area………………………………….……………………………....200

Appendix IV - Table S1. Description of the 40 permanent forests plots along the

Andes-to-Amazon elevational gradient……………………………………....264

xi

Appendix IV - Table S2. Parameters values to estimate height in meters with diameters

expressed in centimeters…………..………………………………………….268

Table V - 1. List of trees and arborescent species…….....………………………...…292

xii

LIST OF FIGURES

Figure II - 1. Location of the permanent forest plots along the elevational

gradient…………………………………………………………………...…....76

Figure II - 2. Distribution of species slopes of the linear regression and intraspecific

variation of wood density………………………………………………..…….77

Figure II - 3. Plot-level mean wood density variation across 41 permanent forest plots

along the Andes-to-Amazon elevational gradient………………………..……78

Figure II - 4. Mean species wood density weighted by basal area…………………….79

Figure II - 5. Wood density distribution for species and stems……………………….80

Figure II - 6. Plot-level wood density variation across forests types …………...... 81

Figure II - 7. Mean wood density variation for stems across DBH classes………...…82

Figure II - 8. Mean wood density and landslide stability……………………………...83

Appendix II - Figure S1. Effect of drying temperature wood specific gravity…..…..122

Appendix II - Figure S2. Overall wood density distribution along the Andes-to-

Amazon……………………………………………………………………….123

Appendix II - Figure S3. Variance partitioning of wood density……………….…...124

Appendix II - Figure S4. Sampled wood density along an Andes-to-Amazon

elevational gradient…………………………………………………….…….125

Appendix II - Figure S5. Plot-level mean wood density variation…………………..126

Appendix II - Figure S6. Mean plot-level wood density for genus and family

basis………………………………………………………………………..…127

xiii

Appendix II - Figure S7. Wood density as a function of stem diameter……………..128

Figure III - 1. The estimated community temperature index (CTI) for the 38 permanent

forest plots……………………………………………………………………175

Figure III - 2. Estimated plot-level thermophilization rates for the Andean and

Amazonian forests plots……………………………………………………...176

Figure III - 3. Estimated changes in plot-level thermophilization rates due mortality,

recruitment and stem growth…………………………………………………177

Figure III - 4. Estimated genus-level thermal migration rates for 78 genera along the

Andes-to-Amazon elevational gradient………………………………………178

Figure III - 5. Estimated species-level thermal migration rates for 79 tree species along

the Andes-to-Amazon elevational gradient…………………………………..179

Appendix III - Figure S1. Species richness, number of individuals and basal area along

the Manu-Tambopata elevational transect…………………...………………204

Appendix III - Figure S2. Estimate elevational rages for 1896 arboreal species

including trees, tree , palms and lianas along the gradient…………...…205

Appendix III - Figure S3. Mean community temperature index calculated based in

number of individuals and basal area…………..…………………...………..206

Appendix III - Figure S4. Estimated community temperature index including landslides

along the gradient…………………………...……………………………..…207

Appendix III - Figure S5. Linear least-square regression lines fitted to the estimated

CTI and elevation…………………………………………….………………208

Appendix III - Figure S6. Distribution of the thermophilization rates for the

Amazonian and Andean forests plots………………………………………...209

xiv

Appendix III - Figure S7. Thermophilization rates and the relationship with tree

mortality tree recruitment and growth…………………….………………….210

Figure IV - 1. Mean annualized vital rates along the Andes-to-Amazon elevational

gradient for mortality, recruitment, turnover and net stem change………..…258

Figure IV - 2. Above-ground carbon density along the Manu-Tambopata elevational

transect………………………………………………………………………..259

Figure IV - 3. Mean aboveground carbon density (ACD) along the Andes-to-Amazon

elevational gradient for mortality, recruitment and ACD net change………..260

Figure IV - 4. Trends in vital rates for 38 years of forests plots monitoring for stand

mortality, recruitment, turnover, and net stem change……………………….261

Figure IV - 5. Trends in aboveground carbon density (ACD) across 38 years of forests

plots monitoring for mortality, productivity, and net ACD change………….262

Appendix IV - Figure S1. Monthly precipitation (mm) recorded at the Rocotal

meteorological station at 2010 m of elevation ……..………………………..269

Appendix IV - Figure S2. Number of individuals along the Manu-Tambopata

elevational transect ……...…………………………………………………...270

Appendix IV - Figure S3. Trends in vital rates for 38 years of forests plots monitoring

for tree mortality, recruitment, turnover and net stem change………….……271

Appendix IV - Figure S4. Trends in aboveground carbon density for mortality,

productivity and net carbon change along the elevational gradient……….…272

Appendix IV - Figure S5. Relationship between annual net change in aboveground

carbon density and their annual change in stem number………………….….273

Figure V - 1. Panoramic view of the study site………..………….…………...……..352

xv

Appendix V - Figure S1. Illustrated plates of tree species….……………..………..354

Appendix V - Figure S2. Illustrated plates of tree species….…………..…………..355

Appendix V - Figure S3. Illustrated plates of tree species….………..……………..356

xvi

ABSTRACT

A pressing question in current biology is how ecosystems in general, and species in particular, are responding to climate change in time and space. This dissertation responds to this question using an elevational gradient as a tool to understand the influence of temperature in biodiversity and ecosystem function. This approach has a long history in ecology and biogeography because these “natural laboratories” provide insights into how species and ecosystems respond to climate change. Particularly, I look at Amazonian and Andean forest response to climate gradients and changes in those gradients through time, understanding patterns and processes of tree species-specific functional traits (wood density), shifts in species composition towards taxa that have warmer mean ranges (thermophilization process) and changes in tree demography (rates of tree mortality and recruitment) in temporal- and spatial-scales. These studies are based on comprehensive long-term inventory forest data that includes 41 permanent plots along a 3500 m elevational gradient in Eastern Peru spanning 38 years.

Results of these studies showed: (1) Mean wood density declined from the

Amazonian forest to middle elevations, with an abrupt change corresponding to the elevation where clouds form, with an increase again to the montane treeline, and that interspecific variation in wood density along the elevational gradient was explained mainly by species turnover rather than elevation. (2) Amazonian-Andean tree communities showed slow thermophilization rates compared to the few results from previous studies across the tropics and the changes are mainly explained by increases in

xvii tree mortality over time rather than any range extensions or true migration. In addition, the Amazonian tree community’s response to warming was weak to nonexistent, in contrast to Andean forests that showed slow but non-zero responses to warming. (3) Tree demographic rates along the gradient showed that Andean forests can be as dynamic as

Amazonian forests, with equivalent dynamism up to ~2500 m of elevation. The net change in stem density and aboveground carbon was not related to elevation and the big losses were around the cloud base. Trends throughout time showed that tree dynamism and net carbon storage did not show an increase over time as previous studies showed.

However, the Amazonian-Andean forests are still acting as a long-term carbon sink, though a tendency was observed for long-term net carbon accumulation to decline. (4)

Plant inventory along the gradient showed that Andean flora is poorly known, particularly between 1000 - 2500 m of elevation, with 40 % of the species remaining as morphospecies (only identified to a genus or family level), unidentifiable by experts.

Together these studies showed that tree mortality has driven the shifts in species composition and carbon accumulation along the gradient, suggesting that forests will endure large scale compositional and ecosystem changes due to climate regimes with increased temperatures and more frequent drought events.

xviii

RESUMEN

Una pregunta apremiante en la biología actual es cómo los ecosistemas en general, y las especies en particular, están respondiendo al cambio climático en el tiempo y espacio. Esta tesis doctoral responde a esa pregunta utilizando un gradiente de elevación como herramienta para comprender la influencia de la temperatura en la biodiversidad y función del ecosistema. Este enfoque tiene una larga historia en la ecología y biogeografía porque estos "laboratorios naturales" proporcionan información crucial sobre cómo las especies y los ecosistemas están respondiendo al cambio climático. Este estudio en particular está enfocado en la respuesta de los bosques amazónicos y andinos a las gradientes climáticas y a los cambios en esas gradientes a través del tiempo, entendiendo los patrones y procesos de los rasgos funcionales de especies arbóreas especificas (densidad de la madera), los cambios en la composición de las especies hacia taxa que tengan rangos de elevación medios más cálidos (proceso de termofilización) y cambios en la demografía arbórea (tasas de mortalidad y reclutamiento arbóreo) en escalas temporales y espaciales. Estos estudios se basan en un inventario forestal comprehensivo a largo plazo, que incluye 41 parcelas permanentes a lo largo de un gradiente de elevación de 3500 m en el este peruano, abarcando 38 años de monitoreo.

Los resultados de estos estudios mostraron: (1) La densidad de madera promedio disminuyó desde los bosques amazónicos hasta elevaciones medias, con un cambio brusco que corresponde a elevaciones donde se forman las nubes, y un aumento hacia la línea de árboles montanos. La variación interespecífica en la densidad de madera a lo largo del gradiente se explica principalmente por el recambio de especies en lugar de la xix elevación. (2) Las comunidades arbóreas amazónicas y andinas mostraron tasas lentas de termofilización (migración) en comparación con resultados de estudios previos, estos cambios se explican principalmente por el aumento de la mortalidad arbórea a lo largo del tiempo en lugar de cualquier extensión de rango o migración verdadera. Además, las respuestas de las comunidades arbóreas amazónicas al calentamiento fueron débiles o inexistentes, en contraste con los bosques andinos que mostraron respuestas lentas, pero no nulas al calentamiento. (3) Las tasas demográficas arbóreas a lo largo del gradiente mostraron que los bosques andinos pueden ser tan dinámicos como los bosques amazónicos, con un dinamismo similar hasta ~2500 m de elevación. El cambio neto en el número de tallos y el carbono sobre el suelo no se relacionó con la elevación y las grandes pérdidas se produjeron alrededor de la base de nubes. Las tendencias a lo largo del tiempo mostraron que el dinamismo de los árboles y el almacenamiento neto de carbono no mostraron un aumento con el tiempo, como mostraron estudios anteriores. Sin embargo, los bosques amazónicos y andinos todavía están actuando como un sumidero de carbono a largo plazo, aunque se observó una tendencia de disminución en la acumulación neta de carbono a largo plazo. (4) El inventario de plantas a lo largo del gradiente mostró que la flora andina es poco conocida, particularmente entre 1000 - 2500 m de elevación, con el 40% de las especies arbóreas manteniéndose como morfoespecies

(solo identificadas a nivel de género o familia), no identificables por expertos. En conjunto, estos estudios muestran que la mortalidad arbórea está impulsando los cambios en la composición de especies y la acumulación de carbono a lo largo del gradiente de elevación, lo que sugiere que los bosques soportarán cambios en la composición de

xx especies y ecosistemas a gran escala debido a los regímenes climáticos con temperaturas más altas y eventos de sequía más frecuentes.

xxi

PISIYACHIYNIN

Mosoq watakunapin, huk ancha hatun tapakuy qallarin pachamamanchismanta, kausaykunamantaima, imaynatan paykuna kutipakunku, pisi paraman nishu ruphayman ima. Kay hatun yachaywan chayraqmin kutichisunchis chay tapukuyta, chay raykun huk hatunkaray orqopin umanchasunchis, imaynatan kausaykuna, pachamanchis ima, ruphaywan kausanku. Kay umanchaymin ñaupaq watakunamantaraqmin kallarin, tapukunku, imaynatan mallkikuna chhalanku pampamanta wichaykama. Yunka mallkikunawanmi, rupa rupa mallkikunawanmi ima munayku yachayta, imaynan paikuna wiñanku hoq niraq pachakunapi, imaynatan chhalankaku raphinkunata, tullunkunata ima.

Hamuq watakunapi, sach’a sach’a kaskallanchu kankaku, icha chhalankakuchu.

Mallkikunawan llank’ayka, ñawpaq watakunamantaraqmin qallarikun chay raykun

Manuq sach’a sach’anpin 41 suyukuna ruwakunku, chaypin tapukuykunatan kutichisunchis.

Imatataq tariyku? (1) Yunkapampapi kaq mallkikunaq tullun chuchulla, chaymantan k’aspikuna ñapuytan kallarinku phuyu sach’a sach’a chayaspan mallkikunaq tullunka kallarin chuchuyta, hawan orcoman chayaspan, tulluqa sinchi chuchuma tukupun. (2) Manu sach’a sach’apin, nishutan mallkikuna wañunku chay raykun, yunkapampapi kaq mallkikuna rupa rupa mallkikuna ima, alliliamanta thamanku orkota.

(3) Rupa rupa mallkikuna wiñanku wachanku ima yunkapampamallkikuna hina.

Mallkikunan, uraymanta hawankaman qasqallanmi wachakunku poqokunku ima, phuyupi kaq mallkikunallan pisita wachakunku. Manuq sach’a sach’aka carbonuta hap’ishallanku, ichaqa hatun pachakunapin chay carbonuta hap’iskanku pisiyapun. (4)

xxii

Ashqa mallkikunaq sutinmi manan yachakunchu, yakachan kuskan. Ni suti churaq amautakunapas yachankuchu. Tukunapaq niyku; mallkikuna wañuspanmi kallarichinku wiñachiyta mosoq mallkikunata, carbono ima chhalaykun yunkamanta ruparupaman.

Hamuq watakunapaqmi umullikun, sichi chhalaykuna manu sach’a sach’api, rupay, ch’aki pacha ima aswantaraq yanapanka.

xxiii

CHAPTER I

INTRODUCTION

One of the fundamental quests in ecology is to understand environmental influences on plant demography (Harper 1967) with a related and central theme being understanding species distributions across environmental gradients (von Humboldt 1838,

Whittaker 1967, Gentry 1988). Over the last four decades the understanding of ecological processes affecting plant demography and species distributions in different biomes has grown, and in the case of tropical forests this has been primarily based on long-term studies in lowland ecosystems (Hubbell and Foster R.B. 1992, Phillips and Gentry 1994,

Condit 1995). However, tropical montane ecosystems remain poorly studied (Budd et al.

2004). This is even though the montane forests of the tropical Andean-Amazonian elevational gradient are considered a natural laboratory for studying biotic and environmental controls on plant distribution and ecosystem function (Malhi et al. 2010,

Silman 2014). The Andes-Amazon system is also a model system for investigating ecological and evolutionary processes in plant communities and is imperative for evaluating the responses of tropical forests under the ongoing anthropogenic global climate change (Foster 2001). This area of research is expanding the frontiers of the understanding of longstanding questions related to diversity, species distribution and ecosystem function (Silman 2014).

1

Here I review the basic underpinnings of this research, including global change effects on tropical forests (i.e. temperature and drought) as well as the basic forest responses to these climate changes. Furthermore, this dissertation describes the changes in tree demography (rates of mortality and recruitment) from lowland-to-upland forests and their responses to climate change, showing empirically the changes in species distributional ranges (species migration) in response to warming, and how the ecosystem function is affected (carbon dynamics). A unique and continuous Andes-to-Amazon gradient spanning 3500 m in elevation in Eastern Peru is used to show evidence of forest responses to climate change and leverage a comprehensive long-term inventory forest data across 41 permanent plots spanning 38 years of field-based monitoring.

Tropical forest under global warming

Over the last 50 years, anthropogenic climate change has had a significant impact on physical and biological properties on Earth systems (Rosenzweig et al. 2008, Malhi et al. 2014). The increase in emissions of long-lived greenhouse gases coupled with the radiative forcing of the climate system is raising global temperatures (Forster et al. 2007) at a rate and magnitude unprecedented for millennia (Mann and Jones 2003). It has been predicted that global mean surface air temperature is likely to exceed 4 °C by the end of this century (Stocker et al. 2013) creating novel climates for current species (Williams et al. 2007). One of the central ongoing research questions in modern ecology is understanding the effects of anthropogenic climate change on Earth’s biomes, and within that specifically, it’s most diverse biome—the tropical forest (Malhi et al. 2008).

2

Markedly, human activity has dramatically increased CO2 emissions since the late

1700s, with fuel combustion, deforestation, and cement production the primary sources. Deforestation is the second largest anthropogenic source of carbon dioxide to the atmosphere after fossil fuel combustion (van der Werf et al. 2009), contributing to 12 -

25% of global anthropogenic greenhouse gas emissions (van der Werf et al. 2009, Le

Quéré et al. 2015) with a continuous growth trend of CO2 emissions in the last decade (Le

Quéré et al. 2015). Global forests cover ~30% of the land surface and stores around 45% of the terrestrial carbon (Bonan 2008). At the global scale, both land and ocean ecosystems showed an increase in carbon uptake in the past 50 years (Ballantyne et al.

2012) acting as important carbon sinks. Tropical forests account for ~44% of global forest cover, storing ~55% of total forest carbon and play a central role in atmospheric carbon sequestration as they account for ~70% of global terrestrial net primary productivity (FAO 2011, Pan et al. 2011).

Rapid atmospheric warming is already pushing species out of their fundamental niches and even threatening their . Tropical regions have experienced warming at an average of 0.26 °C per decade since the mid-1970s (Malhi and Wright 2004), and

2015 was the hottest year for Amazonia in the last century (Jiménez-Muñoz et al. 2016).

It is suggested that temperature increase could be the most pervasive climate impact on tropical ecosystems because tropical species are adapted to limited geographic and seasonal variation in temperature (Janzen 1967, Wright et al. 2009, Corlett 2011). For example, results of a simple model of temperature effects on species ranges predicts that a warming of 5 °C—expected over the next 100 years in tropical forests (Carter et al.

3

2007, Urrutia and Vuille 2009)—would place nearly 100% of Amazonian trees outside of their currently measured climatic niches (Feeley and Silman 2010).

One of the ways in which tree species are expected to respond to rapid warning is through shifting their distributions (e.g. Davis 1969, Williams et al. 2007) both poleward and towards higher elevations (Parmesan et al. 1999, Colwell et al. 2008, Chen et al.

2009, Feeley et al. 2011, 2013, Morueta-Holme et al. 2015). Individuals of long-lived organisms such as canopy trees will have to acclimate to long-term warming climates or die (Corlett 2011, Feeley et al. 2012). For example, the life-span of Amazonian canopy trees routinely exceed 300 years and can last over 1400 years (Chambers et al. 1998,

Fichtler et al. 2003), and many individuals alive now will still be so in 2100 if they can acclimate as they did to climate changes they have already experienced.

Range shifts and changes in ecosystem properties such as carbon storage are both underpinned by demographic changes, and recent studies have shown that tropical forests are responding to global environmental changes by increasing or decreasing tree population sizes over time. For instance, Amazonian forests are becoming more dynamic in terms of both mortality and recruitment rates (Phillips et al. 2004, Rice et al. 2004,

Susan et al. 2009) and are hypothesized to have been acting as a long-term carbon sink since the 1970s in response to environmental conditions (Lewis et al. 2004, Valencia et al. 2009, Brienen et al. 2015). However, it is unknown whether Andean forest dynamics and long-term carbon accumulation are also changing in response to global change. In

Amazonian forests, the gain in stems over the loss is accelerating tree dynamics over time (Lewis et al. 2004, Phillips et al. 2004) and potentially increasing the carbon stocks in tropical forests. Though changes in tree demography (trees dying, recruiting, and

4 growing) are crucial to understanding tree dynamics and carbon balance in tropical forests, these basic but fundamental trends for the Andes remain unknown, much less their underlying causes.

Tree growth responses to global warming are fundamental to understanding forest ecosystem ecology and predicting future ecosystem services. In the tropics, tree growth is positively correlated with temperature (Kitayama and Aiba 2002, Rapp et al. 2012, Clark et al. 2015). However, while some pantropical studies show a net-carbon sink in tropical forests due to increased growth rates and a net shift in the balance of mortality and recruitment (Lewis et al. 2004, Phillips et al. 2004), other studies report a decrease in growth rates in lowland forest (Feeley et al. 2007, Clark et al. 2010) that could be explained by the negative correlation between tree growth and minimum daily temperature. These may be caused by elevated respiration costs when air temperature increases, particularly variations in the mean annual night-time temperature (Feeley et al.

2007, Clark et al. 2010). Both cases indicate that carbon balance is sensitive to temperature across a range of tropical tree species. A central goal of this dissertation is to examine the processes of growth, recruitment, and mortality on species ranges and ecosystem carbon dynamics.

The pace of droughts in tropical forest

Drought events play a major role in shaping tropical forests and have large effects on tree mortality and growth (Phillips et al. 2010, Bonal et al. 2016). Mortality of tropical trees has been widely observed in natural droughts that are often associated with multi-

5 year climatic cycles explained by El Niño-Southern Oscillation (ENSO) events

(Williamson et al. 2000, Condit et al. 2004, Slik 2004). However, the 2015-2016 ENSO drought event was the strongest since 1979 and is attributed to sea surface warming in the

Central Equatorial Pacific (Jiménez-Muñoz et al. 2016), and is an event that potentially will increase tree mortality in the current decade. In the tropics, some abnormal drought events are associated with an increase in sea surface temperatures (SSTs) in the tropical

North and are thought to be 1-in-100 year events (Marengo et al. 2008,

2011, Malhi et al. 2008). In the last decade, two major warming Atlantic SST-associate drought events were identified in 2005 and 2010, greatly affecting the

(Phillips et al. 2009, Lewis et al. 2011, Marengo et al. 2011), resulting in peaks of fire activity, dried lakes, the low levels in many rivers in southwestern Amazon.

These droughts increased tree mortality in lowlands forests with major changes in forest composition and structure (e.g. Phillips et al. 2010, Esquivel-Muelbert et al. 2018).

One of the short-term responses of forests to drought is high tree mortality, with evidence of lagged mortality in one or more years changing forests from carbon sinks into sources in some tropical regions (Phillips et al. 2009, Corlett 2016). The droughts had particularly strong effects on large trees (stems ˃ 40 cm in diameter) (Phillips et al. 2010). Hydraulic failure and carbon starvation have been proposed as mechanisms inducing mortality in large vs. smaller trees, with hydraulic failure being the most supported hypothesis (Choat et al. 2012, Rowland et al. 2015). Understanding of forest ecosystem responses to drought in lowland Amazonian systems is increasing (Phillips et al. 2010, Gatti et al.

2014), with advances in tying drought effects to functional traits (Chao et al. 2008, Kraft et al. 2010). However, drought effects in montane regions such as the tropical Andes

6 remain unstudied, and it is unclear whether simple extrapolations from lowland systems are sufficient for understanding upland changes in the moisture regime because of cloud immersion and steep temperature gradients (Pounds et al. 1999, Halladay et al. 2012,

Rapp and Silman 2012).

While predicting tree mortality in response to drought is difficult, it has been suggested that wood density—an important functional trait in plant life history—could be used as a proxy to predict mortality risk in tropical lowland forest (Chao et al. 2008, Kraft et al. 2010). This wood density-mortality risk relationship can be explained by the positive relationship of high wood density and thick-walled vessels to protect vessels from implosion when water shortages create strongly negative xylem potentials (Hacke et al. 2001). This dissertation explores the patterns of wood density variations across the

Andes-Amazon gradient with a focus on explaining patterns of mortality and drought susceptibility.

Research objectives

This dissertation presents a study of how Andean-Amazonian forests respond to ongoing climate change that uses long-term empirical field data along an elevational gradient. For the purposes of this dissertation, I installed a network of 24 1-ha permanent plots spanning from 400 to 3725 m of elevation with multiple censuses since 2003, as a part of the Andes Biodiversity and Ecosystem Research Group (ABERG). Additionally, since science is also often a collaborative effort, I included data from17 lowland plots

(below 500 m) from enthusiastic collaborators of RAINFOR and GEM plot networks.

7

Together, the studies in this dissertation provide insights into the responses of Andean and Amazonian forests to global change based on comprehensive long-term forest plots’ data including over 41,000 stems and ~1,900 tree species across 41 permanent forest plots, along a 3500 m elevational gradient that spans the past 38 years in Eastern Peru (38 years below 500 m, 14 years above 500 m). All stems ≥10 cm of diameter at breast height in each permanent forest plot are marked, identified to species level and measured multiple times for up to four decades.

Chapter II describes the patterns of wood density along the elevational gradient.

Wood density is a functional trait that integrates many aspects of plant form and function and is central in forest carbon estimations. Using field-collected wood samples to calculate species-level wood density and combined with global databases and permanent plot data, I test the extent to which elevation, species composition, phylogenetic affinity, and forest structure determine variation in wood density along the elevational gradient.

Chapter III and IV examine tree demography looking at the mortality (dead trees) and recruitment rates (new trees ≥10 cm of diameter at breast height into the plot) changes in response to climate change along the elevational gradient over 38 years.

Chapter III examines shifts in species distribution due to climate change looking at both temporal and spatial changes in tree demography. I tested the thermophilization hypothesis (shifts in community composition due to the replacement of species with cooler tolerances with those with warm tolerances at any point) and the species thermal migration hypothesis (changes in the distributional range of specific plant species) in response to climate change. Chapter IV describes the regional- and temporal-scale patterns of tree mortality, recruitment and stem-change rates along the elevational

8 gradient, and how those demographic rates influence aboveground carbon dynamics. I integrated the temporal and spatial forest plot data with wood density data (from Chapter

II) and ground measured stem length into an allometric equation to estimate aboveground carbon density accumulation and change for the past 38 years. Chapter V ( published as

Farfan-Rios et al. 2015) describes the depth of the floristic work that underpins all of these ecological efforts and presents an annotated checklist for the Andean arborescent life forms including trees, arborescent ferns, palms, and lianas for the elevational gradient used in this study. It presents species elevational ranges (including range expansions), the distribution of endemic species, and new records for the Peruvian flora, along 3000 m of elevation change across 20 km of geographic distance.

In their sum, the results presented in this dissertation represents a novel contribution to understanding the fate of Amazonian and Andean forests in the face of ongoing and future climate change, as well as providing basic knowledge of the structural and compositional dynamics of Andean forests.

9

Literature cited

Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White. 2012.

Increase in observed net carbon dioxide uptake by land and oceans during the past

50 years. Nature 488:70–72.

Berry, Z. C., N. C. Emery, S. G. Gotsch, and G. R. Goldsmith. 2019. Foliar water uptake:

Processes, pathways, and integration into plant water budgets. Plant, Cell &

Environment 42:410–423.

Bonal, D., B. Burban, C. Stahl, F. Wagner, and B. Hérault. 2016. The response of tropical

to drought—lessons from recent research and future prospects. Annals of

Forest Science 73:27–44.

Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate

benefits of forests. Science (New York, N.Y.) 320:1444–9.

Bony, S., B. Stevens, D. M. W. Frierson, C. Jakob, M. Kageyama, R. Pincus, T. G.

Shepherd, S. C. Sherwood, A. P. Siebesma, A. H. Sobel, M. Watanabe, and M. J.

Webb. 2015. Clouds, circulation and climate sensitivity. Nature Geoscience 8:261–

268.

Brienen, R. J. W., O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G.

Lopez-Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vásquez

Martinez, M. Alexiades, E. Álvarez Dávila, P. Alvarez-Loayza, A. Andrade, L. E.

O. C. Aragão, A. Araujo-Murakami, E. J. M. M. Arets, L. Arroyo, G. A. Aymard C.,

O. S. Bánki, C. Baraloto, J. Barroso, D. Bonal, R. G. A. Boot, J. L. C. Camargo, C.

V. Castilho, V. Chama, K. J. Chao, J. Chave, J. A. Comiskey, F. Cornejo Valverde,

L. da Costa, E. A. de Oliveira, A. Di Fiore, T. L. Erwin, S. Fauset, M. Forsthofer, D.

10

R. Galbraith, E. S. Grahame, N. Groot, B. Hérault, N. Higuchi, E. N. Honorio

Coronado, H. Keeling, T. J. Killeen, W. F. Laurance, S. Laurance, J. Licona, W. E.

Magnussen, B. S. Marimon, B. H. Marimon-Junior, C. Mendoza, D. A. Neill, E. M.

Nogueira, P. Núñez, N. C. Pallqui Camacho, A. Parada, G. Pardo-Molina, J.

Peacock, M. Peña-Claros, G. C. Pickavance, N. C. A. Pitman, L. Poorter, A. Prieto,

C. A. Quesada, F. Ramírez, H. Ramírez-Angulo, Z. Restrepo, A. Roopsind, A.

Rudas, R. P. Salomão, M. Schwarz, N. Silva, J. E. Silva-Espejo, M. Silveira, J.

Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, J. Terborgh, R. Thomas-Caesar,

M. Toledo, M. Torello-Raventos, R. K. Umetsu, G. M. F. van der Heijden, P. van

der Hout, I. C. Guimarães Vieira, S. A. Vieira, E. Vilanova, V. A. Vos, and R. J.

Zagt. 2015. Long-term decline of the Amazon carbon sink. Nature 519:344–348.

Budd, P., I. May, L. Miles, and J. Sayer. 2004. Agenda. United Nations

Environment - Programme-World Conservation Monitoring Centre, Cambridge,

UK.

Bush, M. B. 2002. Distributional change and conservation on the Andean flank: A

palaeoecological perspective. Global Ecology and Biogeography 11:463–473.

Bush, M. B., M. R. Silman, and D. H. Urrego. 2004. 48,000 years of climate and forest

change in a biodiversity hot spot. Science (New York, N.Y.) 303:827–9.

Carter, T. R., R. N. Jones, X. Lu, S. Bhadwal, C. Conde, L. O. Mearns, B. C. O’Neill, M.

D. A. Rounsevell, and M. B. Zurek. 2007. New Assessment Methods and the

Characterisation of Future Conditions. Climate Change 2007: Impacts, Adaptation

and Vulnerability. Contribution of Working Group II to the Fourth Assessment

Report of the Intergovernmental Panel on Climate Change. Page (M. Parry, O.

11

Canziani, J. Palutikof, P. Van Der Linden, and C. Hanson, Eds.). Cambridge

University Press, Cambridge, UK.

Chambers, J. Q., N. Higuchi, and J. P. Schimel. 1998. Ancient trees in Amazonia. Nature

391:135–136.

Chao, K. J., O. L. Phillips, E. Gloor, A. Monteagudo, A. Torres-Lezama, and R. V

Martinez. 2008. Growth and wood density predict tree mortality in Amazon forests.

Journal of Ecology 96:281–292.

Chen, I.-C., H.-J. Shiu, S. Benedick, J. D. Holloway, V. K. Chey, H. S. Barlow, J. K.

Hill, and C. D. Thomas. 2009. Elevation increases in moth assemblages over 42

years on a tropical mountain. Proceedings of the National Academy of Sciences of

the of America 106:1479–1483.

Choat, B., S. Jansen, T. J. Brodribb, H. Cochard, S. Delzon, R. Bhaskar, S. J. Bucci, T. S.

Feild, S. M. Gleason, U. G. Hacke, A. L. Jacobsen, F. Lens, H. Maherali, J.

Martínez-Vilalta, S. Mayr, M. Mencuccini, P. J. Mitchell, A. Nardini, J. Pittermann,

R. B. Pratt, J. S. Sperry, M. Westoby, I. J. Wright, and A. E. Zanne. 2012. Global

convergence in the vulnerability of forests to drought. Nature 491:752–5.

Clark, D. B., D. A. Clark, and S. F. Oberbauer. 2010. Annual wood production in a

tropical rain forest in NE linked to climatic variation but not to

increasing CO2. Global Change Biology 16:747–759.

Clark, D. B., J. Hurtado, and S. S. Saatchi. 2015. Tropical Rain Forest Structure, Tree

Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. PloS one

10:e0122905.

Colwell, R. K., G. Brehm, C. L. Cardelús, A. C. Gilman, and J. T. Longino. 2008. Global

12

warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

Science (New York, N.Y.) 322:258–61.

Condit, R. 1995. Research in large, long-term tropical forest plots. Trends in Ecology &

Evolution 10:18–22.

Condit, R., S. Aguilar, A. Hernandez, R. Perez, S. Lao, G. Angehr, S. P. Hubbell, and R.

B. Foster. 2004. Tropical forest dynamics across a rainfall gradient and the impact of

an El Nino dry season. Journal of Tropical Ecology 20:51–72.

Corlett, R. T. 2011. Impacts of warming on tropical lowland rainforests. Trends in

Ecology and Evolution 26:606–613.

Corlett, R. T. 2016. The Impacts of Droughts in Tropical Forests. Trends in plant science.

Cramer, W., A. Bondeau, S. Schaphoff, W. Lucht, B. Smith, and S. Sitch. 2004. Tropical

forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate

change and rate of deforestation. Philosophical Transactions of the Royal Society of

London B: Biological Sciences 359:331–343.

Davis, M. B. 1969. Climatic changes in southern Connecticut recorded by

deposition at Rogers Lake. Ecology 50:409–422.

Esquivel-Muelbert, A., T. R. Baker, K. G. Dexter, S. L. Lewis, R. J. W. Brienen, T. R.

Feldpausch, J. Lloyd, A. Monteagudo-Mendoza, L. Arroyo, E. Álvarez-Dávila, N.

Higuchi, B. S. Marimon, B. H. Marimon-Junior, M. Silveira, E. Vilanova, E. Gloor,

Y. Malhi, J. Chave, J. Barlow, D. Bonal, N. Davila Cardozo, T. Erwin, S. Fauset, B.

Hérault, S. Laurance, L. Poorter, L. Qie, C. Stahl, M. J. P. Sullivan, H. ter Steege, V.

A. Vos, P. A. Zuidema, E. Almeida, E. Almeida de Oliveira, A. Andrade, S. A.

Vieira, L. Aragão, A. Araujo-Murakami, E. Arets, G. A. Aymard C, P. B. Camargo,

13

J. G. Barroso, F. Bongers, R. Boot, J. L. Camargo, W. Castro, V. Chama Moscoso,

J. Comiskey, F. Cornejo Valverde, A. C. Lola da Costa, J. del Aguila Pasquel, T. Di

Fiore, L. Fernanda Duque, F. Elias, J. Engel, G. Flores Llampazo, D. Galbraith, R.

Herrera Fernández, E. Honorio Coronado, W. Hubau, E. Jimenez-Rojas, A. J. N.

Lima, R. K. Umetsu, W. Laurance, G. Lopez-Gonzalez, T. Lovejoy, O. Aurelio

Melo Cruz, P. S. Morandi, D. Neill, P. Núñez Vargas, N. C. Pallqui, A. Parada

Gutierrez, G. Pardo, J. Peacock, M. Peña-Claros, M. C. Peñuela-Mora, P. Petronelli,

G. C. Pickavance, N. Pitman, A. Prieto, C. Quesada, H. Ramírez-Angulo, M. Réjou-

Méchain, Z. Restrepo Correa, A. Roopsind, A. Rudas, R. Salomão, N. Silva, J. Silva

Espejo, J. Singh, J. Stropp, J. Terborgh, R. Thomas, M. Toledo, A. Torres-Lezama,

L. Valenzuela Gamarra, P. J. van de Meer, G. van der Heijden, P. van der Hout, R.

Vasquez Martinez, C. Vela, I. C. G. Vieira, and O. L. Phillips. 2018. Compositional

response of Amazon forests to climate change. Global Change Biology.

FAO. 2011. State of the World’s Forests 2011. Rome.

Farfan-Rios, W., K. Garcia-cabrera, N. Salinas, M. N. Raurau-quisiyupanqui, and M. R.

Silman. 2015. Lista anotada de árboles y afines en los bosques montanos del sureste

peruano : la importancia de seguir recolectando. Revista Peruana de Biología

22:145–174.

Feeley, K. J., J. Hurtado, S. Saatchi, M. R. Silman, and D. B. Clark. 2013. Compositional

shifts in Costa Rican forests due to climate-driven species migrations. Global change

biology 19:3472–80.

Feeley, K. J., S. Joseph Wright, M. N. Nur Supardi, A. R. Kassim, and S. J. Davies. 2007.

Decelerating growth in tropical forest trees. Ecology Letters 10:461–469.

14

Feeley, K. J., E. M. Rehm, and B. Machovina. 2012. perspective: The responses of

tropical forest species to global climate change: acclimate, adapt, migrate, or go

extinct? Frontiers of Biogeography 4.

Feeley, K. J., and M. R. Silman. 2010. Biotic attrition from tropical forests correcting for

truncated temperature niches. Global Change Biology 16:1830–1836.

Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. G. Cabrera, Y. Malhi, P. Meir, N.

S. Revilla, M. N. R. Quisiyupanqui, and S. Saatchi. 2011. Upslope migration of

Andean trees. Journal of Biogeography 38:783–791.

Fichtler, E., D. A. Clark, and M. Worbes. 2003. Age and Long-term Growth of Trees in

an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C1.

BIOTROPICA 35:306.

Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood,

J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R.

Van Dorland. 2007. Changes in Atmospheric Constituents and in Radiative Forcing.

Chapter 2.

Foster, P. 2001. The potential negative impacts of global climate change on tropical

montane cloud forests. Earth-Science Reviews 55:73–106.

Gatti, L. V, M. Gloor, J. B. Miller, C. E. Doughty, Y. Malhi, L. G. Domingues, L. S.

Basso, A. Martinewski, C. S. C. Correia, V. F. Borges, S. Freitas, R. Braz, L. O.

Anderson, H. Rocha, J. Grace, O. L. Phillips, and J. Lloyd. 2014. Drought sensitivity

of Amazonian carbon balance revealed by atmospheric measurements. Nature

506:76–80.

Gentry, A. H. 1988. Changes in Plant Community Diversity and Floristic Composition on

15

Environmental and Geographical Gradients. Annals of the Missouri Botanical

Garden 75:1–34.

Goldsmith, G. R., N. J. Matzke, and T. E. Dawson. 2013. The incidence and implications

of clouds for cloud forest plant water relations. Ecology Letters 16:307–314.

Hacke, U. G., J. S. Sperry, W. T. Pockman, S. D. Davis, and K. A. McCulloh. 2001.

Trends in wood density and structure are linked to prevention of xylem implosion by

negative pressure. Oecologia 126:457–461.

Halladay, K., Y. Malhi, and M. New. 2012. Cloud frequency climatology at the

Andes/Amazon transition: 2. Trends and variability. Journal of Geophysical

Research-Atmospheres 117:D23103, doi:10.1029/2012JD017789.

Harper, J. L. 1967. A Darwinian Approach to Plant Ecology. Source Journal of Applied

Ecology 4:267–290.

Hubbell, S. P., and R. Foster R.B. 1992. Short-Term Dynamics of a Neotropical Forest.

BioScience 42:822–828. von Humboldt, A. 1838. Notice de Deux Tentatives d’Ascension du Chimborazo (A.

Pihan de la Forest, Paris).

Janzen, D. H. 1967. Why Mountain Passes are Higher in the Tropics. The American

Naturalist 101:233–249.

Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y.

Malhi, J. A. Sobrino, and G. van der Schrier. 2016. Record-breaking warming and

extreme drought in the Amazon during the course of El Niño 2015–2016.

Scientific Reports 6:33130.

Kitayama, K., and S.-I. Aiba. 2002. Ecosystem structure and productivity of tropical rain

16

forests along altitudinal gradients with contrasting soil phosphorus pools on Mount

Kinabalu, . Journal of Ecology 90:37–51.

Kraft, N. J. B., M. R. Metz, R. S. Condit, and J. Chave. 2010. The relationship between

wood density and mortality in a global tropical forest data set. The New phytologist

188:1124–36.

Lewis, S. L., P. M. Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad.

2011. The 2010 Amazon Drought. Science 331:554.

Lewis, S. L., O. L. Phillips, T. R. Baker, J. Lloyd, Y. Malhi, S. Almeida, N. Higuchi, W.

F. Laurance, D. A. Neill, J. N. M. Silva, J. Terborgh, A. Torres Lezama, R. Vásquez

Martinez, S. Brown, J. Chave, C. Kuebler, P. Núñez Vargas, and B. Vinceti. 2004.

Concerted changes in tropical forest structure and dynamics: evidence from 50

South American long-term plots. Philosophical Transactions of the Royal Society of

London. Series B: Biological Sciences 359:421–436.

Malhi, Y., T. A. Gardner, G. R. Goldsmith, M. R. Silman, and P. Zelazowski. 2014.

Tropical Forests in the Anthropocene. Annual Review of Environment and

Resources 39:125–159.

Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre. 2008. Climate

change, deforestation, and the fate of the Amazon. Science (New York, N.Y.)

319:169–72.

Malhi, Y., M. Silman, N. Salinas, M. Bush, P. Meir, and S. Saatchi. 2010. Introduction:

Elevation gradients in the tropics: laboratories for ecosystem ecology and global

change research. Global Change Biology 16:3171–3175.

Malhi, Y., and J. Wright. 2004. Spatial patterns and recent trends in the climate of

17

tropical rainforest regions. Philosophical transactions of the Royal Society of

London. Series B, Biological sciences 359:311–29.

Mann, M. E., and P. D. Jones. 2003. Global surface temperatures over the past two

millennia. Geophysical Research Letters 30.

Marengo, J. A., C. A. Nobre, J. Tomasella, M. F. Cardoso, and M. D. Oyama. 2008.

Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005.

Philosophical Transactions of the Royal Society B-Biological Sciences 363:1773–

1778.

Marengo, J. A., J. Tomasella, L. M. Alves, W. R. Soares, and D. A. Rodriguez. 2011. The

drought of 2010 in the context of historical droughts in the Amazon region.

Geophysical Research Letters 38:n/a-n/a.

Morueta-Holme, N., K. Engemann, P. Sandoval-Acuña, J. D. Jonas, R. M. Segnitz, and

J.-C. Svenning. 2015. Strong upslope shifts in Chimborazo’s vegetation over two

centuries since Humboldt. Proceedings of the National Academy of Sciences of the

United States of America.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000.

Biodiversity hotspots for conservation priorities. Nature 403:5.

Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips,

A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A.

D. McGuire, S. Piao, A. Rautiainen, S. Sitch, and D. Hayes. 2011. A large and

persistent carbon sink in the world’s forests. Science (New York, N.Y.) 333:988–93.

Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon#, B.

Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M.

18

Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated

with regional warming. Nature 399:579–583.

Phillips, O. L., L. E. O. C. Aragão, S. L. Lewis, J. B. Fisher, J. Lloyd, G. López-

González, Y. Malhi, A. Monteagudo, J. Peacock, C. A. Quesada, G. van der

Heijden, S. Almeida, I. Amaral, L. Arroyo, G. Aymard, T. R. Baker, O. Bánki, L.

Blanc, D. Bonal, P. Brando, J. Chave, Á. C. A. de Oliveira, N. D. Cardozo, C. I.

Czimczik, T. R. Feldpausch, M. A. Freitas, E. Gloor, N. Higuchi, E. Jiménez, G.

Lloyd, P. Meir, C. Mendoza, A. Morel, D. A. Neill, D. Nepstad, S. Patiño, M. C.

Peñuela, A. Prieto, F. Ramírez, M. Schwarz, J. Silva, M. Silveira, A. S. Thomas, H.

ter Steege, J. Stropp, R. Vásquez, P. Zelazowski, E. A. Dávila, S. Andelman, A.

Andrade, K.-J. Chao, T. Erwin, A. Di Fiore, E. H. C., H. Keeling, T. J. Killeen, W.

F. Laurance, A. P. Cruz, N. C. A. Pitman, P. N. Vargas, H. Ramírez-Angulo, A.

Rudas, R. Salamão, N. Silva, J. Terborgh, and A. Torres-Lezama. 2009. Drought

Sensitivity of the Amazon Rainforest. Science 323:1344–1347.

Phillips, O. L., T. R. Baker, L. Arroyo, N. Higuchi, T. J. Killeen, W. F. Laurance, S. L.

Lewis, J. Lloyd, Y. Malhi, A. Monteagudo, D. A. Neill, P. N. Vargas, J. N. M. Silva,

J. Terborgh, R. V Martinez, M. Alexiades, S. Almeida, S. Brown, J. Chave, J. A.

Comiskey, C. I. Czimczik, A. Di Fiore, T. Erwin, C. Kuebler, S. G. Laurance, H. E.

M. Nascimento, J. Olivier, W. Palacios, S. Patino, N. C. A. Pitman, C. A. Quesada,

M. Salidas, A. T. Lezama, and B. Vinceti. 2004. Pattern and process in Amazon tree

turnover, 1976-2001. Philosophical Transactions of the Royal Society of London

Series B-Biological Sciences 359:381–407.

Phillips, O. L., and A. H. Gentry. 1994. Increasing Turnover through Time in Tropical

19

Forests. Science 263:954–958.

Phillips, O. L., G. van der Heijden, S. L. Lewis, G. Lopez-Gonzalez, L. Aragao, J. Lloyd,

Y. Malhi, A. Monteagudo, S. Almeida, E. A. Davila, I. Amaral, S. Andelman, A.

Andrade, L. Arroyo, G. Aymard, T. R. Baker, L. Blanc, D. Bonal, A. C. A. de

Oliveira, K. J. Chao, N. D. Cardozo, L. da Costa, T. R. Feldpausch, J. B. Fisher, N.

M. Fyllas, M. A. Freitas, D. Galbraith, E. Gloor, N. Higuchi, E. Honorio, E.

Jimenez, H. Keeling, T. J. Killeen, J. C. Lovett, P. Meir, C. Mendoza, A. Morel, P.

N. Vargas, S. Patino, K. S. H. Peh, A. P. Cruz, A. Prieto, C. A. Quesada, F.

Ramirez, H. Ramirez, A. Rudas, R. Salamao, M. Schwarz, J. Silva, M. Silveira, J.

W. F. Slik, B. Sonke, A. S. Thomas, J. Stropp, J. R. D. Taplin, R. Vasquez, and E.

Vilanova. 2010. Drought-mortality relationships for tropical forests. New

Phytologist 187:631–646.

Pounds, J., M. Fogden, and J. Campbell. 1999. Biological response to climate change on

a tropical mountain. Nature 398:611–615.

Le Quéré, C., R. Moriarty, R. Andrew, G. Peters, P. Ciais, P. Friedlingstein, S. Jones, S.

Sitch, P. Tans, A. Arneth, T. Boden, L. Bopp, Y. Bozec, J. Canadell, L. Chini, F.

Chevallier, C. Cosca, I. Harris, M. Hoppema, R. Houghton, J. House, A. Jain, T.

Johannessen, E. Kato, R. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C.

Landa, P. Landschützer, A. Lenton, I. Lima, G. Marland, J. Mathis, N. Metzl, Y.

Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. Raupach, P.

Regnier, C. Rödenbeck, S. Saito, J. Salisbury, U. Schuster, J. Schwinger, R.

Séférian, J. Segschneider, T. Steinhoff, B. Stocker, A. Sutton, T. Takahashi, B.

Tilbrook, G. Van Der Werf, N. Viovy, Y. Wang, R. Wanninkhof, A. Wiltshire, and

20

N. Zeng. 2015. Global carbon budget 2014.

Rapp, J. M., and M. R. Silman. 2012. Diurnal, seasonal, and altitudinal trends in

microclimate across a tropical montane cloud forest. Climate Research 55:17–32.

Rapp, J. M., and M. R. Silman. 2014. Epiphyte response to drought and experimental

warming in an Andean cloud forest. F1000Research 3:7.

Rapp, J. M., M. R. Silman, J. S. Clark, C. A. J. Girardin, D. Galiano, and R. Tito. 2012.

Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian

Andes. Ecology 93:2061–2072.

Rice, A. H., E. H. Pyle, S. R. Saleska, L. Hutyra, M. Palace, M. Keller, P. B. de

Camargo, K. Portilho, D. F. Marques, and S. C. Wofsy. 2004. Carbon balance and

vegetation dynamics in an old-growth Amazonian forest. Ecological Applications

14:S55–S71.

Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T.

L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins, and A. Imeson.

2008. Attributing physical and biological impacts to anthropogenic climate change.

Nature 453:353–7.

Rowland, L., A. C. L. da Costa, D. R. Galbraith, R. S. Oliveira, O. J. Binks, A. A. R.

Oliveira, A. M. Pullen, C. E. Doughty, D. B. Metcalfe, S. S. Vasconcelos, L. V

Ferreira, Y. Malhi, J. Grace, M. Mencuccini, and P. Meir. 2015. Death from drought

in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119–

122.

Silman, M. R. 2014. Functional megadiversity. Proceedings of the National Academy of

Sciences of the United States of America 111:5763–4.

21

Slik, J. W. F. 2004. El Niño droughts and their effects on tree species composition and

diversity in tropical rain forests. Oecologia 141:114–120.

Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y.

Xia, V. Bex, and P. M. Midgley, editors. 2013. IPCC, 2013: Climate Change 2013:

The Physical Science Basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA.

Susan, G. W. L., W. F. Laurance, E. M. N. Henrique, A. Andrade, P. M. Fearnside, R. G.

R. Expedito, and R. Condit. 2009. Long-term variation in Amazon forest dynamics.

Journal of Vegetation Science 20:323–333.

Urrutia, R., and M. Vuille. 2009. Climate change projections for the tropical Andes using

a regional climate model: Temperature and precipitation simulations for the end of

the 21st century. Journal of Geophysical Research 114:D02108.

Valencia, R., R. Condit, H. C. Muller-Landau, C. Hernandez, and H. Navarrete. 2009.

Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical

Ecology 25:473–482. van der Werf, G. R., D. C. Morton, R. S. DeFries, J. G. J. Olivier, P. S. Kasibhatla, R. B.

Jackson, G. J. Collatz, and J. T. Randerson. 2009. CO2 emissions from forest loss.

Nature Geoscience 2:737–738.

Whittaker, R. H. 1967. Gradient analysis of vegetation. Biological Reviews 42:207–264.

Williams, J. W., S. T. Jackson, and J. E. Kutzbach. 2007. Projected distributions of novel

and disappearing climates by 2100 AD. Proceedings of the National Academy of

Sciences 104:5738–5742.

22

Williamson, G. B., W. F. Laurance, A. A. Oliveira, P. Delamonica, C. Gascon, T. E.

Lovejoy, and L. Pohl. 2000. Amazonian tree mortality during the 1997 El Nino

drought. Conservation Biology 14:1538–1542.

Wright, S. J., H. C. Muller-Landau, and J. Schipper. 2009. The future of tropical species

on a warmer planet. Conservation Biology 23:1418–1426.

Wurdack, K. J., and W. Farfan-Rios. 2017. Incadendron : a new genus of

tribe Hippomaneae from the sub-Andean cordilleras of and Peru.

PhytoKeys 85:69–86.

23

CHAPTER II

LANDSCAPE-SCALE WOOD DENSITY VARIATION ACROSS AN ANDES-TO-

AMAZON ELEVATIONAL GRADIENT

William Farfan-Rios1,2, Sassan Saatchi3, Imma Oliveras4, Yadvinder Malhi4,

Chelsea M. Robinson5, Oliver L. Phillips6, Alex Nina-Quispe7, Juan A. Gibaja8, Israel

Cuba8, Karina Garcia-Cabrera1,2, Norma Salinas-Revilla7, John Terborgh9, Nigel

Pitman10, Rodolfo Vasquez11, Abel Monteagudo Mendoza11, Terry Erwin12, Percy Nunez

Vargas2, Fernando Cornejo13, Miles R. Silman1,14

Affiliations

1 Department of Biology, Wake Forest University, 1834 Wake Forest Rd, Winston

Salem, NC 27106, USA

2 Herbario Vargaz (CUZ), Escuela Profesional de Biología, Universidad Nacional de San

Antonio Abad del Cusco, Cusco, Peru

3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109,

USA

4 Environmental Change Institute, School of Geography and the Environment, Oxford

University, South Parks Road, Oxford, OX1 3QY, UK

5 Department of Geography, University of California, Los Angeles, CA 90095, USA

6 School of Geography, University of Leeds, LS2 9JT, UK

24

7 Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Perú

8 Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru

9 Center for Tropical Conservation, Nicholas School of the Environment, Duke Univ.,

Durham, USA

10 Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL,

60605-2496, USA

11 Jardín Botánico de Missouri, Oxapampa, Pasco, Perú

12 Smithsonian Inst., Washington DC, USA

13 Andes to Amazon Biodiversity Program, Madre de Dios, Perú

14 Center for Energy, Environment and Sustainability, Wake Forest University, Winston-

Salem, NC 27106, USA

Correspondence to: William Farfan-Rios ([email protected], [email protected])

25

Abstract

Understanding how functional traits are related to species diversity and ecosystem properties is a central goal of ecology. Basic wood specific gravity (hereafter wood density) is a trait that integrates many aspects of plant form and function and is highly variable among species. While previous studies of wood density across elevational gradients have reported declines with increasing elevation, whether this is really the case in the tropics remains unclear. Here, we use one of the longest and most speciose elevational gradients in the world, extending from the Andean treeline to the Amazon basin, to test the extent to which elevation, species composition, phylogenetic affinity, and forest structure determine variation in wood density. Using field-collected wood samples and global databases we compiled 1276 taxa that were imputed to every stem across 41 (47.5 ha) mature forest plots arrayed across a 3,500m vertical gradient.

While elevation had no consistent effect on intraspecific variation in wood density, species turnover explained most of the interspecific variation across the gradient.

Mean wood density, either weighted by abundance, basal area or species were highly variable but tended to decline from low to middle elevations and increase again from mid-elevations to the treeline. As a result of this non-linearity, forests at the Andean treeline were more wood-dense than their lowland Amazon counterparts. We observed an abrupt transition in wood density at the base of persistent cloud formation, where the lowest wood density values were found. The decline of wood density is attributed to significant shift in the life form with abundance of ferns in middle elevation and the lack of stability of the landscape with higher probability of landslides and disturbances demanding for softer wood with higher elasticity. Together, both gradual compositional

26 changes and sharp local changes in the importance of non-dicot life-forms such as arborescent ferns and palms define patterns of forest-level carbon density, with implications for ecosystem properties across the Andes-to-Amazon elevational gradient.

Keywords: Wood density, elevation gradient, Andes, Amazon, species composition, functional trait

27

Introduction

Understanding how functional traits are related to species diversity and ecosystem properties is a central goal of ecology and is also important for biodiversity conservation, understanding forest nutrient cycles and ecosystem services, and ecosystem responses to global change (Asner et al. 2016, Neyret et al. 2016, Fyllas et al. 2017). Climate and landscape gradients are efficient laboratories for investigating the environmental controls on the ecosystem structure, function, and diversity (von Humboldt 1838, Whittaker 1967,

Malhi et al. 2010). Among natural gradients, tropical montane forests in general, and the

Amazon-Andes region in particular, are among the most diverse and complex forests globally (Silman 2014).

To address questions about changes in diversity and function of the ecosystem in the Amazon-Andes region requires the quantification of the current pattern and distribution of plant diversity and functional traits along the elevational gradient. In this study, we focus on the basic wood specific gravity (hereafter wood density) as the preferred functional trait of the ecosystem that can capture the influence of the environmental variables such as temperature, radiation, moisture, and forest architecture and mechanical characteristics impacted by variation in soil, wind speed, and disturbance along the steep slopes and elevation gradient (Sperry et al. 2008, Chave et al. 2009).

Wood density can be used as an indicator of how trees store nutrients, carbohydrates and secondary chemical compounds (Kozlowski 1992) in what is referred to as the “wood economics spectrum” (Chave et al. 2009). Understanding variations in wood density can give insights into tree life history strategies, growth rate, and the controls of climate and

28 disturbance (Putz et al. 1983, Lawton 1984, van Gelder et al. 2006, Swenson and Enquist

2007, Poorter et al. 2008, Chave et al. 2009, Adler et al. 2014).

Wood density variability and forest function

Wood density is considered a variable characterizing between species, within species, and even within individual ecological functions. Inter- and intraspecific variation in wood density is closely related to variation in diameter growth rate (Putz et al. 1983,

Muller-Landau 2004, King et al. 2005), hydraulic properties of the plant (Zanne et al.

2010), and other wood properties such as porosity, resistance and the number of vessel cells (Chave et al. 2009, Fortunel et al. 2014). At the community level, variation in wood density is often related to forest successional stage and life history trade-offs between light demanding and shade tolerant species. Fast growing light-demanding species typically have lower wood density values than shade-tolerant species (Chave et al. 2009), though the variability in the relationship between the rate of growth and wood density is high, with some fast-growing species have the highest wood density values recorded in tropical forests (e.g. Tabebuia spp.). However, the importance of within-species variation in wood density and within-species responses to environmental gradients as opposed to among-species to understand the complexity of this functional trait and its implication in ecosystem functioning remains poorly understood. Even less understood are the differences in wood density among life forms such as true trees vs. species without secondary xylem such as palms and tree ferns, and the effects that varying abundances of these life forms have on ecosystem-level attributes such as carbon storage.

29

The importance of within-species variation in wood density and within- and among-species responses to environmental changes remains poorly understood in most tropical ecosystems with complex structure and high species diversity. Furthermore, wood density is considered a key functional trait to follow and understand the growth– mortality trade-off (Wright et al. 2010, Kraft et al. 2010), forest dynamics and carbon cycling (Putz et al. 1983, Zanne et al. 2010). Wood density responses to environmental gradients are similarly poorly constrained, even though this is a central component of modeling carbon cycle responses to droughts and climate warming (Saatchi et al. 2011).

An accurate understanding of species- and stand-level variation of wood density is also central to reducing the uncertainties in carbon estimation when scaling from small sample plots to a landscape (Fearnside 1997, Malhi et al. 2006, Saatchi et al. 2011, Asner et al.

2014b, Phillips et al. 2019). However, it is still unclear how different ways of measuring landscape-level wood density (species level, community-level weighted by individuals or basal area) affect carbon storage calculations.

Wood density variation in tropical environmental gradients

Existing studies of tropical forests across geographic and environmental gradients suggest a great variation in wood density within and among tree communities

(Williamson 1984, Baker et al. 2004, Muller-Landau 2004, Chave et al. 2006, Fortunel et al. 2014). For example, across the Amazon basin, wood density is higher in central and eastern Amazon than northwestern Amazonia, both at species-level (Muller-Landau

2004, Chave et al. 2006) and stand-level per stem basis (Baker et al. 2004). This pattern can be explained by the disproportionate abundance and diversity of taxa with high wood

30 density values associated with poor soils found in central and eastern Amazonia (Baker et al. 2004, Muller-Landau 2004, ter Steege et al. 2006). However, there is still uncertainty with regards to whether these patterns are caused by changes in wood density within all species in a community, or just species that combine high local density with broad distributional ranges in Amazonia, because tree communities are comprised of few abundant species (i.e. oligarchs or hyperdominants) and many rare species (Pitman et al.

2013, ter Steege et al. 2013).

Though wood density is a key functional trait that links plant diversity with ecosystem function in tropical forests, our knowledge of this trait along environmental gradients in the Neotropics is incomplete, measured only at the species-level, and only on the lower range (0 - 2500 m) of an elevation gradient extending up to 4000 m (Chave et al. 2006). This leads to important questions: (1) Given that canopy traits are highly variable along elevational gradients (Asner et al. 2016, Neyret et al. 2016), what is the pattern of wood density variation? and (2) how is wood density related to elevation per se, as indicated by within-species variation with respect to environmental changes, versus turnover in species, and even deeper phylogenetic conservatism?

Given the basic and applied importance of wood density as a functional trait and the paucity of knowledge concerning its variation along elevational gradients, here, we investigate the variation of wood density as a functional trait in an elevational gradient spanning ~3500 m from the Andean treeline to the Amazon basin on the eastern slope of the Peruvian Andes. To our knowledge, this is the first study in the Neotropics that assesses changes in wood density on an extensive elevational gradient using field- collected wood samples and plot-based sampling approaches including three arborescent

31 life forms (trees, palms and tree ferns). We ask (1) what is the pattern of intra- and inter- specific variation in wood density across the Andes-to-Amazon gradient? (2) What is the effect of elevation on community wood density variation and distribution, and how does this pattern differ when communities are defined by species composition and stem abundance? and (3) what is the relationship between wood density and stem size across the elevation gradient?

Methods

Study site and climate

The study was performed on the eastern slope of the Peruvian Andes along an elevational gradient extending from the treeline at 3700 m to the Amazon basin at 190 m in the Manu Biosphere Reserve (11.8564° S, 71.7214° W) and Tambopata National

Reserve (12.9206° S, 69.2819° W). Mean Annual Temperature decreases linearly along the gradient with increasing elevation at a lapse rate of 5.2 o C/km, ranging from ~ 26.6 o

C at the lowest elevations to ~ 6.4 o C at treeline (Rapp and Silman 2012, Malhi et al.

2016). Mean annual precipitation varies across the gradient from 2448 to 5500 mm yr-1, with significant inter-annual variability throughout (Rapp and Silman 2012, Malhi et al.

2016). There is a distinct seasonality in rainfall, with highest rainfall in January and

February and the lowest in June and July. Winds vary little throughout the year, with the dominant pattern being upslope winds during the day and downslope winds at night.

Mean wind speeds were higher at lower elevations particularly during the austral spring

(Rapp and Silman 2012). The study area has high cloud frequency in contrast to many

32 other areas of the eastern slope of the Andes, with clouds present in all seasons. Along the elevational gradient, the cloud base zone is estimated between 1500 - 2000 m, with a highest mean annual cloud frequency between 2000 - 3500 m (Halladay et al. 2012).

Wood density calculation

We focused sampling on the dominant montane forest species because they are poorly or not represented in global databases. In our study area we have registered 908 arborescent species above 1000 m of elevation and our field wood samples comprise 34% of those species. We collected wood cores from 892 individuals representing 311 species of the dominant arborescent life forms—including trees, tree ferns (hereafter ferns) and palms—along the elevational gradient during 2009-2015. We stratified sampling of wood cores across the elevational gradient to ensure coverage of a broad range of taxa and to collect at least one individual for every species at each elevation. Core samples were collected in 51 sites ranging from 346 to 3650 m of elevation (Fig. 1). An increment borer was used to extract wood core samples for trees and palms ≥ 10 cm diameter at breast height (DBH). The DBH of the sampled individuals ranged from 10 to 85 cm and core samples were extracted between 1 to 1.3 m above the ground. For trees and palms, the wood cores were taken from the heartwood to the bark to capture the density variation. For the arborescent ferns, sliced samples were taken from the trunk-like rhizomes in six different sections and the average density value of the individual was used. Core samples were taken from individuals of targeted species outside of the permanent plots across the gradient (see below “inventory plot data” section) to avoid effects on plants that are part of long-term studies.

33

All values here are reported as a wood basic specific gravity, which is defined as oven-dry mass divided by its green volume (Fearnside 1997, Chave et al. 2006,

Williamson and Wiemann 2010) and henceforth called wood density in the text for simplicity. Wood density was calculated using the water displacement method with all samples oven-dried to constant mass and weighted to the nearest 0.001 g (Chave et al.

2006). Values of wood density were first calculated at oven-dry temperature at ~80 o C.

Because the possible presence of bond water in the wood samples (Williamson and

Wiemann 2010), we used a sub-sample (n = 145) to calculate wood density at 105 o C oven-dry. We developed a correction equation (105 o C WD = - 0.0113 + 0.9969 x 75 o C

WD; SI Appendix, Fig. S1) that was applied to calibrate the wood density values to the rest of the wood samples. We observed no significant difference among the wood density values at 105 o C and 80 o C (Mann-Whitney-Wilcoxon test, n = 145, p = 0.31). The overall mean difference between wood density values at 105 o C and 80 o C was 2.4 % ±

0.38 (95 % CI).

Inventory plot data

Plot data were collected from 41 (47.5 ha) permanent mature forest plots across an elevation gradient ranging from 190 to 3625 m elevation, extending from lowlands through the montane forest up to the Andean treeline. A network of 24 1-ha permanents plots were established and monitored by the Andes Biodiversity and Ecosystem Research

Group – ABERG (http://www.andesconservation.org/) ranging from 387 to 3625 m elevation. Additionally, 17 (23.5 ha) permanents plots were established by various investigators in lowland forest and are now monitored by the Amazon Forest Inventory

34

Network – RAINFOR (http://www.rainfor.org/) and Global Ecosystems Monitoring

Network – GEM (http://gem.tropicalforests.ox.ac.uk/) (Fig. 1). The RAINFOR plot data were extracted from the ForestPlots.net database (Lopez‐Gonzalez et al. 2009, Lopez-

Gonzalez et al. 2011). The permanent forest plots contain 31,330 stems greater than 10 cm DBH and encompass 1,950 species (of which 35 % are morphospecies). Overall, the registered species in the transect belonged to 408 genera and 111 families (sensu APG

IV) which represents 42.2% of the Peruvian tree genera (Pennington et al. 2004). To avoid variation in the data caused by possible long-term directional changes in forest structure and species composition, we used the most recent censuses (2013-14) for all the plots to estimate mean community wood density.

Botanical identification

All botanical vouchers taken with the wood core collections were identified, and then compared and standardized with the permanent forest plots vouchers that were deposited in the Peruvian and USA herbaria (CUZ, HUT, MOL, USM and DAV, MO, F,

WFU respectively). Additionally, local flora and plant checklists were used as references

(Cano et al. 1995, Pennington et al. 2004, Farfan-Rios et al. 2015, Vasquez M. and Rojas

G. 2016) and plant identifications were also confirmed by taxonomic experts. The APG

IV classification (Chase et al. 2016) was followed for the names and

Taxonomic Name Resolution Service (TRNS) online application was used for scientific plant names standardization (Boyle et al. 2013).

35

Data analysis

We analyzed wood density interspecific variation against elevation using each individual of a given species sampled in the field. A restricted maximum likelihood

(REML) analysis was used to test the inter-specific variance of wood density across phylogenetic levels along the gradient (Messier et al. 2010). Variance partitioning analysis was done using the lme and varcomp functions in R where a generalized linear model was fitted to the variance across four scales nested levels: Species, genus, family, and plot. Variance partitioning allowed us to test the role of phylogeny and plot-to-plot variability including elevation. To test the effect of elevation on intra-specific variation in wood density, we used a subset of the field collected samples. We used 46 species with ≥ five individuals and that were present at least in two research sites along the gradient. We then calculated the slopes of the linear regression models for each of the selected species to observe the distribution of slopes and assess the positive, negative, or non-relationship with elevation.

To analyze wood density variation across the elevational gradient at plot-level (n

= 41, 47.5 hectares), we calculated an average species wood density value derived from the wood samples collected in the field (311 species, 892 individuals) and those values were assigned to each stem of a given species in the plot network across the transect. For stems with no measured density values from the transect we incorporated wood density values from the Global Wood Density Data Base (Zanne et al. 2009) and ForestPlots.net network (Lopez‐Gonzalez et al. 2009, Lopez-Gonzalez et al. 2011). Overall, we compiled

1,276 forest taxa from field-collected samples and published resources (SI Appendix,

Table S1). When density values were not available from the combined datasets of field-

36 published resources at the species-level, the mean values at the genus or family level was used. This was the case for the unidentified individuals to a species level (morphospecies) that accounted for 13 % of the total individuals. For the unknown taxa (0.8 % of all taxa), the local plot-level mean value was used. We then calculated the mean wood density of each plot in two ways. First, we calculated the average wood density across all species present in each plot (species mean WD) and then we calculated the mean wood density by weighting each species by its number of stems (stem weighted WD). In addition, species mean WD was also weighed by basal area. We ran the analysis for all arborescent life forms (i.e. trees, ferns and palms) and for trees only, in all the cases we excluded the lianas from the analysis. The outcome of this analysis indicates the influence of the arboreal life forms, the number and size of stems and the species composition turnover on plot-level wood density variation along the elevation gradient.

To allow biogeographical comparations of wood density along the elevational gradient, these plots were divided into five different forests types (Young 1992,

Pennington et al. 2004): Lowland (500 m ≤; including terra firme, floodplain and bamboo dominated), sub montane (500 - 1500 m), lower montane (1500 - 2500 m), upper montane (2500 - 3400 m) and treeline (≥ 3400 m). Finally, wood density variation was calculated across diameter classes for comparison of forest structure across forest types.

We used ordinary least squares linear regression to explore the intra-and inter-specific relationships between wood density and elevation and the smoothing function of generalized additive model (GAM) to fit response curves and to test the relationship of wood density and elevation if a non-linear relationship was observed.

37

Results

Across the entire elevational gradient, species mean wood density (WD) for all arborescent life forms was 0.578 g cm-3 ± 0.004 (95 % CI). Focusing on single life forms, dicot tree species mean wood density was 0.587 g cm-3 ± 0.004 (95 % CI), palm species mean wood density was 0.410 g cm-3 ± 0.026 (95 % CI), and arborescent species mean wood density was 0.351 g cm-3 ± 0.003 (95 % CI). The maximum wood density value was 1.120 g cm-3 for Machaerium acutifolium () in the sub montane forest, and the minimum value was 0.111 g cm-3 for Erythrina ulei (Fabaceae) in lowland forest. Stem weighted plot-level mean WD for all life forms was 0.547 g cm-3 ± 0.002 (95

% CI), and the mean for only trees, palms and ferns was 0.584 g cm-3 ± 0.001 (95 % CI),

0.347 g cm-3 ± 0.004 (95 % CI) and 0.349 g cm-3 ± 0.008 (95 % CI) respectively. Across all elevations, the overall distribution of species and stem weighed WD for all arborescent life forms and for trees alone was symmetric and normal, but with a slight positive skewness and kurtosis for species WD and negatively skewed for stem weighed

WD (SI Appendix, Fig. S2).

Inter- and intra-specific variation of wood density along elevation

Variance partitioning showed that evolutionary relatedness explained most of the variance in wood density for both species sampled in the field (69.4 % of the variation) and the plot-level including the 41 forests plots (99.7 % of the variation) across the gradient (SI

Appendix, Fig. S3). The differences between families accounted for the largest proportion of the total variation for the field sampled species (28.5 %) and at the plot-level the largest variation was between genera (47.1 %; SI Appendix, Fig. S3).

38

With regards to the relationship of intra-specific variation in wood density with elevation, 83% of the sampled species (n = 46, ≥ 5 individuals) showed no relationship with elevation and only eight species showed a significant response (Fig. 2a). We found that the modal slope from the regressions was essentially zero (n = 46, 푥̅ = 0.0003 ± 0.0001

SE), with a slight bias towards positive regression slopes, as compared to negative slopes, with only eight slopes significantly different from zero (Fig. 2a). However, we found large variation between tree species in both the sign and strength of the relationship. For example, wood density in cuneata shows a highly significant decrease with

2 increasing elevation (n = 45, F1,43 = 18.44, adj. R = 0.28, p < 0.0001; Fig. 2b), while

2 Morella pubescens (n = 20, F1,18 = 2.90, adj. R = 0.09, p = 0.11; Fig. 2c) and Weinmannia

2 bangii (n = 26, F1,24 = 0.0004, adj. R = -0.04, p = 0.98; Fig. 2d) have no relationship with

2 elevation. The wood density of Alnus acuminata (n = 17, F1,15 = 7.75, adj. R = 0.30, p =

0.013; Fig. 2e) and Weinmannia fagaroides both increase significantly with increasing

2 elevation (n = 28, F1,26 = 10.55, adj. R = 0.26, p = 0.003; Fig. 2f).

Plot-level wood density variation along the elevational gradient

Across the Andes-to-Amazon gradient, plot-to-plot mean wood density showed a non-linear relationship with elevation (Fig. 3, Table 1, SI Appendix, Fig. S4). Mean WD for all arborescent species decreased slightly from 190 m to 1500 m, remained constant until 2500 m and subsequently increased linearly up to the treeline (Fig. 3a). This trend changes when considering only tree species, with wood density decreasing from 190 m to

1500 m and linearly increasing above cloud base up the treeline; palms and ferns species mean wood density did not show a relationship with elevation (Fig. 3b; SI Appendix, Fig

39

S5). Stem weighted WD for all arborescent life forms remains constant until 2000 m, declines abruptly between 2250 m and 2500 m and then increases with elevation (Fig. 3c).

This trend changes for trees only, with stem weighted WD slightly declining until the cloud base and then increasing up to the treeline (Fig. 3d). Palm and fern stem weighted WD were not related to elevation (Fig. 3d; SI Appendix, Fig. S5). The influence of life forms on plot-level mean wood density variability was marked at middle elevations by arborescent ferns and by palms in lowlands sites (Fig. 3, Table 1). When mean species level wood density was weighted by basal area, weighted species mean WD for all arborescent life forms showed lower values and the weighted WD for trees only showed a stronger non-linear relationship of wood density with elevation (Fig. 4a, b), with the lowest values recorded in the sub-montane forest (Fig. 4b). The non-linear relationship of wood density and elevation remained constant for both genus and family level. Mean species- level wood densities obtained using genus- and family-level identification were highly correlated with those using species-level data (p < 0.0001, r = 0.94; p < 0.0001, r = 0.89 respectively; SI Appendix, Fig. S6).

We observed that plot-to-plot wood density distributions and their statistical moments varied across elevation for both species and stem weighted WD (Fig. 5). The species WD skewness did not show a clear pattern from low to high elevations. However, the skew was more pronounced at the middle and low elevations for stem weighted WD, indicating a clear influence of the abundance of low wood density taxa (Fig. 5; SI

Appendix, Table S2). Mean wood density differs significantly with forest types at species- and stem-level, but the difference for stem-weighted WD for all arborescent life forms was not significant (Kruskal-Wallis, n = 7; species WD for all arborescent life forms, x2 = 16.19,

40 p = 0.013; for trees, x2 = 15.35, p = 0.018; stem-weighted WD for all arborescent life forms, x2 = 11.62, p = 0.071; for trees, x2 = 15.67, p = 0.016; Fig. 6). For all taxa, species mean

WD across forest types was lower at low elevations, reaching a minimum below cloud base in sub montane forest and increasing through treeline for all life forms and only trees (Fig.

6a, b). Stem weighted WD remains constant towards lower montane forest and increases only in the upper and treeline forest. When growth form was restricted to just trees, the pattern shifts, with a distinct drop in wood density in sub montane forest, and wood density exceeding its lowland values only in upper-montane and treeline forests (Fig. 6c, d).

Wood density and forest structure

Although the relationship between wood density and DBH class varies greatly among forest types along the gradient, we observed a general tendency where mean wood density decreases with DBH across forest types, and that trend was significant in the sub

2 montane (n = 5, F1,3 = 22.46, adj. R = 0.84, p = 0.018) and lower montane (n = 5, F1,3 =

12.69, adj. R2 = 0.74, p = 0.037) forests (Fig. 7a). Only in the bamboo dominated forest did wood density increase across DBH classes (Fig. 7a). The relationship of mean wood density and DBH classes follow different patterns across the elevation and between the forest’s plots with marked variability for big trees over 50 cm DBH in lowlands (floodplain and terra firme forests) and lower montane forests plots (Fig. 7b). An independent dataset for field-sampled individuals (≥ 10 cm DBH) outside of the permanent plots showed a very weak trend of wood density also decreasing with increasing stem size, though 99.5% of the

2 variation in wood density was not explained by stem size (n = 631, F1,629 = 4.25, adj. R =

0.005, p = 0.039; SI Appendix, Fig. S7).

41

Discussion

Mean wood density substantially changes from lowlands to montane environments across the Andes-to-Amazon elevational gradient. Plot-level mean wood density showed a clear non-linear relationship with elevation and that pattern is explained by changes in species composition rather than elevation. Even though we observed a non- linear relationship between mean wood density and elevation, mean wood density increases with increasing elevation. We observed that most of the wood density variation was a result of among-species differences rather than within species variability across the elevational gradient. Moreover, the abundance and distribution of arborescent ferns and palms had a remarkable effect on mean wood density values along the gradient, decreasing wood density by 21% in montane forest dominated by ferns and by 16 % in lowland forests dominated by palms. To better understand community-level functional traits and their ecological importance, species lists from plots by themselves are not enough and it needs to be combined with the number of individuals and stem size (basal area).

Species composition drives the non-linear relationship of increasing wood density with elevation

The present study provides a new framework to understand how wood density varies at species- and stem-level across forest types and along a broad elevational gradient. Contrasting with the current results, the sole previous study suggested that wood density significantly decreased with increasing elevation (Chave et al. 2006). In light of the current results, the discrepancy could be because we evaluated the variation of wood

42 density across the entire Andes-to-Amazon gradient that is expanded from 190 to 3650 m of elevation; this gradient harbors a continuous forest with marked changes in species composition and forest structure. Although species mean wood density declines with increasing elevation up to ~1500 m, it increases above that up to the treeline (Fig. 3, 6).

The non-linear relationship between wood density and elevation (Fig. 3) is the result of species composition turnover and environment filtering of life history based on wood density or traits associated with wood density rather than a physiological response

(intraspecific variation) to the elevation gradient, which is reflected in the decrease of the distributional variance with increasing elevation at species- and stem-level (SI Appendix,

Table S2). The variation in mean species WD resides predominately at genus- and family-level, and that variation principally occurs between rather than within genera and families (SI Appendix, Fig. S3), indicating that wood density is highly conserved phylogenetically (e.g. Chave et al. 2006; Swenson & Enquist 2007). The same phylogenetic pattern has previously been found for leaf mass per area measured from forest canopies across an Andean elevational gradient (Neyret et al. 2016) as well as a large suite of leaf functional traits (Asner et al. 2014c), demonstrating that a wide range of plant functional traits are evolutionarily conserved. While we know this is true for individual traits, understanding the correlated suites of traits—the covariances among them—would give information about the major axes of variation or syndromes of functional traits, if they do in fact exist (Díaz et al. 2016, Asner et al. 2016). This is important in understanding the effects of environmental filtering and lineage sorting in shaping functional traits patterns across environmental gradients, and raises questions about the relative influences of historical (e.g. Andean uplift) and ecological forces in

43 shaping functional traits (e.g. wood density) variation in tropical forests (Chave et al.

2006).

The gradual decrease in mean wood density from lowland to sub montane forest and then an increase up to the treeline (Fig. 3, 6; Table 1; SI Appendix, Fig. S4) can also be explained by the trade-off between low tree growth and high wood density (Poorter et al. 2008, Díaz et al. 2016), which is supported by the observed decline in average tree growth with increasing elevation in eastern Andean forests (Rapp et al. 2012). The marked changes in species composition across the Andes-to-Amazon elevational gradient

(Gentry 1988) cause the decline of tree growth with increasing elevation (Rapp et al.

2012) and is also responsible for wood density increase with increasing elevation observed in this study. However, environmental factors (e.g. temperature) can also contribute to the negative correlation between wood density and tree growth. Low wood density species grow fast because they require less resources to construct wood at a given volume of stem with at lower cost, and also because they can store and move more water through the large vessels cells, parenchyma and fiber lumen (Poorter et al. 2008, Zanne et al. 2010). This highlight the importance of wood density in understanding resource investment in plant growth, and its central role in the growth-survival trade-off (Poorter et al. 2008, Díaz et al. 2016) along environmental gradients.

Wood properties could also explain the increase of wood density with elevation

While wood density is taken as a comprehensive functional trait, wood has many functions and properties and only some of them are correlated to density. For instance, non-lumen tissue such as vessel walls, fibers, and parenchyma only explain 15 % of the

44 variation in wood density, while vessel lumen fraction is unrelated to wood density

(Zanne et al. 2010), and what selective forces lead vessel and fiber trait variation remain unclear. Colder environments are potentially dominated by taxa that contain small vessels and tracheids that probably evolved before climate occupancy (Tyree and Zimmermann

2002, Zanne et al. 2014). Forests at treeline are exposed to temperatures below 0 oC and can reach ≤ -5 oC in the austral dry season (June) exposing plants to freezing conditions

(Rapp and Silman 2012). Thus, it is expected that these taxa will contain numerous, but short vessels with narrow diameters (Wheeler et al. 2007) and thick-walled fibers and vessels (Chave et al. 2009) explaining the high wood density values at higher elevations.

In addition, wood density has shown evolutionary correlation with other plant traits. For instance, wood density decreases with increasing leaf size but was found generally unrelated to other functional traits such as size, size and plant height (Wright et al. 2007). However, there are mixed findings of wood density and leaf mass per area

(LMA) relationship, showing either a positive relationship (Ishida et al. 2008) or none at all (Wright et al. 2007). Along a tropical elevational gradient, LMA increases linearly with increasing elevation (Asner et al. 2016) suggesting a positive relationship of wood density and LMA in our Manu-Tambopata elevational transect, though this remains untested. The complex relationships between wood and leaf function remain unclear but are important to understanding the leaf-wood construction cost in plant growth spectrum between conservative and acquisitive species.

45

Dominant taxa and life forms influence wood density variation across the gradient

The role of dominant taxa and arborescent life forms markedly impact the observed patterns of plot stem weighted WD variation across the gradient (Fig. 3, 5, 6).

Trends of species and stem weighted WD with elevation for all arborescent life forms was highly nonlinear (Deviance explained = 57.5 %, for species and 36.4 % for stem weighted WD; Fig. 3a, c, S5), and this relationship is even stronger for stem weighted

WD when palms and ferns are excluded (Deviance explained = 39.7 %; Fig. 3d; SI

Appendix, Fig. S5). The non-linear but positive relationship of wood density and elevation can be explained by the increase in the dominance of heavy woody species at higher elevations (sensu Slik et al. 2010). For example, the highest mean wood density value was registered in our highest elevation forest plot (mean wood density 0.653 g cm-

3; APK-01, 3625m) in which tree communities are dominated by hard wooded species

[e.g. Gynoxys nitida (wood density 0.620 g cm-3), alpina (0.740 g cm-3),

Polylepis sericea (0.732 g cm-3)].

Forests at the treeline are typically dominated by taxa with higher wood density values than their lowlands counterparts, with low values at middle elevations (figs. 3, 5,

6). For instance, the ten most dominant species at our highest plot in the treeline forest

[e.g. Miconia setulosa (0.658 g cm-3), Weinmannia fagaroides (0.571 g cm-3), Clethra cuneata (0.526 g cm-3), Gynoxys nitida (0.620 g cm-3) and (0.740 g cm-3)] account for 17 % of the total species but hold 70 % of the total stems. This indicates that the highest values of stem weighted WD at higher elevations (figs. 3 c, d), are driven by a few dominant hardwood species. Contrasting with the montane pattern, in our

Amazonian floodplain forest the ten most dominant species [e.g. deltoidea (0.265

46 g cm-3), laevis (0.618 g cm-3), Quararibea wittii (0.532 g cm-3),

Astrocaryum chonta (0.508 g cm-3) and Otoba parvifolia (0.426 g cm-3)] even though accounting for only 2 % of the total species, hold 38 % of the total stems. If we exclude these dominant species, mean wood density values of the floodplain forests increase from

0.522 to 0.557 g cm-3, although that difference is not significant (Mann-Whitney-

Wilcoxon test, n = 6, p = 0.132). This suggests that the abundance of these few species could explain the lower mean stem weighted WD found in floodplain forests and in general in lowland forest. The plot-level variability in mean species and stem weighted

WD in the Amazonian forest (Fig. 3, 6) can also be associated to the difference in the geomorphology between the Holocene (floodplain) and Pleistocene (terra firme) sediments (Phillips et al. 2019).

While general trends in mean wood density values were clear across the elevation gradient, there is substantial variability within any elevation and much of this variation can be accounted for by the abundances of different arborescent life forms. By far, dicot trees were the most dominant group along the gradient, however, arborescent ferns (i.e.

Cyatheaceae and Dicksoniaceae) and palms (i.e. ) had profound effects on mean plot wood density variation in lower montane and lowland forests (Figs. 3, 5; SI

Appendix, Fig. S5). For example, the abrupt decline of mean stem-weighted WD in the sub montane and lower montane forests (Figs. 3, 5, 6) in our Manu-Tambopata elevational transect is explained by the high abundance of ferns (mean wood density 0.35 g cm-3) at middle elevations. Excluding the dominance of arborescent ferns in the montane forest, mean stem-weighted WD significantly increases from 0.542 to 0.585 g cm-3 (Mann-Whitney-Wilcoxon test, n = 13, p = 0.04) and that difference is clearly

47 observed for example in TRU-05 and TRU-06 plots, where the high abundance of ferns encompass 52 % and 48 % of the total stems at each plot respectively, with a difference of 24 % (for TRU-05) and 20 % (for TRU-06) in stem weighted WD (Table 1). The same fern abundance patterns at plot-level were found at middle elevations in the Costa Rica elevational transect (Lieberman et al. 1996) indicating that the high abundance of this functional group has important effects on forest structure that translates to the carbon cycle in Neotropical montane forests.

Life forms had also a large influence in community wood density variation within lowland forests. Lowland forests are dominated by palms (Arecaceae) with a remarkable hyperdominance of Iriatea deltoidea (Pitman et al. 2001, ter Steege et al. 2013).

However, along the elevational transect, Iriatea deltoidea was not only dominant in lowland forests, but also in sub-montane forests up to ~1300 m, in particular in the SAI-

02 (1250 m) plot. These new results show an expansion in the hyperdominance of Iriatea deltoidea to higher elevations in the Andean forests. The dominance of Arecaceae was observed to be strongly associated with wood density variation in lowland forests (Fig. 3,

6). Thus, if palms are excluded, mean stem-weighted WD is significantly higher in the

Amazonian forests, increasing from 0.538 to 0.581 g cm-3 (Mann-Whitney-Wilcoxon test, n = 19, p < 0.001). This highlight the importance of including life forms (i.e. ferns and palms) in wood density calculations at local- and regional-scales to understand the causes of its variation and its effects in forest structure and function. Overall, although these patterns of dominant taxa and the abundance of arborescence life forms are observed in the Manu-Tambopata elevational transect, the floristic composition and the distribution of neotropical tree communities (Gentry 1988, Pitman et al. 2001, Arellano et al. 2014,

48

Gomes et al. 2018) suggests that the regional-scale patterns in wood density variation across an elevational transect derived from the current study will prove to be spatially consistent across neotropical forests.

Lowest wood density values in sub montane forest

We observed that arborescent life forms have profound effects in the wood density variation in lower montane to lowland forests across the elevation gradient.

However, if non-tree life forms are excluded, plot-to-plot wood density variation in true trees (those with secondary xylem) still follows the non-linear relationship along the gradient and does not fully explain why wood density is lower around the cloud base

(Fig. 3, 6; SI Appendix, Fig. S5). Forest dynamics in tropical mountains are highly influenced by natural disturbances with significant effects on the forest structure, diversity, and function (Crausbay and Martin 2016). Landslides and tree gaps may be the primary driving forces to vegetation turnover and changes in tree species composition in

Andean tropical mountains. Accordingly, a plausible explanation for the consistent trends of lower values of mean wood density at middle elevations around the cloud base may be due to the effects of landslide occurrence. It has been shown that high landslide probability occurs around 1500 m of elevation occurrence (Clark et al. 2015) where the cloud base —below the cloud immersion zone— is estimated to be in our study area

(Halladay et al. 2012). These results could explain the lowest mean species WD values found around the cloud base (Fig. 8). The size, intensity, and recurrence of these landslides around the cloud base may lead to a high tree species turnover, facilitating the establishment of fast-growing species with low wood density [e.g. Urera caracasana

49

(mean wood density = 0.180 g cm-3), Heliocarpus americanus (0.215 g cm-3), and

Jacaratia digitata (0.223 g cm-3)] and resulting in a highly dynamic and heterogeneous forests with high abundances of low wood density species (e.g. Tachigali setifera, 0.367 g cm -3 in SPD-02 plot; Fig. 5). Even large size trees have significantly lower wood density values in the sub and lower montane forests than their lowlands and uplands counterparts (Fig. 7). The suggested relationship of the lowest mean community wood density around the cloud base with the high landslide may be important to understand how tree communities are assembled and what determines their abundances and distribution ranges.

Wood density relationship with forest dynamics and ecosystem function

The documented association of wood density with the vital demographic rates

(e.g. tree mortality) is reflected in the low wood density-high mortality trade-off (Muller-

Landau 2004, Kraft et al. 2010). Along the gradient, high tree mortality was reported around the cloud base (Farfan Rios 2011) in which the lowest tree species- and tree stem- level wood density values were found in this study. The high probability of landslide recurrence around the cloud base could lead to the tree community reshuffle with the dominance of low wood density species that are more probable to die, according to the hypothesis that wood density can predict tree mortality in tropical forests (Chao et al.

2008). If low wood density and high conductance are advantageous in the cloud base zone, then one might expect these communities to be especially vulnerable to drought.

This is consistent with the hypothesis that trees with high wood density are more capable to resist drought-induced embolism than trees with low wood density (Hacke et al. 2001,

50

Zanne et al. 2010). The relationship between high wood density and low mortality risk can be explained by the positive relationship between high wood density and thick-walled vessels that protects xylem from implosion when water shortages create strongly negative water potentials (Hacke et al. 2001), although we have no physiological data to confirm this. However, we can hypothesize that arboreal species at the treeline are better able to resist drought-induced embolism than mid-elevation and lowlands species.

Wood density has been suggested to play a key role for understanding ecosystem properties such as carbon cycling (Zanne et al. 2010) and is considered one of the six functional traits that bridges tree diversity with ecosystem function (Díaz et al. 2016). In order to improve aboveground carbon estimations in tropical forests, allometric equations now include wood density values to reduce uncertainties because it is critical to capture spatial patterns of carbon dynamics at local- and regional-scales (Baker et al. 2004, Malhi et al. 2006, Phillips et al. 2019). To reduce uncertainties in aboveground forest biomass calculation, collecting wood density data of 10 % of individuals can provide a good estimate of plot-level wood density variation for carbon estimation from local- to regional-scales (Chelsea et al. in prep.). Here, we provide a wood density database to reduce uncertainties in carbon calculations in particular for Andean montane forests, where have been observed that biomass decline with elevation (Malhi et al. 2016).

Current aboveground biomass estimates across the Amazonian forests includes palm communities in their calculations (Malhi et al. 2006, Asner et al. 2014a). However, even though tree ferns abundance exceeds the 50 % of stems per hectare in some elevations, they are not included in global tropical forests carbon estimates (Saatchi et al. 2011)

51 excluding their contributions to tropical forests carbon stocks. This reinforces the importance of including all arborescent life forms in global forest biomass calculations.

This study provides insights about how wood density variation among functional groups, stem size and habitats could improve carbon dynamic calculations in tropical forests. The sizes of trees (i.e. stem diameter) are important in biomass calculations, in particular, large rainforest trees, that accounts for 2 % of the stems, but store up to 40 % of aboveground biomass per hectare (Clark and Clark 1996, ABERG PlotData 2019). In this study, when wood density was weighted by basal area, the values were lower than the unweighted wood density, suggesting the dominance of species with low wood density in large sizes trees (Fig. 4). We also observed that large size trees across the gradient tend to have lower mean wood density values that small size classes in all forests types except for the bamboo dominated forest (Fig. 7; SI Appendix, Fig. S7). Large trees with the lowest wood density values were coincidentally found at the sub montane forest, where the lowest community wood density was reported here. This negative correlation between wood density and stem diameter was also found in Thai (Sungpalee et al. 2009) and Panamanian tropical forests (Chave et al. 2004), however, the causality of this trend has yet to be resolved.

Data compilations of basic wood specific gravity for a wider range of taxa is still required for a better understanding of species- and stand-level wood density variation across environmental gradients. In our dataset, we still need to identify 35 % of the taxa at species-level. However, as more than 65 % are identified species, it gives us insights of wood density variation across the Andes-to-Amazon forests, and contribute to understanding the effects of wood density (species composition) on ecosystem function

52 in particular when projecting future patterns of carbon dynamics based on projected climate changes.

53

Acknowledgments

This paper is a product of the Andes Biodiversity and Ecosystem Research Group

(ABERG; http://www.andesconservation.org/) with contributions for lowland plots data from John Terborgh, Percy Nunez and affiliated networks RAINFOR, GEM, and the

ForestPlots.net data management utility for permanent plots. Data included in this study is the result of an extraordinary effort by a large team in Peru specially from the

Universidad Nacional de San Antonio Abad de Cusco. Special thanks go to Luis Imunda and Erickson Urquiaga for their assistance in the field sampling campaigns. SERNANP and personnel of Manu National Park - Peru provided assistance with logistics and permission to work in the protected area. Pantiacolla Tours and the Amazon

Conservation Association provided logistical support. Funding came from the Gordon and Betty Moore Foundation’s Andes to Amazon initiative and the US National Science

Foundation (NSF) DEB 0743666, NSF Frontiers in Earth Systems Dynamics (FESD)

1338694, and NSF Long-Term Research in Environmental Biology (LTREB) 1754647.

The research was also supported by the National Aeronautics and Space Administration

(NASA) Terrestrial Ecology Program grant # NNH08ZDA001N-TE/ 08-TE08-0037.

Support for RAINFOR and ForestPlots.net plot monitoring in Peru has come from a

European Research Council (ERC) Advanced Grant (T‐FORCES, “Tropical Forests in the Changing Earth System”, 291585), Natural Environment Research Council grants

(including NE/F005806/), NE/D005590/1, and NE/N012542/1), and the Gordon and

Betty Moore Foundation.

54

Literature cited

ABERG PlotData. 2019. Permanent tree plot network.

http://www.andesconservation.org/.

Adler, P. B., R. Salguero-Gómez, A. Compagnoni, J. S. Hsu, J. Ray-Mukherjee, C.

Mbeau-Ache, and M. Franco. 2014. Functional traits explain variation in plant life

history strategies. Proceedings of the National Academy of Sciences 111:740–745.

Arellano, G., V. Cala, and M. J. Macía. 2014. Niche breadth of oligarchic species in

Amazonian and Andean rain forests. Journal of Vegetation Science 25:1355–1366.

Asner, G. P., C. B. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, F. Sinca, and Y.

Malhi. 2014a. Landscape-scale changes in forest structure and functional traits along

an Andes-to-Amazon elevation gradient. Biogeosciences 11:843–856.

Asner, G. P., D. E. Knapp, R. E. Martin, R. Tupayachi, C. B. Anderson, J. Mascaro, F.

Sinca, K. D. Chadwick, M. Higgins, W. Farfan, W. Llactayo, and M. R. Silman.

2014b. Targeted carbon conservation at national scales with high-resolution

monitoring. Proceedings of the National Academy of Sciences 111:E5016–E5022.

Asner, G. P., R. E. Martin, C. B. Anderson, K. Kryston, N. Vaughn, D. E. Knapp, L. P.

Bentley, A. Shenkin, N. Salinas, F. Sinca, R. Tupayachi, K. Quispe Huaypar, M.

Montoya Pillco, F. D. Ccori Álvarez, S. Díaz, B. Enquist, and Y. Malhi. 2016, June.

Scale dependence of canopy trait distributions along a tropical forest elevation

gradient. New Phytologist.

Asner, G. P., R. E. Martin, R. Tupayachi, C. B. Anderson, F. Sinca, L. Carranza-Jiménez,

55

and P. Martinez. 2014c. Amazonian functional diversity from forest canopy

chemical assembly. Proceedings of the National Academy of Sciences of the United

States of America 111:5604–9.

Baker, T. R., O. L. Phillips, Y. Malhi, S. Almeida, L. Arroyo, A. Di Fiore, T. Erwin, T. J.

Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, J. Lloyd, A. Monteagudo, D.

A. Neill, S. Patino, N. C. A. Pitman, J. N. M. Silva, and R. V Martinez. 2004.

Variation in wood density determines spatial patterns in Amazonian forest biomass.

Global Change Biology 10:545–562.

Boyle, B., N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci,

M. L. Narro, W. H. Piel, S. J. McKay, S. Lowry, C. Freeland, R. K. Peet, and B. J.

Enquist. 2013. The taxonomic name resolution service: an online tool for automated

standardization of plant names. BMC bioinformatics 14:16.

Cano, A., K. R. Young, B. Leon, and R. B. Foster. 1995. Composition and diversity of

flowering plants in the upper montane forest of Manu National Park, Southern Peru.

Pages 271–280 in S. P. Churchill, H. Balslev, E. Forero, and J. L. Luteyn, editors.

Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of the

Neotropical Montane Forest. New York Botanical Garden Pr Dept, United states of

America.

Chao, K. J., O. L. Phillips, E. Gloor, A. Monteagudo, A. Torres-Lezama, and R. V

Martinez. 2008. Growth and wood density predict tree mortality in Amazon forests.

Journal of Ecology 96:281–292.

Chase, M. W., M. J. M. Christenhusz, M. F. Fay, J. W. Byng, W. S. Judd, D. E. Soltis, D.

56

J. Mabberley, A. N. Sennikov, P. S. Soltis, P. F. Stevens, B. Briggs, S. Brockington,

A. Chautems, J. C. Clark, J. Conran, E. Haston, M. Möller, M. Moore, R. Olmstead,

M. Perret, L. Skog, J. Smith, D. Tank, M. Vorontsova, and A. Weber. 2016. An

update of the Angiosperm Phylogeny Group classification for the orders and

families of flowering plants: APG IV. Botanical Journal of the Linnean Society

181:1–20.

Chave, J., R. Condit, S. Aguilar, A. Hernandez, S. Lao, and R. Perez. 2004. Error

propagation and scaling for tropical forest biomass estimates. Philosophical

Transactions of the Royal Society B: Biological Sciences 359:409–420.

Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne. 2009.

Towards a worldwide wood economics spectrum. Ecology Letters 12:351–366.

Chave, J., H. C. Muller-Landau, T. R. Baker, T. A. Easdale, H. Ter Steege, and C. O.

Webb. 2006. Regional and phylogenetic variation of wood density across 2456

neotropical tree species. Ecological Applications 16:2356–2367.

Clark, D. B., and D. A. Clark. 1996. Abundance, growth and mortality of very large trees

in neotropical lowland rain forest. Forest Ecology and Management 80:235–244.

Clark, K. E., A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S.

Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y.

Malhi. 2015. Storm-triggered landslides in the Peruvian Andes and implications for

topography, carbon cycles, and biodiversity. Earth Surface Dynamics Discussions

3:631–688.

57

Crausbay, S. D., and P. H. Martin. 2016. Natural disturbance, vegetation patterns and

ecological dynamics in tropical montane forests. Journal of Tropical Ecology

32:384–403.

Díaz, S., J. Kattge, J. H. C. Cornelissen, I. J. Wright, S. Lavorel, S. Dray, B. Reu, M.

Kleyer, C. Wirth, I. Colin Prentice, E. Garnier, G. Bönisch, M. Westoby, H. Poorter,

P. B. Reich, A. T. Moles, J. Dickie, A. N. Gillison, A. E. Zanne, J. Chave, S. Joseph

Wright, S. N. Sheremet’ev, H. Jactel, C. Baraloto, B. Cerabolini, S. Pierce, B.

Shipley, D. Kirkup, F. Casanoves, J. S. Joswig, A. Günther, V. Falczuk, N. Rüger,

M. D. Mahecha, and L. D. Gorné. 2016. The global spectrum of plant form and

function. Nature 529:167–171.

Farfan-Rios, W., K. Garcia-cabrera, N. Salinas, M. N. Raurau-quisiyupanqui, and M. R.

Silman. 2015. Lista anotada de árboles y afines en los bosques montanos del sureste

peruano : la importancia de seguir recolectando. Revista Peruana de Biología

22:145–174.

Farfan Rios, W. 2011. Changes in forest dynamics along a 2.5 km elevation gradient on

the southeastern flank of the Peruvian Andes. Dissertation, Wake Forest University,

Winston Salem, North Carolina, USA.

Fearnside, P. M. 1997. Wood density for estimating forest biomass in Brazilian

Amazonia. Forest Ecology and Management 90:59–87.

Fortunel, C., J. Ruelle, J. Beauchêne, P. V. A. Fine, and C. Baraloto. 2014. Wood specific

gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species

across environmental gradients. The New phytologist 202:79–94.

58

Fyllas, N. M., L. P. Bentley, A. Shenkin, G. P. Asner, O. K. Atkin, S. Díaz, B. J. Enquist,

W. Farfan-Rios, E. Gloor, R. Guerrieri, W. H. Huasco, Y. Ishida, R. E. Martin, P.

Meir, O. Phillips, N. Salinas, M. Silman, L. K. Weerasinghe, J. Zaragoza-Castells,

and Y. Malhi. 2017. Solar radiation and functional traits explain the decline of forest

primary productivity along a tropical elevation gradient. Ecology Letters 20:730–

740. van Gelder, H. A., L. Poorter, and F. J. Sterck. 2006. Wood mechanics, allometry, and

life-history variation in a tropical rain forest tree community. The New phytologist

171:367–78.

Gentry, A. H. 1988. Changes in Plant Community Diversity and Floristic Composition on

Environmental and Geographical Gradients. Annals of the Missouri Botanical

Garden 75:1–34.

Gomes, V. H. F., S. D. Ijff, N. Raes, I. L. Amaral, R. P. Salomão, L. D. S. Coelho, F. D.

D. A. Matos, C. V. Castilho, D. D. A. L. Filho, D. C. López, J. E. Guevara, W. E.

Magnusson, O. L. Phillips, F. Wittmann, M. D. J. V. Carim, M. P. Martins, M. V.

Irume, D. Sabatier, J.-F. Molino, O. S. Bánki, J. R. D. S. Guimarães, N. C. A.

Pitman, M. T. F. Piedade, A. M. Mendoza, B. G. Luize, E. M. Venticinque, E. M.

M. D. L. Novo, P. N. Vargas, T. S. F. Silva, A. G. Manzatto, J. Terborgh, N. F. C.

Reis, J. C. Montero, K. R. Casula, B. S. Marimon, B.-H. Marimon, E. N. H.

Coronado, T. R. Feldpausch, A. Duque, C. E. Zartman, N. C. Arboleda, T. J.

Killeen, B. Mostacedo, R. Vasquez, J. Schöngart, R. L. Assis, M. B. Medeiros, M.

F. Simon, A. Andrade, W. F. Laurance, J. L. Camargo, L. O. Demarchi, S. G. W.

59

Laurance, E. D. S. Farias, H. E. M. Nascimento, J. D. C. Revilla, A. Quaresma, F. R.

C. Costa, I. C. G. Vieira, B. B. L. Cintra, H. Castellanos, R. Brienen, P. R.

Stevenson, Y. Feitosa, J. F. Duivenvoorden, G. A. C. Aymard, H. F. Mogollón, N.

Targhetta, J. A. Comiskey, A. Vicentini, A. Lopes, G. Damasco, N. Dávila, R.

García-Villacorta, C. Levis, J. Schietti, P. Souza, T. Emilio, A. Alonso, D. Neill, F.

Dallmeier, L. V. Ferreira, A. Araujo-Murakami, D. Praia, D. D. Do Amaral, F. A.

Carvalho, F. C. De Souza, K. Feeley, L. Arroyo, M. P. Pansonato, R. Gribel, B.

Villa, J. C. Licona, P. V. A. Fine, C. Cerón, C. Baraloto, E. M. Jimenez, J. Stropp, J.

Engel, M. Silveira, M. C. P. Mora, P. Petronelli, P. Maas, R. Thomas-Caesar, T. W.

Henkel, D. Daly, M. R. Paredes, T. R. Baker, A. Fuentes, C. A. Peres, J. Chave, J. L.

M. Pena, K. G. Dexter, M. R. Silman, P. M. Jørgensen, T. Pennington, A. Di Fiore,

F. C. Valverde, J. F. Phillips, G. Rivas-Torres, P. Von Hildebrand, T. R. Van Andel,

A. R. Ruschel, A. Prieto, A. Rudas, B. Hoffman, C. I. A. Vela, E. M. Barbosa, E. L.

Zent, G. P. G. Gonzales, H. P. D. Doza, I. P. D. A. Miranda, J.-L. Guillaumet, L. F.

M. Pinto, L. C. D. M. Bonates, N. Silva, R. Z. Gómez, S. Zent, T. Gonzales, V. A.

Vos, Y. Malhi, A. A. Oliveira, A. Cano, B. W. Albuquerque, C. Vriesendorp, D. F.

Correa, E. V. Torre, G. Van Der Heijden, H. Ramirez-Angulo, J. F. Ramos, K. R.

Young, M. Rocha, M. T. Nascimento, M. N. U. Medina, M. Tirado, O. Wang, R.

Sierra, A. Torres-Lezama, C. Mendoza, C. Ferreira, C. Baider, D. Villarroel, H.

Balslev, I. Mesones, L. E. U. Giraldo, L. F. Casas, M. A. A. Reategui, R. Linares-

Palomino, R. Zagt, S. Cárdenas, W. Farfan-Rios, A. F. Sampaio, D. Pauletto, E. H.

V. Sandoval, F. R. Arevalo, I. Huamantupa-Chuquimaco, K. Garcia-Cabrera, L.

Hernandez, L. V. Gamarra, M. N. Alexiades, S. Pansini, W. P. Cuenca, W. Milliken,

60

J. Ricardo, G. Lopez-Gonzalez, E. Pos, and H. Ter Steege. 2018. Species

Distribution Modelling: Contrasting presence-only models with plot abundance data.

Scientific Reports 8.

Hacke, U. G., J. S. Sperry, W. T. Pockman, S. D. Davis, and K. A. McCulloh. 2001.

Trends in wood density and structure are linked to prevention of xylem implosion by

negative pressure. Oecologia 126:457–461.

Halladay, K., Y. Malhi, and M. New. 2012. Cloud frequency climatology at the

Andes/Amazon transition: 1. Seasonal and diurnal cycles. J. Geophys. Res.

117:D23102, doi:10.1029/2012JD017770. von Humboldt, A. 1838. Notice de Deux Tentatives d’Ascension du Chimborazo (A.

Pihan de la Forest, Paris).

Ishida, A., T. Nakano, K. Yazaki, S. Matsuki, N. Koike, D. L. Lauenstein, M. Shimizu,

and N. Yamashita. 2008. Coordination between leaf and stem traits related to leaf

carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia

156:193–202.

King, D. A., S. J. Davies, M. N. N. Supardi, and S. Tan. 2005. Tree growth is related to

light interception and wood density in two mixed dipterocarp forests of Malaysia.

Functional Ecology 19:445–453.

Kozlowski, T. T. 1992. Carbohydrate sources and sinks in woody plants. The Botanical

Review 58:107–222.

Kraft, N. J. B., M. R. Metz, R. S. Condit, and J. Chave. 2010. The relationship between

61

wood density and mortality in a global tropical forest data set. The New phytologist

188:1124–36.

Lawton, R. O. 1984. Ecological Constraints on Wood Density in a Tropical Montane

Rain Forest. American journal of 71:261–267.

Lieberman, D., M. Lieberman, R. Peralta, and G. S. Hartshorn. 1996. Tropical forest

structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal

of Ecology 84:137–152.

Lopez-Gonzalez, G., S. L. Lewis, M. Burkitt, and O. L. Phillips. 2011. ForestPlots.net: a

web application and research tool to manage and analyse tropical forest plot data.

Journal of Vegetation Science 22:610–613.

Lopez‐Gonzalez, G., S. L. Lewis, M. Burkitt, T. R. Baker, and O. L. Phillips. 2009.

ForestPlots.net Database. Available at: www.forestplots.net. Last accessed July

2017.

Malhi, Y., C. A. J. Girardin, G. R. Goldsmith, C. E. Doughty, N. Salinas, D. B. Metcalfe,

W. Huaraca Huasco, J. E. Silva-Espejo, J. del Aguilla-Pasquell, F. Farfán

Amézquita, L. E. O. C. Aragão, R. Guerrieri, F. Y. Ishida, N. H. A. Bahar, W.

Farfan-Rios, O. L. Phillips, P. Meir, and M. Silman. 2016. The variation of

productivity and its allocation along a tropical elevation gradient: a whole carbon

budget perspective. New Phytologist.

Malhi, Y., M. Silman, N. Salinas, M. Bush, P. Meir, and S. Saatchi. 2010. Introduction:

Elevation gradients in the tropics: laboratories for ecosystem ecology and global

62

change research. Global Change Biology 16:3171–3175.

Malhi, Y., D. Wood, T. R. Baker, J. Wright, O. L. Phillips, T. Cochrane, P. Meir, J.

Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F.

Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman,

C. A. Quesada, R. Salomao, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V

Martinez, and B. Vinceti. 2006. The regional variation of aboveground live biomass

in old-growth Amazonian forests. Global Change Biology 12:1107–1138.

Messier, J., B. J. McGill, and M. J. Lechowicz. 2010. How do traits vary across

ecological scales? A case for trait-based ecology. Ecology Letters 13:838–848.

Muller-Landau, H. C. 2004. Interspecific and Inter-site Variation in Wood Specific

Gravity of Tropical Trees. Biotropica 36:20–32.

Neyret, M., L. P. Bentley, I. Oliveras, B. S. Marimon, B. H. Marimon-Junior, E. Almeida

de Oliveira, F. Barbosa Passos, R. Castro Ccoscco, J. dos Santos, S. Matias Reis, P.

S. Morandi, G. Rayme Paucar, A. Robles Cáceres, Y. Valdez Tejeira, Y. Yllanes

Choque, N. Salinas, A. Shenkin, G. P. Asner, S. Díaz, B. J. Enquist, and Y. Malhi.

2016. Examining variation in the leaf mass per area of dominant species across two

contrasting tropical gradients in light of community assembly. Ecology and

Evolution 6:5674–5689.

Pennington, T. D., C. Reynel, and A. Daza. 2004. Illustrated guide to the Trees of Peru.

Page (T. D. Pennington, C. Reynel, and A. Daza, Eds.). David Hunt, Sherborne, UK.

Phillips, O. L., M. J. P. Sullivan, T. R. Baker, A. Monteagudo Mendoza, P. N. Vargas,

63

and R. Vásquez. 2019. Species Matter: Wood Density Influences Tropical Forest

Biomass at Multiple Scales. Surveys in Geophysics:1–23.

Pitman, N. C. A., M. R. Silman, and J. W. Terborgh. 2013. Oligarchies in Amazonian

tree communities: A ten-year review. Ecography 36:114–123.

Pitman, N. C. A., J. W. Terborgh, M. R. Silman, P. Nunez, D. A. Neill, C. E. Ceron, W.

A. Palacios, and M. Aulestia. 2001. Dominance and distribution of tree species in

upper Amazonian terra firme forests. Ecology 82:2101–2117.

Poorter, L., S. J. Wright, H. Paz, D. D. Ackerly, R. Condit, G. Ibarra-Manríquez, K. E.

Harms, J. C. Licona, M. Martínez-Ramos, S. J. Mazer, H. C. Muller-Landau, M.

Peña-Claros, C. O. Webb, and I. J. Wright. 2008. Are functional traits good

predictors of demographic rates? evidence from five neotropical forests. Ecology

89:1908–1920.

Putz, F. E., P. D. Coley, K. Lu, A. Montalvo, and A. Aiello. 1983. Uprooting and

Snapping of Trees - Structural Determinants and Ecological Consequences.

Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere

13:1011–1020.

Rapp, J. M., and M. R. Silman. 2012. Diurnal, seasonal, and altitudinal trends in

microclimate across a tropical montane cloud forest. Climate Research 55:17–32.

Rapp, J. M., M. R. Silman, J. S. Clark, C. A. J. Girardin, D. Galiano, and R. Tito. 2012.

Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian

Andes. Ecology 93:2061–2072.

64

Saatchi, S. S., N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard, W. Salas, B. R.

Zutta, W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman, and

A. Morel. 2011. Benchmark map of forest carbon stocks in tropical regions across

three continents. Proceedings of the National Academy of Sciences of the United

States of America 108:9899–904.

Silman, M. R. 2014. Functional megadiversity. Proceedings of the National Academy of

Sciences of the United States of America 111:5763–4.

Slik, J. W. F., S. I. Aiba, F. Q. Brearley, C. H. Cannon, O. Forshed, K. Kitayama, H.

Nagamasu, R. Nilus, J. Payne, G. Paoli, A. D. Poulsen, N. Raes, D. Sheil, K.

Sidiyasa, E. Suzuki, and J. L. C. H. van Valkenburg. 2010. Environmental correlates

of tree biomass, basal area, wood specific gravity and stem density gradients in

Borneo’s tropical forests. Global Ecology and Biogeography 19:50–60.

Sperry, J. S., F. C. Meinzer, and K. A. McCulloh. 2008. Safety and efficiency conflicts in

hydraulic architecture: scaling from tissues to trees. Plant, cell & environment

31:632–45. ter Steege, H., N. C. A. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque, J. F.

Molino, M. F. Prevost, R. Spichiger, H. Castellanos, P. von Hildebrand, and R.

Vasquez. 2006. Continental-scale patterns of canopy tree composition and function

across Amazonia. Nature 443:444–447. ter Steege, H., N. C. A. Pitman, D. Sabatier, C. Baraloto, R. P. Salomão, J. E. Guevara,

O. L. Phillips, C. V Castilho, W. E. Magnusson, J.-F. Molino, A. Monteagudo, P.

Núñez Vargas, J. C. Montero, T. R. Feldpausch, E. N. H. Coronado, T. J. Killeen, B.

65

Mostacedo, R. Vasquez, R. L. Assis, J. Terborgh, F. Wittmann, A. Andrade, W. F.

Laurance, S. G. W. Laurance, B. S. Marimon, B.-H. Marimon, I. C. Guimarães

Vieira, I. L. Amaral, R. Brienen, H. Castellanos, D. Cárdenas López, J. F.

Duivenvoorden, H. F. Mogollón, F. D. de A. Matos, N. Dávila, R. García-Villacorta,

P. R. Stevenson Diaz, F. Costa, T. Emilio, C. Levis, J. Schietti, P. Souza, A. Alonso,

F. Dallmeier, A. J. D. Montoya, M. T. Fernandez Piedade, A. Araujo-Murakami, L.

Arroyo, R. Gribel, P. V. A. Fine, C. A. Peres, M. Toledo, G. A. Aymard C, T. R.

Baker, C. Cerón, J. Engel, T. W. Henkel, P. Maas, P. Petronelli, J. Stropp, C. E.

Zartman, D. Daly, D. Neill, M. Silveira, M. R. Paredes, J. Chave, D. de A. Lima

Filho, P. M. Jørgensen, A. Fuentes, J. Schöngart, F. Cornejo Valverde, A. Di Fiore,

E. M. Jimenez, M. C. Peñuela Mora, J. F. Phillips, G. Rivas, T. R. van Andel, P. von

Hildebrand, B. Hoffman, E. L. Zent, Y. Malhi, A. Prieto, A. Rudas, A. R. Ruschell,

N. Silva, V. Vos, S. Zent, A. A. Oliveira, A. C. Schutz, T. Gonzales, M. Trindade

Nascimento, H. Ramirez-Angulo, R. Sierra, M. Tirado, M. N. Umaña Medina, G.

van der Heijden, C. I. A. Vela, E. Vilanova Torre, C. Vriesendorp, O. Wang, K. R.

Young, C. Baider, H. Balslev, C. Ferreira, I. Mesones, A. Torres-Lezama, L. E.

Urrego Giraldo, R. Zagt, M. N. Alexiades, L. Hernandez, I. Huamantupa-

Chuquimaco, W. Milliken, W. Palacios Cuenca, D. Pauletto, E. Valderrama

Sandoval, L. Valenzuela Gamarra, K. G. Dexter, K. Feeley, G. Lopez-Gonzalez, and

M. R. Silman. 2013. Hyperdominance in the Amazonian tree flora. Science (New

York, N.Y.) 342:1243092.

Sungpalee, W., A. Itoh, M. Kanzaki, K. Sri-ngernyuang, H. Noguchi, T. Mizuno, S.

Teejuntuk, M. Hara, K. Chai-udom, T. Ohkubo, P. Sahunalu, P. Dhanmmanonda, S.

66

Nanami, T. Yamakura, and A. Sorn-ngai. 2009. Intra- and interspecific variation in

wood density and fine-scale spatial distribution of stand-level wood density in a

northern Thai tropical montane forest. Journal of Tropical Ecology 25:359–370.

Swenson, N. G., and B. J. Enquist. 2007. Ecological and evolutionary determinants of a

key plant functional trait: wood density and its community-wide variation across

latitude and elevation. American journal of botany 94:451–9.

Tyree, M. T., and M. H. Zimmermann. 2002. Hydraulic Architecture of Whole Plants and

Plant Performance. Pages 175–214 Springer. Springer, Berlin, Heidelberg.

Vasquez M., R., and R. D. P. Rojas G. 2016. Clave para identificar grupos de familias de

Gymnospermae y Angiospermae del Perú. Jardin Botanico de Missouri.

Wheeler, E. A., P. Baas, and S. Rodgers. 2007, January 1. Variations in dicot wood

anatomy: A global analysis based on the insidewood database. Brill.

Whittaker, R. H. 1967. Gradient analysis of vegetation. Biological Reviews 42:207–264.

Williamson, G. B. 1984. Gradients in Wood Specific Gravity of Trees. Bulletin of the

Torrey Botanical Club 111:51–55.

Williamson, G. B., and M. C. Wiemann. 2010. Measuring wood specific

gravity...correctly. American Journal of Botany 97:519–524.

Wright, I. J., D. D. Ackerly, F. Bongers, K. E. Harms, G. Ibarra-Manriquez, M. Martinez-

Ramos, S. J. Mazer, H. C. Muller-Landau, H. Paz, N. C. A. Pitman, L. Poorter, M.

R. Silman, C. F. Vriesendorp, C. O. Webb, M. Westoby, and S. J. Wright. 2007.

Relationships among ecologically important dimensions of plant trait variation in

67

seven neotropical forests. Annals of Botany 99:1003–1015.

Wright, S. J., K. Kitajima, N. J. B. Kraft, P. B. Reich, I. J. Wright, D. E. Bunker, R.

Condit, J. W. Dalling, S. J. Davies, S. Díaz, B. M. J. Engelbrecht, K. E. Harms, S. P.

Hubbell, C. O. Marks, M. C. Ruiz-Jaen, C. M. Salvador, and A. E. Zanne. 2010.

Functional traits and the growth–mortality trade-off in tropical trees. Ecology

91:3664–3674.

Young, K. R. 1992. Biogeography of the montane forest zone of the eastern slopes of

Peru. Memorias del Museo de Historia Natural U.N.M.S.M. 21:119–154.

Zanne, A. E., G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B.

Miller, N. G. Swenson, M. C. Wiemann, and J. Chave. 2009. Data from: Towards a

worldwide wood economics spectrum. Dryad Data Repository.

Zanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn,

D. J. McGlinn, B. C. O’Meara, A. T. Moles, P. B. Reich, D. L. Royer, D. E. Soltis,

P. F. Stevens, M. Westoby, I. J. Wright, L. Aarssen, R. I. Bertin, A. Calaminus, R.

Govaerts, F. Hemmings, M. R. Leishman, J. Oleksyn, P. S. Soltis, N. G. Swenson,

L. Warman, and J. M. Beaulieu. 2014. Three keys to the radiation of angiosperms

into freezing environments. Nature 506:89–92.

Zanne, A. E., M. Westoby, D. S. Falster, D. D. Ackerly, S. R. Loarie, S. E. J. Arnold, and

D. A. Coomes. 2010. Angiosperm wood structure: Global patterns in vessel anatomy

and their relation to wood density and potential conductivity. American journal of

botany 97:207–15.

68

Table II - 1. Sites description and mean wood density values for 41 (47.5 hectares) forest plots across the Andes-to-Amazon

elevational gradient.

Mean wood basic specific gravity (g cm-3) Basal area (m2 ha-1) Species level Stem level Basal area level Elevation Size Plot Forest All All All (m) (ha) life Tree All life Tree life Tree life Tree

forms Trees Palms ferns forms Trees Palms ferns forms Trees Palms ferns forms Trees Palms ferns

APK-01 3625 1 Treeline 21.2 21.2 0.654 0.654 0.653 0.653 0.655 0.655

ACJ-01 3537 1 Treeline 37.3 37.3 0.635 0.635 0.596 0.596 0.592 0.592 69

TRU-01 3450 1 Treeline 28.6 28.4 0.2 0.589 0.603 0.348 0.600 0.604 0.348 0.588 0.589 0.348

TRU-02 3250 1 Upper montane 31.2 30.2 1.0 0.567 0.591 0.357 0.600 0.611 0.370 0.598 0.605 0.373

TRU-03 3000 1 Upper montane 20.5 20.0 0.0 0.4 0.587 0.612 0.351 0.348 0.650 0.658 0.351 0.348 0.649 0.655 0.351 0.348

WAY-01 3000 1 Upper montane 34.3 34.3 0.0 0.589 0.602 0.348 0.628 0.629 0.348 0.633 0.633 0.348

ESP-01 2890 1 Upper montane 28.2 27.7 0.5 0.573 0.594 0.348 0.614 0.628 0.348 0.620 0.624 0.348

TRU-04 2750 1 Upper montane 34.7 29.9 4.7 0.562 0.594 0.353 0.561 0.618 0.350 0.594 0.633 0.349

TRU-05 2500 1 Upper montane 43.5 24.6 18.8 0.558 0.601 0.351 0.463 0.586 0.350 0.477 0.574 0.350

TRU-06 2250 1 Lower montane 37.0 24.4 12.6 0.518 0.559 0.350 0.456 0.556 0.348 0.469 0.531 0.348

TRU-07 2000 1 Lower montane 21.0 17.0 4.0 0.561 0.584 0.353 0.564 0.623 0.359 0.581 0.633 0.359

TRU-08 1800 1 Lower montane 29.6 25.4 0.1 4.2 0.562 0.577 0.437 0.354 0.547 0.599 0.437 0.358 0.565 0.599 0.437 0.358

Mean wood basic specific gravity (g cm-3) Basal area (m2 ha-1) Species level Stem level Basal area level Elevation Size Plot Forest type All All All (m) (ha) life Tree All life Tree life Tree life Tree

forms Trees Palms ferns forms Trees Palms ferns forms Trees Palms ferns forms Trees Palms ferns

SPD-01 1750 1 Lower montane 36.5 33.5 3.1 0.560 0.571 0.343 0.521 0.569 0.316 0.553 0.575 0.313

CAL-01 1500 1 Sub montane 30.8 30.7 0.0 0.0 0.518 0.521 0.393 0.369 0.517 0.517 0.393 0.377 0.513 0.513 0.393 0.376

SAI-01 1500 1 Sub montane 41.2 40.4 0.7 0.2 0.552 0.559 0.363 0.362 0.553 0.559 0.414 0.353 0.541 0.544 0.412 0.351

SPD-02 1500 1 Sub montane 30.4 29.4 0.1 0.9 0.538 0.546 0.390 0.347 0.499 0.513 0.388 0.332 0.492 0.497 0.388 0.333

CAL-02 1250 1 Sub montane 37.0 36.9 0.0 0.534 0.536 0.230 0.545 0.545 0.230 0.531 0.531 0.230

70 SAI-02 1250 1 Sub montane 42.2 36.3 5.7 0.2 0.553 0.563 0.351 0.348 0.497 0.555 0.310 0.348 0.496 0.526 0.308 0.348

TON-02 1000 1 Sub montane 31.3 31.1 0.1 0.1 0.549 0.558 0.294 0.362 0.529 0.534 0.278 0.364 0.484 0.486 0.257 0.367

PAN-03 850 1 Sub montane 24.2 24.2 0.0 0.616 0.620 0.348 0.622 0.622 0.348 0.614 0.614 0.348

TON-01 800 1 Sub montane 26.5 26.3 0.0 0.2 0.594 0.601 0.388 0.362 0.586 0.589 0.388 0.369 0.590 0.591 0.388 0.370

PAN-02 595 1 Sub montane 27.7 27.7 0.0 0.606 0.608 0.265 0.577 0.577 0.265 0.548 0.548 0.265

PAN-01 425 1 Lowland (TF) 27.3 25.8 1.4 0.564 0.570 0.274 0.551 0.577 0.271 0.550 0.565 0.271

ALM-01 400 2 Lowland (TF) 31.2 26.9 4.3 0.591 0.599 0.419 0.542 0.580 0.347 0.536 0.569 0.327

MNU-08 400 2 Lowland (FP) 41.8 33.9 7.9 0.594 0.599 0.413 0.489 0.550 0.364 0.491 0.529 0.328

BAB-01 387 1 Lowland (BB) 29.3 26.9 2.4 0.0 0.574 0.582 0.332 0.348 0.521 0.563 0.335 0.348 0.505 0.524 0.289 0.348

MNU-04 358 2 Lowland (TF) 28.2 24.3 3.9 0.587 0.593 0.392 0.541 0.580 0.365 0.530 0.559 0.350

Mean wood basic specific gravity (g cm-3) Basal area (m2 ha-1) Species level Stem level Basal area level Elevation Size Plot Forest type All All All (m) (ha) life Tree All life Tree life Tree life Tree

forms Trees Palms ferns forms Trees Palms ferns forms Trees Palms ferns forms Trees Palms ferns

MNU-05 347 2.25 Lowland (TF) 30.7 28.6 2.1 0.578 0.582 0.373 0.536 0.551 0.430 0.559 0.572 0.391

MNU-06 345 2.25 Lowland (TF) 32.3 27.0 5.3 0.571 0.578 0.388 0.517 0.559 0.383 0.510 0.542 0.350

MNU-03 312 2 Lowland (TF) 30.3 26.1 4.2 0.582 0.588 0.427 0.518 0.552 0.340 0.507 0.538 0.315

TAM-07 225 1 Lowland (TF) 25.5 25.2 0.4 0.617 0.619 0.539 0.602 0.602 0.588 0.586 0.585 0.609

TAM-05 220 1 Lowland (TF) 27.6 27.1 0.5 0.620 0.623 0.512 0.600 0.606 0.436 0.585 0.589 0.406

71 TAM-08 220 1 Lowland (TF) 22.2 20.3 2.0 0.603 0.606 0.512 0.583 0.614 0.360 0.599 0.626 0.328

TAM-01 205 1 Lowland (TF) 28.8 22.0 6.8 0.609 0.616 0.418 0.504 0.601 0.292 0.519 0.595 0.275

TAM-02 201 1 Lowland (TF) 28.1 22.0 6.1 0.593 0.599 0.434 0.520 0.604 0.315 0.530 0.595 0.293

TAM-06 200 1 Lowland (FP) 37.6 29.4 8.2 0.581 0.591 0.418 0.484 0.574 0.292 0.493 0.550 0.290

TAM-09 197 1 Lowland (TF) 23.3 20.3 3.0 0.610 0.614 0.455 0.567 0.619 0.298 0.571 0.614 0.283

CUZ-01 190 1 Lowland (FP) 27.2 25.5 1.7 0.558 0.567 0.403 0.502 0.518 0.358 0.550 0.565 0.333

CUZ-02 190 1 Lowland (FP) 27.9 24.0 3.9 0.571 0.579 0.405 0.529 0.585 0.315 0.534 0.571 0.305

CUZ-03 190 1 Lowland (FP) 27.7 24.5 3.2 0.588 0.595 0.432 0.551 0.593 0.327 0.566 0.598 0.314

CUZ-04 190 1 Lowland (FP) 28.1 24.4 3.6 0.585 0.593 0.405 0.576 0.607 0.409 0.572 0.602 0.372

Figure legends

Figure II - 1. Location of the wood collection sites (red) and the permanent forest plots

(green) across the Andes-to-Amazon elevational gradient.

Figure II - 2. (a) empirical distribution of within-species slopes of the linear regression between wood density and elevation (n = 46), vertical bars represent the slopes significantly different from zero (8-positives and 1-negative). Intraspecific variation in wood density with respect to elevation for (b) Clethra cuneata (n = 45), (c) Morella pubescens (n = 20), (d) Weinmannia bangii (n = 26), (e) Alnus acuminata (n = 17), and

(f) Weinmannia fagaroides (n = 28). Grey circles represent sampled individuals across elevation, black circles represent the mean wood density among species at each sampled site. Black solid line represents the linear regression fit with 95% confidence limits. Error bars depict bootstrapped 95% confidence intervals.

Figure II - 3. Plot-level mean wood density variation across 41 permanent forest plots along the Andes-to-Amazon elevational gradient for (a) species mean wood density for all arborescent life forms and (b) for trees, palms and ferns species. (c) Stem weighted mean wood density for all arborescent life forms and (d) for trees, palms and ferns. Error bars depict bootstrapped 95% confidence intervals. Solid lines are generalized additive models (GAM) fit using smoothing function with 95% confidence limits. Vertical dashed lines represent the elevation of cloud base.

Figure II - 4. (a) species mean wood density for all arborescent life forms and trees. (b) species mean wood density for all arborescent life forms and trees weighted by basal area. Open triangles represent all arborescent life forms and grey circles represent trees.

72

Solid and dashed lines are generalized additive models (GAM) fit using smoothing function. Vertical dashed lines represent the position of cloud base along the gradient.

Legend correspond to the same life forms for panels (a) and (b).

Figure II - 5. Wood density distribution for species (blue lines) and stems (red lines) for all plots (n = 41) across the Andes-to-Amazon elevational gradient. Data include all arborescent life forms. Vertical dashed lines indicate corresponding means.

Figure II - 6. Plot-level wood density variation across forests types including: Lowland

(Ltf = Lowland terra firme, Lfp = Lowland floodplain, Lbb = Lowland bamboo dominated forest; < 500 m), sub montane (SM: 500 - 1500 m), lower montane (LM: 1500

- 2500 m), upper montane (UP: 2500 - 3400 m) and treeline (TL: > 3400 m) for (a) species mean WD including all arborescent life forms and (b) tree species. (c) stem weighted WD for all arborescent life forms and (d) tree stems. Box plots show 25% quartile, median and 75% quartile of the distribution (horizontal lines). Forest types are defined based on Young (1992) and Pennington et al. (2004).

Figure II - 7. (a) Mean wood density variation for individual stems across DBH classes.

Regression lines were computed using the mean averaged wood density across diameter classes for each forest type. Stars represent significant relationship. (b) coefficient of variation (CV) of wood density across diameter classes, CV was calculated using the mean averaged wood density across diameter classes for each forest type. Color lines correspond to the same forest types for figures (a) and (b).

Figure II - 8. Mean wood density and landslide stability (LS) as a function of elevation along the Andes-to-Amazon transect. LS was calculated as the inverted scale of landslide

73 probability (1-landslide probability (%yr-1)) taken from Clark et al. (2015). (a) Species mean wood density includes all arborescent life forms and (b) trees only. Vertical dashed lines represent the cloud base across the gradient. For panels (a) and (b) open circles represent mean species wood density and grey triangles landslide stability.

Appendix II – Figure S1. Effect of drying temperature on basic wood specific gravity values as shown by the relationship between wood density values dried at ~80 o C and

105 o C oven temperature (n = 145). The equation y = - 0.0113 + 0.9969(x) was used to calibrate all wood density values obtained at ~80 o C oven temperature.

Appendix II – Figure S2. Overall wood density distribution along the Andes-to-Amazon elevational gradient for (a) species including all arborescent life forms and (b) tree species. Mean wood density for all stems (c) including all arborescent life forms and (d) tree stems. Solid red vertical lines indicate the means and dashed black lines indicate the medians.

Appendix II – Figure S3. Variance partitioning of wood density across phylogenetic levels and environment (plot-level) for (a) field core-sampled and (b) plot level along the

Andes-to-Amazon elevational gradient.

Appendix II – Figure S4. Sampled wood density along an Andes-to-Amazon elevational gradient. Grey open circles represent stem core samples across elevation (n = 892), black solid circles represent the mean wood density among samples at each sampled site (n =

51). Red solid line is the generalized additive model (GAM) fit using smoothing function with 95% confidence limits. Error bars depict bootstrapped 95% confidence intervals.

74

Appendix II – Figure S5. Plot-level mean wood density variation for trees, palms and tree ferns along the Andes-to-Amazon elevational gradient. Upper panels represent species mean wood density and lower panels represent the stem-weighted wood density. Dashed vertical lines indicate the cloud base across the gradient. Percentages indicate the contribution of each life form.

Appendix II – Figure S6. Mean plot-level wood density for (a) genus and (b) family basis in function of species wood density. Solid lines represent best-fit linear regressions, dashed lines represent the 1:1 relationship. Color ramp corresponds to plot elevations from the highest (blue) to the lowest (red) forest plots. Legend correspond to the same forest plot colors for panels (a) and (b).

Appendix II – Figure S7. Wood density as a function of stem diameter (≥ 10 cm DBH) for sampled species across the Andes-to-Amazon elevational gradient (n = 631). Red solid line represents the linear regression fit with 95% confidence limits. Error bars depict bootstrapped 95% confidence intervals.

75

FIGURE II - 1

76

(a) (b)

(c) (d)

(e) (f)

FIGURE II - 2

77

(a)

(b)

(c)

(d)

FIGURE II - 3

78

(a) (b)

79

Frequency

------Wood density g cm-3------

FIGURE II - 54

80

(a) (b)

(c) (d)

81

(a) (b)

FIGURE II - 6

82

(a) (b)

FIGURE II - 7

83

Supporting information

Title:

Landscape-scale wood density variation across an Andes-to-Amazon elevational gradient

Authors:

William Farfan-Rios1,2, Sassan Saatchi3, Imma Oliveras4, Yadvinder Malhi4,

Chelsea M. Robinson5, Alex Nina-Quispe6, Juan A. Gibaja7, Israel Cuba7, Karina Garcia-

Cabrera7, Norma Salinas-Revilla6, Oliver L. Phillips8, John Terborgh9, Nigel Pitman10,

Rodolfo Vasquez11, Abel Monteagudo Mendoza11, Terry Erwin12, Percy Nuñez Vargas7,

Fernando Cornejo13, Miles R. Silman1,14

FIGURE II - 8

84

Results

Across all elevations, the overall distribution of species mean wood density for all arborescent life forms and for trees alone was symmetric and normal with a slight positive skewness and kurtosis (All life forms: Skewness = 0.07, kurtosis = 2.96; trees:

Skewness = 0.09, kurtosis = 3.1). Likewise, the distribution of stem weighted mean wood density for all arborescent life forms and for trees alone were symmetric and normal, but was negatively skewed with positive kurtosis for both, all arborescent (skewness = -0.18, kurtosis = 2.70) and trees stems (skewness = -0.13, kurtosis = 3.53) (SI Appendix, Fig.

S2).

Plot-to-plot wood density distributions and their statistical moments varied across elevation

(fig. 5). Species WD distributions shifted from negative skew in the lowlands to positive skew in the sub montane forest and shifting again to negative skew in the montane to treeline forests plots, with this pattern being similar for all arborescent life forms and trees only (Fig. 5; SI Appendix, Table S2). The montane and lowlands plots showed a negative kurtosis, but we observed a positive kurtosis only in the sub montane forests plots (Fig. 5;

SI Appendix, Table S2). For stem WD distributions we observed a markedly increase in the right skew (right tail increasing) in plots with high abundance of few species with low wood density values in the montane (e. g. TRU-05, TRU-06) and lowland forests plots (e.g.

TAM-01, MNU-08; SI Appendix, Table S2). Kurtosis for stem WD distributions for all arborescent life forms and only trees varies along the gradient, with the predominance of negative kurtosis in the lowland forests (Fig. 5; SI Appendix, Table S2).

85

Appendix II - Table S1. Species list and basic wood specific gravity values along an

Andean-to-Amazonian elevational gradient for 1,276 forest taxa compiled from field- collected samples and published resources.

Family Species Basic wood specific gravity (g cm-3) Achariaceae Lindackeria paludosa 0.56 Achariaceae Mayna parvifolia 0.56 Actinidiaceae Saurauia glabra 0.552 Actinidiaceae Saurauia peruviana 0.552 Adoxaceae Viburnum ayavacense 0.556 Adoxaceae Viburnum hallii 0.556 Adoxaceae Viburnum reticulatum 0.556 Alzateaceae Alzatea verticillata 0.735 Astronium graveolens 0.847 Anacardiaceae Astronium lecointei 0.79 Anacardiaceae Spondias mombin 0.428 Anacardiaceae Spondias venosa 0.385 Anacardiaceae guianensis 0.466 Anacardiaceae 0.451 Anacardiaceae Tapirira peckoltiana 0.375 Anacardiaceae Tapirira retusa 0.375 Anacardiaceae Thyrsodium spruceanum 0.54 ambotay 0.499 Annonaceae Annona edulis 0.535 Annonaceae Annona excellens 0.535 Annonaceae Annona foetida 0.572 Annonaceae Annona fosteri 0.499 Annonaceae Annona montana 0.499 Annonaceae Annona papilionella 0.499 Annonaceae Annona williamsii 0.535 Annonaceae Duguetia flagellaris 0.747 Annonaceae Duguetia lucida 0.747 Annonaceae Duguetia odorata 0.747 Annonaceae Duguetia quitarensis 0.8 Annonaceae Duguetia spixiana 0.58 Annonaceae acutissima 0.333 Annonaceae Guatteria alutacea 0.576

86

Family Species Basic wood specific gravity (g cm-3) Annonaceae 0.576 Annonaceae Guatteria brevicuspis 0.576 Annonaceae Guatteria buchtienii 0.576 Annonaceae Guatteria citriodora 0.576 Annonaceae Guatteria dielsiana 0.482 Annonaceae Guatteria duodecima 0.431 Annonaceae Guatteria elata 0.576 Annonaceae Guatteria glauca 0.495 Annonaceae Guatteria guentheri 0.576 Annonaceae Guatteria hyposericea 0.576 Annonaceae Guatteria oblongifolia 0.557 Annonaceae Guatteria pteropus 0.576 Annonaceae Guatteria recurvisepala 0.576 Annonaceae Guatteria schomburgkiana 0.6 Annonaceae Guatteria scytophylla 0.515 Annonaceae Guatteria terminalis 0.619 Annonaceae Guatteria tomentosa 0.431 Annonaceae Guatteria ucayalina 0.504 Annonaceae Klarobelia candida 0.589 Annonaceae Klarobelia napoensis 0.589 Annonaceae Malmea diclina 0.39 Annonaceae Malmea dielsiana 0.39 Annonaceae Malmea lucida 0.39 Annonaceae Onychopetalum krukoffii 0.637 Annonaceae Oxandra acuminata 0.665 Annonaceae Oxandra espintana 0.63 Annonaceae Oxandra mediocris 0.737 Annonaceae Oxandra polyantha 0.737 Annonaceae Oxandra riedeliana 0.77 Annonaceae Oxandra xylopioides 0.77 Annonaceae Porcelia nitidifolia 0.4 Annonaceae Pseudomalmea diclina 0.39 Annonaceae Pseudomalmea diclina 0.808 Annonaceae Rollinia andicola 0.37 Annonaceae Rollinia centrantha 0.338 Annonaceae Rollinia cuspidata 0.37 Annonaceae Rollinia edulis 0.338 Annonaceae Rollinia fosteri 0.338 Annonaceae Rollinia pittieri 0.27 Annonaceae Rollinia williamsii 0.37

87

Family Species Basic wood specific gravity (g cm-3) Annonaceae Ruizodendron ovale 0.589 Annonaceae Trigynaea duckei 0.589 Annonaceae Trigynaea ecuadorensis 0.589 Annonaceae Unonopsis floribunda 0.42 Annonaceae Unonopsis guatterioides 0.463 Annonaceae Unonopsis matthewsii 0.534 Annonaceae Unonopsis peruviana 0.534 Annonaceae Unonopsis spectabilis 0.463 Annonaceae Unonopsis veneficiorum 0.436 Annonaceae Xylopia benthamii 0.6 Annonaceae Xylopia calophylla 0.595 Annonaceae Xylopia ligustrifolia 0.6 Apocynaceae Aspidosperma excelsum 0.792 Apocynaceae Aspidosperma macrocarpon 0.683 Apocynaceae Aspidosperma marcgravianum 0.733 Apocynaceae Aspidosperma megaphyllum 0.673 Apocynaceae Aspidosperma nitidum 0.764 Apocynaceae Aspidosperma parvifolium 0.735 Apocynaceae Aspidosperma rigidum 0.46 Apocynaceae Aspidosperma spruceanum 0.753 Apocynaceae Aspidosperma tambopatense 0.741 Apocynaceae Aspidosperma vargasii 0.741 Apocynaceae Geissospermum reticulatum 0.782 Apocynaceae Himatanthus articulatus 0.536 Apocynaceae Himatanthus sucuuba 0.462 Apocynaceae Lacmellea arborescens 0.513 Apocynaceae Lacmellea peruviana 0.512 Apocynaceae Macoubea guianensis 0.414 Apocynaceae Rauvolfia leptophylla 0.617 Apocynaceae Rauvolfia praecox 0.46 Apocynaceae Rauvolfia sprucei 0.464 Apocynaceae Tabernaemontana cymosa 0.47 Apocynaceae Tabernaemontana psychotriifolia 0.462 Apocynaceae Tabernaemontana sananho 0.462 Aquifoliaceae Ilex aggregata 0.642 Aquifoliaceae Ilex biserrulata 0.642 Aquifoliaceae Ilex gabrielleana 0.677 Aquifoliaceae 0.642 Aquifoliaceae Ilex karstenii 0.65 Aquifoliaceae Ilex laurina 0.642

88

Family Species Basic wood specific gravity (g cm-3) Aquifoliaceae Ilex microdonta 0.731 Aquifoliaceae Ilex nayana 0.551 Aquifoliaceae Ilex nervosa 0.642 Aquifoliaceae Ilex sessiliflora 0.625 Aquifoliaceae Ilex trichoclada 0.637 Aquifoliaceae Ilex villosula 0.667 Dendropanax arboreus 0.42 Araliaceae Dendropanax cuneatus 0.514 Araliaceae Dendropanax umbellatus 0.407 Araliaceae Dendropanax weberbaueri 0.457 Araliaceae Dendropanax williamsii 0.457 Araliaceae Oreopanax capitatus 0.557 Araliaceae Oreopanax kuntzei 0.476 Araliaceae Oreopanax microflorous 0.428 Araliaceae Oreopanax ruizii 0.704 Araliaceae Schefflera allocotantha 0.519 Araliaceae Schefflera inambarica 0.545 Araliaceae Schefflera morototoni 0.455 Araliaceae Schefflera patula 0.545 Araliaceae Schefflera sprucei 0.455 Arecaceae Astrocaryum chonta 0.508 Arecaceae Astrocaryum gratum 0.508 Arecaceae Astrocaryum macrocalyx 0.508 Arecaceae Astrocaryum murumuru 0.508 Arecaceae Attalea butyracea 0.326 Arecaceae Attalea cephalotes 0.326 Arecaceae Attalea maripa 0.326 Arecaceae Attalea phalerata 0.326 Arecaceae Bactris dahlgreniana 0.393 Arecaceae Bactris gasipaes 0.393 Arecaceae Bactris setulosa 0.393 Arecaceae Chelyocarpus ulei 0.393 Arecaceae lamarckianum 0.437 Arecaceae Euterpe precatoria 0.388 Arecaceae Geonoma brongniartii 0.393 Arecaceae Geonoma undata 0.351 Arecaceae Iriartea deltoidea 0.265 Arecaceae Jessenia bataua 0.393 Arecaceae Oenocarpus bataua 0.682 Arecaceae Oenocarpus mapora 0.713

89

Family Species Basic wood specific gravity (g cm-3) Arecaceae macrocarpa 0.393 Arecaceae Scheelea butyracea 0.393 Arecaceae Scheelea cephalotes 0.393 Arecaceae Socratea exorrhiza 0.23 Arecaceae Socratea salazarii 0.23 Asteraceae Barnadesia caryophylla 0.6 Asteraceae Gynoxys nitida 0.62 Asteraceae Nordenstamia repanda 0.604 Asteraceae Vernonanthura patens 0.54 Betulaceae Alnus acuminata 0.429 Bignoniaceae Jacaranda copaia 0.351 Bignoniaceae Jacaranda glabra 0.395 Bignoniaceae Jacaranda obtusifolia 0.483 Bignoniaceae Jacaranda spectabilis 0.394 Bignoniaceae Tabebuia serratifolia 0.924 Bixaceae Bixa arborea 0.37 Bixaceae Bixa platycarpa 0.346 Boraginaceae Cordia alliodora 0.493 Boraginaceae Cordia hebeclada 0.525 Boraginaceae Cordia lomatoloba 0.41 Boraginaceae Cordia mexiana 0.525 Boraginaceae Cordia nodosa 0.39 Boraginaceae Cordia panamensis 0.39 Boraginaceae Cordia ripicola 0.525 Boraginaceae Cordia scabrifolia 0.474 Boraginaceae Cordia tetrandra 0.345 Boraginaceae Cordia toqueve 0.516 Boraginaceae Cordia trachyphylla 0.527 Boraginaceae Cordia ucayaliensis 0.41 Brunelliaceae Brunellia boliviana 0.343 Brunelliaceae Brunellia brunnea 0.316 Brunelliaceae Brunellia cuzcoensis 0.316 Brunelliaceae Brunellia dulcis 0.316 Brunelliaceae Brunellia inermis 0.343 Brunelliaceae Brunellia littlei 0.316 Brunelliaceae Brunellia stenoptera 0.446 Brunelliaceae Brunellia weberbaueri 0.288 Burseraceae Crepidospermum goudotianum 0.579 Burseraceae Dacryodes peruviana 0.53 Burseraceae Protium altsonii 0.684

90

Family Species Basic wood specific gravity (g cm-3) Burseraceae Protium amazonicum 0.408 Burseraceae Protium apiculatum 0.556 Burseraceae Protium aracouchini 0.49 Burseraceae Protium decandrum 0.512 Burseraceae Protium glabrescens 0.532 Burseraceae Protium hebetatum 0.567 Burseraceae Protium insigne 0.556 Burseraceae Protium montanum 0.53 Burseraceae Protium neglectum 0.556 Burseraceae Protium opacum 0.57 Burseraceae Protium pallidum 0.556 Burseraceae Protium plagiocarpium 0.551 Burseraceae Protium puncticulatum 0.556 Burseraceae Protium rhynchophyllum 0.556 Burseraceae Protium robustum 0.556 Burseraceae Protium sagotianum 0.558 Burseraceae Protium spruceanum 0.556 Burseraceae Protium tenuifolium 0.57 Burseraceae Tetragastris altissima 0.708 Burseraceae Tetragastris panamensis 0.717 Burseraceae Trattinnickia aspera 0.424 Burseraceae Trattinnickia boliviana 0.469 Burseraceae Trattinnickia burserifolia 0.46 Burseraceae Trattinnickia glaziovii 0.521 Burseraceae Trattinnickia peruviana 0.56 Burseraceae Trattinnickia rhoifolia 0.451 Buxaceae Styloceras brokawii 0.638 Calophyllaceae angulare 0.643 Calophyllaceae Calophyllum brasiliense 0.583 Calophyllaceae Caraipa densifolia 0.641 Calophyllaceae Caraipa myrcioides 0.655 Calophyllaceae Marila laxiflora 0.371 Campanulaceae Siphocampylus vatkeanus 0.654 Cannabaceae Celtis schippii 0.616 Cannabaceae Trema micrantha 0.425 Capparaceae Capparis amplissima 0.663 Capparaceae Capparis flexuosa 0.684 Capparaceae Capparis macrophylla 0.684 Capparaceae Capparis sola 0.684 Cardiopteridaceae Citronella incarum 0.635

91

Family Species Basic wood specific gravity (g cm-3) Cardiopteridaceae Dendrobangia boliviana 0.53 Caricaceae Jacaratia digitata 0.223 Caryocaraceae Anthodiscus klugii 0.684 Caryocaraceae Anthodiscus peruanus 0.69 Caryocaraceae Caryocar amygdaliforme 0.688 Caryocaraceae Caryocar glabrum 0.676 Caryocaraceae Caryocar pallidum 0.84 Celastraceae Cheiloclinium cognatum 0.716 Celastraceae Haydenia urbaniana 0.719 Celastraceae Maytenus ebenifolia 0.718 Celastraceae Maytenus macrocarpa 0.718 Celastraceae Maytenus magnifolia 0.718 Celastraceae Salacia gigantea 0.702 Celastraceae Salacia macrantha 0.702 Celastraceae Salacia micrantha 0.702 Celastraceae Salacia opacifolia 0.702 Celastraceae Tontelea attenuata 0.702 anisodorum 0.437 Chloranthaceae Hedyosmum cuatrecazanum 0.275 Chloranthaceae Hedyosmum goudotianum 0.435 Chloranthaceae Hedyosmum maximum 0.531 Chloranthaceae Hedyosmum peruvianum 0.41 Chloranthaceae Hedyosmum racemosum 0.469 Chloranthaceae Hedyosmum scabrum 0.535 Chloranthaceae Hedyosmum translucidum 0.437 Chrysobalanaceae Couepia bernardii 0.797 Chrysobalanaceae Couepia latifolia 0.797 Chrysobalanaceae Couepia racemosa 0.797 Chrysobalanaceae Hirtella excelsa 0.798 Chrysobalanaceae Hirtella lightioides 0.798 Chrysobalanaceae Hirtella macrophylla 0.74 Chrysobalanaceae Hirtella racemosa 0.782 Chrysobalanaceae Hirtella triandra 0.683 Chrysobalanaceae Licania apetala 0.763 Chrysobalanaceae Licania brittoniana 0.674 Chrysobalanaceae Licania canescens 0.88 Chrysobalanaceae Licania caudata 0.825 Chrysobalanaceae Licania cf. impressa 0.819 Chrysobalanaceae Licania harlingii 0.825 Chrysobalanaceae Licania heteromorpha 0.816

92

Family Species Basic wood specific gravity (g cm-3) Chrysobalanaceae Licania hispida 0.831 Chrysobalanaceae Licania hypoleuca 0.909 Chrysobalanaceae Licania kunthiana 0.88 Chrysobalanaceae Licania macrocarpa 0.825 Chrysobalanaceae Licania micrantha 0.836 Chrysobalanaceae Licania octandra 0.825 Chrysobalanaceae Licania paraensis 0.825 Chrysobalanaceae Parinari klugii 0.702 Chrysobalanaceae Parinari occidentalis 0.702 Chrysobalanaceae Parinari parilis 0.573 Clethra castaneifolia 0.589 Clethraceae Clethra cuneata 0.526 Clethraceae Clethra ferruginea 0.652 Clethraceae Clethra obovata 0.599 Clethraceae Clethra revoluta 0.511 Clethraceae 0.688 Chrysochlamys ulei 0.43 Clusiaceae Clusia alata 0.649 Clusiaceae Clusia ducuoides 0.806 Clusiaceae Clusia elliptica 0.76 Clusiaceae Clusia flavida 0.76 Clusiaceae Clusia pavonii 0.654 Clusiaceae Clusia sp1(1048WFR) 0.76 Clusiaceae Clusia sphaerocarpa 0.658 Clusiaceae Clusia thurifera 0.69 Clusiaceae Clusia trochiformis 0.634 Clusiaceae Garcinia macrophylla 0.67 Clusiaceae Garcinia madruno 0.71 Clusiaceae Garcinia ovalifolia 0.68 Clusiaceae Rheedia acuminata 0.669 Clusiaceae Rheedia brasiliensis 0.669 Clusiaceae Rheedia macrophylla 0.669 Clusiaceae Symphonia globulifera 0.608 Clusiaceae Tovomita laurina 0.695 Clusiaceae Tovomita weddelliana 0.512 Combretaceae Buchenavia fanshawei 0.745 Combretaceae Buchenavia grandis 0.755 Combretaceae Buchenavia oxycarpa 0.713 Combretaceae Buchenavia punctata 0.745 Combretaceae Terminalia amazonia 0.674

93

Family Species Basic wood specific gravity (g cm-3) Combretaceae Terminalia oblonga 0.694 Cunoniaceae Weinmannia auriculata 0.604 Cunoniaceae Weinmannia balbisiana 0.61 Cunoniaceae Weinmannia bangii 0.612 Cunoniaceae Weinmannia cochensis 0.583 Cunoniaceae Weinmannia crassifolia 0.637 Cunoniaceae Weinmannia fagaroides 0.571 Cunoniaceae Weinmannia lechleriana 0.566 Cunoniaceae Weinmannia mariquitae 0.649 Cunoniaceae Weinmannia multijuga 0.636 Cunoniaceae Weinmannia ovata 0.653 Cunoniaceae Weinmannia pinnata 0.61 Cunoniaceae Weinmannia reticulata 0.667 cuspidata 0.348 Cyatheaceae Alsophila erinacea 0.348 Cyatheaceae Cyathea andina 0.348 Cyatheaceae Cyathea caracasana 0.391 Cyatheaceae Cyathea carolihenrici 0.348 Cyatheaceae Cyathea catacampta 0.348 Cyatheaceae Cyathea cystolepis 0.348 Cyatheaceae Cyathea delgadii 0.348 Cyatheaceae Cyathea divergens 0.348 Cyatheaceae Cyathea herzogii 0.348 Cyatheaceae Cyathea lechleri 0.347 Cyatheaceae Cyathea multisegmenta 0.348 Cyatheaceae Cyathea pallescens 0.348 Cyatheaceae Cyathea ruiziana 0.348 Cyatheaceae Cyathea squamipes 0.348 Dichapetalaceae Tapura acreana 0.62 Dichapetalaceae Tapura juruana 0.641 Dichapetalaceae Tapura peruviana 0.648 Dicksoniaceae Dicksonia sellowiana 0.348 Dipentodontaceae Perrottetia sessiliflora 0.484 artanthifolia 0.599 Ebenaceae Diospyros capreifolia 0.637 Ebenaceae Diospyros manu 0.599 Ebenaceae Diospyros subrotata 0.599 Elaeocarpaceae Sloanea brevipes 0.807 Elaeocarpaceae Sloanea durissima 0.777 Elaeocarpaceae Sloanea eichleri 0.75

94

Family Species Basic wood specific gravity (g cm-3) Elaeocarpaceae Sloanea fragrans 0.47 Elaeocarpaceae Sloanea garckeana 0.767 Elaeocarpaceae Sloanea guianensis 0.625 Elaeocarpaceae Sloanea latifolia 0.777 Elaeocarpaceae Sloanea laurifolia 0.816 Elaeocarpaceae Sloanea laxiflora 0.767 Elaeocarpaceae Sloanea macrophylla 0.777 Elaeocarpaceae Sloanea meianthera 0.767 Elaeocarpaceae Sloanea obtusifolia 0.777 Elaeocarpaceae Sloanea picapica 0.777 Elaeocarpaceae Sloanea ptariana 0.777 Elaeocarpaceae Sloanea pubescens 0.767 Elaeocarpaceae Sloanea robusta 0.861 Elaeocarpaceae Sloanea rufa 0.807 Elaeocarpaceae Sloanea sinemariensis 0.777 Elaeocarpaceae Sloanea stipitata 0.777 Elaeocarpaceae Sloanea terniflora 0.777 Elaeocarpaceae Sloanea tuerckheimii 0.807 Elaeocarpaceae Vallea stipularis 0.746 Ericaceae Bejaria aestuans 0.791 Ericaceae Cavendishia bracteata 0.722 Erythroxylaceae Erythroxylum deciduum 0.71 Erythroxylaceae Erythroxylum patens 0.71 Erythroxylaceae Erythroxylum squamatum 0.71 myrtilloides 0.67 Escalloniaceae 0.747 Euphorbiaceae Acalypha stenoloba 0.527 Euphorbiaceae Alchornea acutifolia 0.541 Euphorbiaceae Alchornea anamariae 0.453 Euphorbiaceae Alchornea brittonii 0.35 Euphorbiaceae Alchornea glandulosa 0.373 Euphorbiaceae Alchornea grandiflora 0.483 Euphorbiaceae Alchornea grandis 0.46 Euphorbiaceae Alchornea hilariana 0.532 Euphorbiaceae Alchornea iricurana 0.381 Euphorbiaceae Alchornea latifolia 0.483 Euphorbiaceae Alchornea pearcei 0.436 Euphorbiaceae Alchornea triplinervia 0.651 Euphorbiaceae Aparisthmium cordatum 0.39 Euphorbiaceae Caryodendron orinocense 0.65

95

Family Species Basic wood specific gravity (g cm-3) Euphorbiaceae Conceveiba guianensis 0.543 Euphorbiaceae Conceveiba rhytidocarpa 0.413 Euphorbiaceae Croton matourensis 0.45 Euphorbiaceae Croton tessmannii 0.39 Euphorbiaceae Glycydendron amazonicum 0.681 Euphorbiaceae Hevea brasiliensis 0.492 Euphorbiaceae Hevea guianensis 0.486 Euphorbiaceae Hura crepitans 0.367 Euphorbiaceae Mabea maynensis 0.608 Euphorbiaceae Mabea nitida 0.647 Euphorbiaceae Mabea occidentalis 0.608 Euphorbiaceae Mabea speciosa 0.635 Euphorbiaceae Pausandra trianae 0.59 Euphorbiaceae Sagotia racemosa 0.58 Euphorbiaceae Sapium aereum 0.423 Euphorbiaceae Sapium eglandulosum 0.423 Euphorbiaceae Sapium glandulosum 0.421 Euphorbiaceae Sapium ixiamasense 0.423 Euphorbiaceae Sapium laurifolium 0.529 Euphorbiaceae Sapium marmieri 0.41 Euphorbiaceae Senefeldera inclinata 0.96 Euphorbiaceae Tetrorchidium rubrivenium 0.353 Fabaceae floribunda 0.512 Fabaceae Abarema jupunba 0.585 Fabaceae Acacia loretensis 0.714 Fabaceae Amburana cearensis 0.514 Fabaceae Andira inermis 0.644 Fabaceae Andira legalis 0.656 Fabaceae Andira multistipula 0.752 Fabaceae Andira surinamensis 0.705 Fabaceae Apuleia leiocarpa 0.788 Fabaceae Bauhinia glabra 0.635 Fabaceae Bauhinia tarapotensis 0.6 Fabaceae Cassia grandis 0.783 Fabaceae Cassia sylvestris 0.783 Fabaceae Cedrelinga cateniformis 0.476 Fabaceae Centrolobium paraense 0.711 Fabaceae Copaifera reticulata 0.608 Fabaceae Cyathostegia mathewsii 0.57 Fabaceae Dialium guianense 0.878

96

Family Species Basic wood specific gravity (g cm-3) Fabaceae Diplotropis martiusii 0.633 Fabaceae Diplotropis purpurea 0.779 Fabaceae Dipteryx alata 0.937 Fabaceae Dipteryx micrantha 0.871 Fabaceae Dipteryx odorata 0.923 Fabaceae Dussia tessmannii 0.553 Fabaceae Enterolobium cyclocarpum 0.39 Fabaceae Enterolobium schomburgkii 0.701 Fabaceae Erythrina ulei 0.111 Fabaceae Hymenaea courbaril 0.782 Fabaceae Hymenaea oblongifolia 0.737 Fabaceae Hymenaea parvifolia 0.877 Fabaceae acreana 0.579 Fabaceae Inga acrocephala 0.513 Fabaceae Inga acuminata 0.579 Fabaceae Inga alba 0.586 Fabaceae Inga aria 0.606 Fabaceae Inga auristellae 0.579 Fabaceae Inga barbata 0.587 Fabaceae Inga bourgonii 0.545 Fabaceae Inga bracteosa 0.579 Fabaceae Inga capitata 0.592 Fabaceae Inga cayennensis 0.53 Fabaceae Inga chartacea 0.512 Fabaceae Inga cinnamomea 0.528 Fabaceae Inga cordatoalata 0.587 Fabaceae Inga coriacea 0.579 Fabaceae Inga coruscans 0.72 Fabaceae Inga densiflora 0.579 Fabaceae Inga edulis 0.587 Fabaceae Inga gracilifolia 0.587 Fabaceae Inga heterophylla 0.438 Fabaceae Inga jenmani 0.579 Fabaceae Inga jenmanii 0.579 Fabaceae Inga killipiana 0.575 Fabaceae Inga lallensis 0.579 Fabaceae Inga laurina 0.62 Fabaceae Inga leiocalycina 0.442 Fabaceae Inga macrophylla 0.587 Fabaceae Inga marginata 0.545

97

Family Species Basic wood specific gravity (g cm-3) Fabaceae Inga megalobotrys 0.587 Fabaceae Inga multinervis 0.587 Fabaceae Inga nobilis 0.56 Fabaceae Inga pavoniana 0.579 Fabaceae Inga pezizifera 0.621 Fabaceae Inga punctata 0.56 Fabaceae Inga quaternata 0.579 Fabaceae Inga ruiziana 0.565 Fabaceae Inga sapindoides 0.579 Fabaceae Inga semialata 0.6 Fabaceae Inga spectabilis 0.579 Fabaceae Inga splendens 0.6 Fabaceae Inga stenoptera 0.579 Fabaceae Inga stipularis 0.53 Fabaceae Inga striata 0.579 Fabaceae Inga tenuistipula 0.579 Fabaceae Inga thibaudiana 0.658 Fabaceae Inga tomentosa 0.579 Fabaceae Inga vismiifolia 0.599 Fabaceae Lecointea amazonica 0.895 Fabaceae Lecointea peruviana 0.893 Fabaceae Lonchocarpus seorsus 0.754 Fabaceae Lonchocarpus spiciflorus 0.757 Fabaceae Lonchocarpus trifolius 0.757 Fabaceae Machaerium acutifolium 1.12 Fabaceae Machaerium pilosum 0.79 Fabaceae Myroxylon balsamum 0.779 Fabaceae Ormosia amazonica 0.601 Fabaceae Ormosia bopiensis 0.601 Fabaceae Ormosia coarctata 0.601 Fabaceae Ormosia panamensis 0.601 Fabaceae Parkia nitida 0.383 Fabaceae Parkia velutina 0.435 Fabaceae Peltogyne floribunda 0.787 Fabaceae Phyllocarpus riedelii 0.713 Fabaceae Piptadenia adiantoides 0.819 Fabaceae Piptadenia boliviana 0.78 Fabaceae Piptadenia communis 0.819 Fabaceae Piptadenia cuzcoensis 0.78 Fabaceae Piptadenia pteroclada 0.78

98

Family Species Basic wood specific gravity (g cm-3) Fabaceae Pithecellobium corymbosum 0.512 Fabaceae Pithecellobium latifolium 0.36 Fabaceae Platymiscium pinnatum 0.745 Fabaceae Platymiscium stipulare 0.748 Fabaceae Platymiscium ulei 0.75 Fabaceae 0.806 Fabaceae Platypodium viride 0.75 Fabaceae Pseudopiptadenia suaveolens 0.68 Fabaceae Pterocarpus amazonicus 0.491 Fabaceae Pterocarpus amazonum 0.491 Fabaceae Pterocarpus rohrii 0.439 Fabaceae Pterocarpus ulei 0.491 Fabaceae Schizolobium parahyba 0.358 Fabaceae Sclerolobium bracteosum 0.528 Fabaceae Senegalia tenuifolia 0.67 Fabaceae Senna silvestris 0.604 Fabaceae Stryphnodendron guianense 0.568 Fabaceae Stryphnodendron pulcherrimum 0.475 Fabaceae Stryphnodendron purpureum 0.55 Fabaceae Swartzia amplifolia 0.842 Fabaceae Swartzia arborescens 0.835 Fabaceae Swartzia dipetala 0.842 Fabaceae Swartzia leptopetala 0.842 Fabaceae Swartzia myrtifolia 0.9 Fabaceae Tachigali bracteosa 0.579 Fabaceae Tachigali cenepensis 0.579 Fabaceae Tachigali macbridei 0.528 Fabaceae Tachigali poeppigiana 0.579 Fabaceae Tachigali polyphylla 0.637 Fabaceae Tachigali rusbyi 0.579 Fabaceae Tachigali setifera 0.367 Fabaceae Tachigali vasquezii 0.579 Fabaceae Vatairea fusca 0.657 Fabaceae Zygia latifolia 0.75 Gentianaceae Macrocarpaea maguirei 0.589 Humiriaceae Humiriastrum colombianum 0.375 Humiriaceae Sacoglottis mattogrossensis 0.77 Humiriaceae Vantanea guianensis 0.822 Hypericaceae Vismia gracilis 0.398 Hypericaceae Vismia mandurr 0.702

99

Family Species Basic wood specific gravity (g cm-3) Hypericaceae Vismia tomentosa 0.314 Icacinaceae Calatola costaricensis 0.565 Juglandaceae Juglans australis 0.518 Lacistemataceae Lacistema aggregatum 0.506 Lacistemataceae Lacistema nena 0.506 Lacistemataceae Lozania mutisiana 0.506 Aegiphila filipes 0.645 Lamiaceae Aegiphila integrifolia 0.86 Lamiaceae Aegiphila racemosa 0.645 Lamiaceae Aegiphila saltensis 0.404 Lamiaceae Vitex cymosa 0.563 Lamiaceae Vitex pseudolea 0.556 Lamiaceae Vitex triflora 0.559 Lauraceae Aiouea grandifolia 0.37 Lauraceae Aniba canelilla 0.952 Lauraceae Aniba firmula 0.626 Lauraceae Aniba guianensis 0.52 Lauraceae Aniba panurensis 0.61 Lauraceae Aniba puchury-minor 0.533 Lauraceae Aniba robusta 0.626 Lauraceae Aniba taubertiana 0.593 Lauraceae Aniba terminalis 0.54 Lauraceae Beilschmiedia latifolia 0.548 Lauraceae Beilschmiedia tovarensis 0.52 Lauraceae Caryodaphnopsis fosteri 0.559 Lauraceae Cinnamomum triplinerve 0.51 Lauraceae Cryptocarya aschersoniana 0.57 Lauraceae Endlicheria bracteata 0.501 Lauraceae Endlicheria directonervia 0.56 Lauraceae Endlicheria dysodantha 0.501 Lauraceae Endlicheria formosa 0.504 Lauraceae Endlicheria griseo-sericea 0.56 Lauraceae Endlicheria klugii 0.487 Lauraceae Endlicheria krukovii 0.455 Lauraceae Endlicheria macrophylla 0.365 Lauraceae Endlicheria paniculata 0.682 Lauraceae Endlicheria ruforamula 0.501 Lauraceae Endlicheria williamsii 0.47 Lauraceae Licaria aurea 0.787 Lauraceae Licaria canella 0.787

100

Family Species Basic wood specific gravity (g cm-3) Lauraceae Licaria cannella 0.939 Lauraceae Licaria pucheri 0.786 Lauraceae Licaria triandra 0.631 Lauraceae Mezilaurus campaucola 0.715 Lauraceae Mezilaurus subcordata 0.748 Lauraceae Nectandra bicolor 0.53 Lauraceae Nectandra cissiflora 0.504 Lauraceae Nectandra cuneatocordata 0.504 Lauraceae Nectandra cuspidata 0.518 Lauraceae Nectandra globosa 0.39 Lauraceae Nectandra lineata 0.431 Lauraceae Nectandra longifolia 0.414 Lauraceae Nectandra membranacea 0.504 Lauraceae Nectandra pulverulenta 0.504 Lauraceae Nectandra reticulata 0.342 Lauraceae Nectandra turbacensis 0.545 Lauraceae Nectandra viburnoides 0.504 Lauraceae Nectandra yarinensis 0.504 Lauraceae Ocotea aciphylla 0.584 Lauraceae Ocotea bofo 0.514 Lauraceae Ocotea camphoromoea 0.514 Lauraceae Ocotea cernua 0.454 Lauraceae Ocotea cuprea 0.539 Lauraceae Ocotea glabriflora 0.71 Lauraceae Ocotea guianensis 0.53 Lauraceae Ocotea insularis 0.559 Lauraceae Ocotea javitensis 0.505 Lauraceae Ocotea leucoxylon 0.462 Lauraceae Ocotea longifolia 0.428 Lauraceae Ocotea oblonga 0.533 Lauraceae Ocotea obovata 0.539 Lauraceae Ocotea puberula 0.455 Lauraceae Ocotea rubrinervis 0.514 Lauraceae Ocotea tessmannii 0.514 Lauraceae Persea areolatocostae 0.515 Lauraceae Persea brevipes 0.515 Lauraceae Persea caerulea 0.437 Lauraceae Persea corymbosa 0.457 Lauraceae Persea ferruginea 0.563 Lauraceae Persea mutisii 0.541

101

Family Species Basic wood specific gravity (g cm-3) Lauraceae Persea nudigemma 0.515 Lauraceae Persea peruviana 0.444 Lauraceae Pleurothyrium cuneifolium 0.473 Lauraceae Pleurothyrium intermedium 0.47 Lauraceae Pleurothyrium krukovii 0.47 Lauraceae Pleurothyrium parviflorum 0.47 Lauraceae Pleurothyrium poeppigii 0.471 Lauraceae Pleurothyrium trianae 0.472 Lauraceae Pleurothyrium vasquezii 0.47 Lauraceae Pleurothyrium williamsii 0.47 Lauraceae Rhodostemonodaphne grandis 0.39 Lauraceae Rhodostemonodaphne kunthiana 0.479 Lecythidaceae Bertholletia excelsa 0.624 Lecythidaceae Cariniana decandra 0.58 Lecythidaceae Cariniana estrellensis 0.565 Lecythidaceae Couratari guianensis 0.507 Lecythidaceae Couratari macrosperma 0.67 Lecythidaceae Eschweilera albiflora 0.86 Lecythidaceae Eschweilera baguensis 0.855 Lecythidaceae Eschweilera coriacea 0.852 Lecythidaceae Eschweilera gigantea 0.78 Lecythidaceae Eschweilera juruensis 0.96 Lecythidaceae Eschweilera klugii 0.855 Lecythidaceae Gustavia augusta 0.65 Lecythidaceae Gustavia hexapetala 0.716 caracolito 0.638 Linaceae Hebepetalum humiriifolia 0.871 Linaceae Hebepetalum humiriifolium 0.871 Linaceae Roucheria columbiana 0.77 Linaceae Roucheria punctata 0.825 Loganiaceae Strychnos tarapotensis 0.54 Loranthaceae Gaiadendron punctatum 0.586 Lythraceae Lafoensia punicifolia 0.705 Lythraceae Physocalymma scaberrimum 0.705 Magnoliaceae Magnolia amazonica 0.608 Magnoliaceae Magnolia boliviana 0.618 Magnoliaceae Magnolia gilbertoi 0.628 Malpighiaceae Bunchosia argentea 0.65 Malpighiaceae Byrsonima arthropoda 0.62 Malpighiaceae Byrsonima poeppigiana 0.643

102

Family Species Basic wood specific gravity (g cm-3) Malvaceae Apeiba aspera 0.137 Malvaceae Apeiba glabra 0.32 Malvaceae Apeiba membranacea 0.255 Malvaceae Apeiba tibourbou 0.2 Malvaceae Cavanillesia umbellata 0.165 Malvaceae Ceiba insignis 0.285 Malvaceae Ceiba pentandra 0.335 Malvaceae Ceiba samauma 0.488 Malvaceae Chorisia insignis 0.292 Malvaceae Chorisia integrifolia 0.283 Malvaceae Eriotheca globosa 0.41 Malvaceae Guazuma crinita 0.44 Malvaceae Guazuma ulmifolia 0.533 Malvaceae Heliocarpus americanus 0.215 Malvaceae Huberodendron swietenioides 0.564 Malvaceae Luehea cymulosa 0.51 Malvaceae Lueheopsis duckeana 0.616 Malvaceae Matisia bicolor 0.516 Malvaceae Matisia cordata 0.49 Malvaceae Matisia malacocalyx 0.535 Malvaceae Matisia ochrocalyx 0.57 Malvaceae Matisia rhombifolia 0.542 Malvaceae Ochroma pyramidale 0.148 Malvaceae Pachira insignis 0.384 Malvaceae Pachira trinitensis 0.384 Malvaceae Pseudobombax septenatum 0.248 Malvaceae Pterygota amazonica 0.56 Malvaceae Quararibea guianensis 0.56 Malvaceae Quararibea ochrocalyx 0.488 Malvaceae Quararibea putumayensis 0.488 Malvaceae Quararibea wittii 0.532 Malvaceae Spirotheca rosea 0.33 Malvaceae Sterculia apetala 0.415 Malvaceae Sterculia peruviana 0.485 Malvaceae Sterculia rebeccae 0.49 Malvaceae Sterculia simplex 0.49 Malvaceae Sterculia tessmannii 0.49 Malvaceae Theobroma cacao 0.42 Malvaceae Theobroma speciosum 0.63 Malvaceae Theobroma subincanum 0.47

103

Family Species Basic wood specific gravity (g cm-3) Axinaea glandulosa 0.606 Melastomataceae Axinaea pennellii 0.606 Melastomataceae Bellucia aequiloba 0.59 Melastomataceae Bellucia grossularioides 0.598 Melastomataceae Bellucia pentamera 0.615 Melastomataceae Graffenrieda cucullata 0.64 Melastomataceae Meriania cuzcoana 0.49 Melastomataceae Miconia affinis 0.624 Melastomataceae Miconia alpina 0.74 Melastomataceae Miconia aristata 0.633 Melastomataceae Miconia astroplocama 0.545 Melastomataceae Miconia aulocalyx 0.66 Melastomataceae Miconia aurea 0.654 Melastomataceae Miconia axinaeoides 0.545 Melastomataceae Miconia barbeyana 0.531 Melastomataceae Miconia brachyanthera 0.579 Melastomataceae Miconia brevistylis 0.541 Melastomataceae Miconia bullata 0.638 Melastomataceae Miconia calophylla 0.468 Melastomataceae 0.42 Melastomataceae Miconia centrodesma 0.551 Melastomataceae Miconia cookii 0.676 Melastomataceae Miconia crassipes 0.548 Melastomataceae Miconia crassistigma 0.667 Melastomataceae Miconia cretacea 0.593 Melastomataceae Miconia dolichorrhyncha 0.624 Melastomataceae Miconia elongata 0.627 Melastomataceae Miconia impetiolaris 0.624 Melastomataceae Miconia lamprophylla 0.548 Melastomataceae Miconia longifolia 0.75 Melastomataceae Miconia madisonii 0.591 Melastomataceae Miconia modica 0.419 Melastomataceae Miconia peruviana 0.558 Melastomataceae 0.705 Melastomataceae Miconia punctata 0.624 Melastomataceae Miconia pyrifolia 0.624 Melastomataceae Miconia setulosa 0.658 Melastomataceae Miconia spennerostachya 0.556 Melastomataceae Miconia splendens 0.66 Melastomataceae Miconia stelligera 0.545

104

Family Species Basic wood specific gravity (g cm-3) Melastomataceae Miconia terborghii 0.593 Melastomataceae Miconia terera 0.553 Melastomataceae Miconia ternatifolia 0.62 Melastomataceae Miconia tetragona 0.629 Melastomataceae Miconia theizans 0.562 Melastomataceae 0.71 Melastomataceae Miconia trinervia 0.62 Melastomataceae Miconia triplinervis 0.624 Melastomataceae Mouriri apiranga 0.84 Melastomataceae Mouriri grandiflora 0.9 Melastomataceae Mouriri nervosa 0.84 Melastomataceae Mouriri nigra 0.895 Melastomataceae Mouriri peruviana 0.84 Melastomataceae dimorphophylla 0.635 Cabralea canjerana 0.478 Meliaceae fissilis 0.437 Meliaceae Cedrela odorata 0.427 Meliaceae Guarea glabra 0.503 Meliaceae Guarea gomma 0.65 Meliaceae Guarea guidonia 0.565 Meliaceae Guarea kunthiana 0.645 Meliaceae Guarea macrophylla 0.528 Meliaceae Guarea pterorhachis 0.77 Meliaceae Guarea silvatica 0.605 Meliaceae Ruagea glabra 0.47 Meliaceae Ruagea subviridiflora 0.529 Meliaceae adolfi 0.657 Meliaceae Trichilia areolata 0.657 Meliaceae Trichilia elegans 0.657 Meliaceae Trichilia euneura 0.657 Meliaceae Trichilia havanensis 0.622 Meliaceae Trichilia maynasiana 0.69 Meliaceae Trichilia micrantha 0.613 Meliaceae Trichilia pachypoda 0.657 Meliaceae Trichilia pallida 0.68 Meliaceae Trichilia pleeana 0.675 Meliaceae Trichilia poeppigii 0.657 Meliaceae Trichilia quadrijuga 0.548 Meliaceae Trichilia rubra 0.585 Meliaceae Trichilia schomburgkii 0.687

105

Family Species Basic wood specific gravity (g cm-3) Meliaceae Trichilia septentrionalis 0.654 Meliaceae Trichilia solitudinis 0.657 Monimiaceae Mollinedia caudata 0.612 Monimiaceae Mollinedia killipii 0.61 Monimiaceae Mollinedia lanceolata 0.63 Monimiaceae Mollinedia ovata 0.591 Monimiaceae Mollinedia repanda 0.61 Monimiaceae Mollinedia simulans 0.61 Monimiaceae Mollinedia tomentosa 0.61 Monimiaceae Siparuna decipiens 0.612 amazonicus 0.533 Moraceae Batocarpus costaricensis 0.533 Moraceae alicastrum 0.6 Moraceae Brosimum guianense 0.844 Moraceae Brosimum lactescens 0.656 Moraceae Brosimum parinarioides 0.631 Moraceae Brosimum rubescens 0.825 Moraceae Brosimum utile 0.507 Moraceae ulei 0.568 Moraceae biflora 0.497 Moraceae Clarisia racemosa 0.565 Moraceae americana 0.542 Moraceae Ficus apollinaris 0.493 Moraceae Ficus boliviana 0.493 Moraceae Ficus casapiensis 0.394 Moraceae Ficus cervantesiana 0.482 Moraceae Ficus citrifolia 0.4 Moraceae Ficus coerulescens 0.401 Moraceae Ficus crocata 0.474 Moraceae Ficus cuatrecasana 0.401 Moraceae Ficus donnell-smithii 0.493 Moraceae Ficus ecuadorensis 0.482 Moraceae Ficus erythrosticta 0.394 Moraceae Ficus gomelleira 0.396 Moraceae Ficus insipida 0.346 Moraceae Ficus juruensis 0.394 Moraceae Ficus killipii 0.394 Moraceae Ficus macbridei 0.533 Moraceae Ficus mathewsii 0.385 Moraceae Ficus maxima 0.556

106

Family Species Basic wood specific gravity (g cm-3) Moraceae Ficus obtusifolia 0.482 Moraceae Ficus pallida 0.493 Moraceae Ficus perforata 0.394 Moraceae Ficus pertusa 0.42 Moraceae Ficus schippii 0.493 Moraceae Ficus schultesii 0.394 Moraceae Ficus sphenophylla 0.493 Moraceae Ficus tonduzii 0.527 Moraceae Ficus tovarensis 0.482 Moraceae Ficus trapezicola 0.482 Moraceae Ficus trigona 0.394 Moraceae Ficus ypsilophlebia 0.394 Moraceae elegans 0.65 Moraceae Helicostylis tomentosa 0.627 Moraceae tinctoria 0.733 Moraceae calophylla 0.62 Moraceae Maquira guianensis 0.766 Moraceae insignis 0.559 Moraceae concinna 0.67 Moraceae Naucleopsis krukovii 0.651 Moraceae Naucleopsis pseudonaga 0.651 Moraceae Naucleopsis ternstroemiiflora 0.612 Moraceae Naucleopsis ulei 0.67 Moraceae Olmedia aspera 0.579 Moraceae angustifolia 0.517 Moraceae Perebea guianensis 0.563 Moraceae Perebea tessmannii 0.501 Moraceae Perebea xanthochyma 0.56 Moraceae armata 0.503 Moraceae Pseudolmedia laevigata 0.582 Moraceae Pseudolmedia laevis 0.618 Moraceae Pseudolmedia macrophylla 0.66 Moraceae Pseudolmedia murure 0.67 Moraceae Pseudolmedia rigida 0.669 Moraceae briquetii 0.649 Moraceae Sorocea hirtella 0.578 Moraceae Sorocea pileata 0.578 Moraceae Sorocea steinbachii 0.578 Moraceae caucana 0.47 Moraceae Trophis scandens 0.574

107

Family Species Basic wood specific gravity (g cm-3) Myricaceae Morella pubescens 0.596 Iryanthera juruensis 0.633 Myristicaceae Iryanthera laevis 0.615 Myristicaceae Iryanthera olacoides 0.598 Myristicaceae Iryanthera tessmannii 0.598 Myristicaceae Otoba parvifolia 0.426 Myristicaceae calophylla 0.395 Myristicaceae Virola decorticans 0.478 Myristicaceae Virola duckei 0.382 Myristicaceae Virola elongata 0.523 Myristicaceae Virola flexuosa 0.51 Myristicaceae Virola loretensis 0.478 Myristicaceae Virola minutiflora 0.441 Myristicaceae Virola mollissima 0.478 Myristicaceae Virola multinervia 0.615 Myristicaceae Virola pavonis 0.587 Myristicaceae Virola peruviana 0.478 Myristicaceae Virola sebifera 0.403 Myristicaceae Virola surinamensis 0.418 densiflora 0.86 Myrtaceae Calyptranthes longifolia 0.86 Myrtaceae Calyptranthes paniculata 0.86 Myrtaceae Eugenia acrensis 0.737 Myrtaceae Eugenia biflora 0.8 Myrtaceae Eugenia feijoi 0.789 Myrtaceae Eugenia florida 0.855 Myrtaceae Eugenia myrobalana 0.737 Myrtaceae Eugenia punicifolia 0.737 Myrtaceae Eugenia riparia 0.737 Myrtaceae Eugenia uniflora 0.737 Myrtaceae Myrcia aliena 0.738 Myrtaceae Myrcia atrorufa 0.733 Myrtaceae Myrcia egensis 0.706 Myrtaceae Myrcia fallax 0.713 Myrtaceae Myrcia floribunda 0.806 Myrtaceae Myrcia guianensis 0.806 Myrtaceae Myrcia magnifolia 0.809 Myrtaceae Myrcia mollis 0.708 Myrtaceae Myrcia paivae 0.774 Myrtaceae Myrcia rostrata 0.754

108

Family Species Basic wood specific gravity (g cm-3) Myrtaceae Myrcia splendens 0.604 Myrtaceae Myrciaria amazonica 0.658 Myrtaceae Psidium acutangulum 0.74 Myrtaceae Siphoneugena densiflora 0.755 Nyctaginaceae Guapira noxia 0.492 Nyctaginaceae Neea altissima 0.64 Nyctaginaceae Neea chlorantha 0.64 Nyctaginaceae Neea dimorphophylla 0.664 Nyctaginaceae Neea divaricata 0.444 Nyctaginaceae Neea floribunda 0.62 Nyctaginaceae Neea laxa 0.679 Nyctaginaceae Neea macrophylla 0.64 Nyctaginaceae Neea oppositifolia 0.893 Nyctaginaceae Neea ovalifolia 0.77 Nyctaginaceae Neea parviflora 0.64 Nyctaginaceae Neea spruceana 0.64 Nyctaginaceae Neea verticillata 0.64 Nyctaginaceae Neea virens 0.519 Ochnaceae Lacunaria jenmanii 0.803 Ochnaceae Ouratea castaneifolia 0.77 Ochnaceae Ouratea iquitosensis 0.774 Ochnaceae Quiina amazonica 0.92 Ochnaceae Quiina florida 0.728 Ochnaceae Quiina nitens 0.862 Ochnaceae Quiina paraensis 0.862 Ochnaceae Quiina peruviana 0.862 Olacaceae Heisteria acuminata 0.696 Olacaceae Heisteria duckei 0.696 Olacaceae Heisteria nitida 0.696 Olacaceae Heisteria ovata 0.54 Olacaceae Heisteria spruceana 0.73 Olacaceae Minquartia guianensis 0.787 Opiliaceae Agonandra peruviana 0.645 Opiliaceae Agonandra silvatica 0.831 Pentaphylacaceae Freziera angulosa 0.599 Pentaphylacaceae Freziera dudleyi 0.599 Pentaphylacaceae Freziera karsteniana 0.585 Pentaphylacaceae Freziera lanata 0.613 Pentaphylacaceae Ternstroemia brachypoda 0.696 Pentaphylacaceae Ternstroemia globiflora 0.69

109

Family Species Basic wood specific gravity (g cm-3) Peraceae Pera benensis 0.666 Peraceae Pera tomentosa 0.666 alchorneoides 0.631 Phyllanthaceae Hieronyma andina 0.507 Phyllanthaceae Hieronyma duquei 0.7 Phyllanthaceae Hieronyma fendleri 0.629 Phyllanthaceae Hieronyma laxiflora 0.55 Phyllanthaceae Hieronyma macrocarpa 0.603 Phyllanthaceae Hieronyma oblonga 0.603 Phyllanthaceae Margaritaria nobilis 0.595 Phyllanthaceae Phyllanthus attenuatus 0.587 Phyllanthaceae Phyllanthus juglandifolius 0.587 Phyllanthaceae Richeria grandis 0.678 Phytolaccaceae Gallesia integrifolia 0.48 Picramniaceae Picramnia juniniana 0.594 Picramniaceae Picramnia latifolia 0.532 Piperaceae Piper coruscans 0.33 Piperaceae Piper obliquum 0.33 Piperaceae Piper reticulatum 0.33 oleifolius 0.551 Podocarpaceae Prumnopitys harmsiana 0.57 Podocarpaceae Retrophyllum rospigliosii 0.56 Polygalaceae Monnina connectisepala 0.582 Polygonaceae Coccoloba densifrons 0.58 Polygonaceae Coccoloba lehmannii 0.58 Polygonaceae Coccoloba lepidota 0.675 Polygonaceae Coccoloba mollis 0.52 Polygonaceae Coccoloba peruviana 0.675 Polygonaceae Coccoloba warmingii 0.675 Polygonaceae Coccoloba williamsii 0.675 Polygonaceae Ruprechtia tangarana 0.635 Polygonaceae Triplaris americana 0.49 Polygonaceae Triplaris peruviana 0.515 Polygonaceae Triplaris poeppigiana 0.49 Polygonaceae Triplaris setosa 0.524 Polygonaceae Triplaris weigeltiana 0.486 Cybianthus comperuvianus 0.731 Primulaceae Geissanthus ambigua 0.535 Primulaceae Myrsine andina 0.796 Primulaceae Myrsine coriacea 0.702

110

Family Species Basic wood specific gravity (g cm-3) Primulaceae Myrsine dependens 0.71 Primulaceae Myrsine manglilla 0.685 Primulaceae Myrsine pellucida 0.653 Primulaceae Myrsine youngii 0.76 Primulaceae Stylogyne ambigua 0.43 Primulaceae Stylogyne cauliflora 0.535 Proteaceae Panopsis pearcei 0.482 Proteaceae Roupala monosperma 0.8 Proteaceae Roupala montana 0.8 Puntranjavaceae Drypetes amazonica 0.67 Putranjivaceae Drypetes amazonica 0.67 Putranjivaceae Drypetes gentryi 0.712 Rhamnaceae Rhamnidium elaeocarpum 0.92 Rhamnaceae Ziziphus cinnamomum 0.835 Hesperomeles ferruginea 0.766 Rosaceae 0.694 Rosaceae Polylepis sericea 0.732 Rosaceae Prunus debilis 0.856 Rosaceae Prunus detrita 0.7 Rosaceae Prunus herthae 0.634 Rosaceae Prunus huantensis 0.75 Rosaceae Prunus integrifolia 0.657 Rosaceae Prunus pleiantha 0.645 Rosaceae Prunus stipulata 0.645 Rosaceae Prunus vana 0.856 Alibertia bertierifolia 0.683 Rubiaceae Alibertia latifolia 0.683 Rubiaceae Alseis blackiana 0.536 Rubiaceae Alseis microcarpa 0.679 Rubiaceae Amaioua corymbosa 0.625 Rubiaceae Amaioua guianensis 0.625 Rubiaceae Bathysa australis 0.64 Rubiaceae Bathysa peruviana 0.64 Rubiaceae Calycophyllum acreanum 0.8 Rubiaceae Calycophyllum megistocaulum 0.72 Rubiaceae Calycophyllum spruceanum 0.605 Rubiaceae Capirona decorticans 0.593 Rubiaceae Chimarrhis glabriflora 0.716 Rubiaceae Chimarrhis hookeri 0.71 Rubiaceae Chomelia apodantha 0.557

111

Family Species Basic wood specific gravity (g cm-3) Rubiaceae Chomelia tenuiflora 0.557 Rubiaceae calisaya 0.551 Rubiaceae Cinchona macrocalyx 0.545 Rubiaceae Cinchona micrantha 0.545 Rubiaceae 0.54 Rubiaceae Condaminea corymbosa 0.619 Rubiaceae Coussarea brevicaulis 0.679 Rubiaceae Coussarea ecuadorensis 0.681 Rubiaceae Coussarea hirticalyx 0.645 Rubiaceae Coussarea klugii 0.677 Rubiaceae Coussarea paniculata 0.679 Rubiaceae Dialypetalanthus fuscescens 0.628 Rubiaceae Dioicodendron dioicum 0.614 Rubiaceae Elaeagia mariae 0.521 Rubiaceae Elaeagia myriantha 0.508 Rubiaceae Elaeagia utilis 0.418 Rubiaceae Faramea bangii 0.618 Rubiaceae Faramea candelabrum 0.649 Rubiaceae Faramea cf. verticillata 0.61 Rubiaceae Faramea glandulosa 0.584 Rubiaceae Faramea maynensis 0.584 Rubiaceae Faramea occidentalis 0.584 Rubiaceae Faramea tamberlikiana 0.618 Rubiaceae Faramea torquata 0.618 Rubiaceae Ferdinandusa chlorantha 0.723 Rubiaceae Ferdinandusa guainiae 0.723 Rubiaceae Genipa americana 0.64 Rubiaceae Guettarda crispiflora 0.42 Rubiaceae Guettarda tournefortiopsis 0.42 Rubiaceae Hillia parasitica 0.599 Rubiaceae Isertia laevis 0.52 Rubiaceae Ixora peruviana 0.628 Rubiaceae Joosia umbellifera 0.465 Rubiaceae Ladenbergia oblongifolia 0.615 Rubiaceae Macrocnemum roseum 0.45 Rubiaceae Palicourea amethystina 0.505 Rubiaceae Palicourea guianensis 0.54 Rubiaceae Palicourea lineata 0.505 Rubiaceae Palicourea stipularis 0.47 Rubiaceae Palicourea sulphurea 0.505

112

Family Species Basic wood specific gravity (g cm-3) Rubiaceae Palicourea tinctoria 0.505 Rubiaceae Pentagonia parvifolia 0.628 Rubiaceae Posoqueria coriacea 0.584 Rubiaceae Posoqueria latifolia 0.584 Rubiaceae Psychotria allenii 0.516 Rubiaceae Psychotria conephoroides 0.516 Rubiaceae Psychotria pichisensis 0.516 Rubiaceae Randia armata 0.69 Rubiaceae Rudgea cornifolia 0.57 Rubiaceae Rudgea verticillata 0.57 Rubiaceae Rustia rubra 0.628 Rubiaceae Schizocalyx obovatus 0.628 Rubiaceae Schizocalyx peruvianus 0.628 Rubiaceae Simira catappifolia 0.678 Rubiaceae Simira rubescens 0.8 Rubiaceae Warszewiczia coccinea 0.557 Rubiaceae Warszewiczia cordata 0.58 Rutaceae Galipea trifoliata 0.784 Rutaceae Metrodorea flavida 0.784 Rutaceae Zanthoxylum acreanum 0.586 Rutaceae Zanthoxylum caribaeum 0.76 Rutaceae Zanthoxylum ekmanii 0.586 Rutaceae Zanthoxylum rhoifolium 0.505 Rutaceae Zanthoxylum riedelianum 0.48 Rutaceae Zanthoxylum setulosum 0.385 Rutaceae Zanthoxylum sprucei 0.586 Rutaceae Zanthoxylum weberbaueri 0.586 Sabiaceae Meliosma boliviensis 0.794 Sabiaceae Meliosma frondosa 0.706 Sabiaceae Meliosma glabrata 0.502 Sabiaceae Meliosma herbertii 0.42 Sabiaceae Meliosma pumila 0.67 Sabiaceae Meliosma vasquezii 0.67 Salicaceae Banara guianensis 0.61 Salicaceae Casearia arborea 0.441 Salicaceae Casearia corymbosa 0.622 Salicaceae Casearia decandra 0.647 Salicaceae Casearia gossypiosperma 0.68 Salicaceae Casearia javitensis 0.753 Salicaceae Casearia megacarpa 0.656

113

Family Species Basic wood specific gravity (g cm-3) Salicaceae Casearia singularis 0.68 Salicaceae Casearia sylvestris 0.673 Salicaceae Casearia tachirensis 0.482 Salicaceae Casearia ulmifolia 0.596 Salicaceae Casearia zahlbruckneri 0.623 Salicaceae Hasseltia floribunda 0.58 Salicaceae Laetia corymbulosa 0.59 Salicaceae Laetia procera 0.648 Salicaceae Laetia suaveolens 0.64 Salicaceae Lunania parviflora 0.635 Salicaceae Tetrathylacium macrophyllum 0.62 Salicaceae Xylosma intermedia 0.77 Sapindaceae Allophylus divaricatus 0.559 Sapindaceae Allophylus floribundus 0.39 Sapindaceae Allophylus glabratus 0.491 Sapindaceae Allophylus loretensis 0.491 Sapindaceae Allophylus pilosus 0.491 Sapindaceae Allophylus punctatus 0.531 Sapindaceae Allophylus scrobiculatus 0.53 Sapindaceae Cupania rubiginosa 0.732 Sapindaceae Cupania scrobiculata 0.628 Sapindaceae Matayba arborescens 0.697 Sapindaceae Matayba guianensis 0.729 Sapindaceae Matayba macrocarpa 0.771 Sapindaceae Matayba purgans 0.771 Sapindaceae Matayba scrobiculata 0.729 Sapindaceae Pseudima frutescens 0.8 Sapindaceae Sapindus saponaria 0.743 Sapindaceae Talisia cerasina 0.827 Sapindaceae Talisia cupularis 0.827 Sapindaceae Talisia hexaphylla 0.827 Sapindaceae Talisia mollis 0.827 Sapindaceae Toulicia reticulata 0.608 Chrysophyllum acreanum 0.671 Sapotaceae Chrysophyllum amazonicum 0.826 Sapotaceae Chrysophyllum argenteum 0.784 Sapotaceae Chrysophyllum lucentifolium 0.787 Sapotaceae Chrysophyllum manaosense 0.75 Sapotaceae Chrysophyllum ovale 0.787 Sapotaceae Chrysophyllum pomiferum 0.766

114

Family Species Basic wood specific gravity (g cm-3) Sapotaceae Chrysophyllum sanguinolentum 0.671 Sapotaceae Chrysophyllum venezuelanense 0.787 Sapotaceae Diploon cuspidatum 0.85 Sapotaceae Ecclinusa guianensis 0.627 Sapotaceae Ecclinusa lanceolata 0.581 Sapotaceae Ecclinusa lancifolia 0.655 Sapotaceae Ecclinusa ramiflora 0.645 Sapotaceae Elaeoluma nuda 0.784 Sapotaceae bidentata 0.87 Sapotaceae Manilkara inundata 0.8 Sapotaceae Manilkara surinamensis 0.868 Sapotaceae Micropholis egensis 0.6 Sapotaceae Micropholis guyanensis 0.657 Sapotaceae Micropholis melinoniana 0.53 Sapotaceae Micropholis venulosa 0.67 Sapotaceae Pouteria bangii 0.758 Sapotaceae Pouteria bilocularis 0.708 Sapotaceae Pouteria boliviana 0.758 Sapotaceae 0.784 Sapotaceae Pouteria cladantha 0.942 Sapotaceae Pouteria coriacea 0.895 Sapotaceae Pouteria cuspidata 0.9 Sapotaceae Pouteria durlandii 0.69 Sapotaceae Pouteria ephedrantha 0.758 Sapotaceae Pouteria eugeniifolia 1.113 Sapotaceae Pouteria franciscana 0.6 Sapotaceae Pouteria guianensis 0.93 Sapotaceae Pouteria juruana 0.758 Sapotaceae Pouteria krukovii 0.758 Sapotaceae Pouteria lucentifolia 0.758 Sapotaceae Pouteria macrophylla 0.737 Sapotaceae Pouteria pariry 0.758 Sapotaceae Pouteria plicata 0.728 Sapotaceae Pouteria procera 0.758 Sapotaceae Pouteria rata 0.758 Sapotaceae Pouteria reticulata 0.794 Sapotaceae Pouteria sagotiana 0.865 Sapotaceae Pouteria simulans 0.758 Sapotaceae Pouteria tarapotensis 0.758 Sapotaceae 0.692

115

Family Species Basic wood specific gravity (g cm-3) Sapotaceae Pouteria trilocularis 0.672 Sapotaceae Sarcaulus brasiliensis 0.615 montana 0.498 Simaroubaceae Simaba paraensis 0.41 Simaroubaceae Simaba polyphylla 0.41 Simaroubaceae Simarouba amara 0.383 Siparunaceae Siparuna aspera 0.648 Siparunaceae Siparuna bifida 0.662 Siparunaceae Siparuna crassiflora 0.662 Siparunaceae Siparuna cuspidata 0.655 Siparunaceae Siparuna decipiens 0.641 Siparunaceae Siparuna subinodora 0.662 Siparunaceae Siparuna tomentosa 0.648 conglomeratum 0.505 Solanaceae Cestrum megalophyllum 0.457 Solanaceae Markea ulei 0.482 Solanaceae Saracha punctata 0.563 Solanaceae Sessea dependens 0.659 Solanaceae Solanum aphyodendron 0.447 Solanaceae Solanum endopogon 0.28 Solanaceae Solanum maturecalvans 0.447 Solanaceae Solanum nutans 0.447 Turpinia occidentalis 0.547 Strelitziaceae Phenakospermum guyannense 0.594 Styracaceae Styrax foveolaria 0.527 Styracaceae Styrax pentlandianus 0.527 Symplocaceae Symplocos arechea 0.422 Symplocaceae Symplocos baehnii 0.62 Symplocaceae Symplocos fuliginosa 0.403 Symplocaceae Symplocos mezii 0.59 Symplocaceae Symplocos psiloclada 0.601 Symplocaceae Symplocos quitensis 0.518 Symplocaceae Symplocos reflexa 0.579 Symplocaceae Symplocos spruceana 0.59 Huertea glandulosa 0.429 Theaceae Gordonia fruticosa 0.551 Theaceae Gordonia pubescens 0.518 Ulmaceae Ampelocera edentula 0.7 Ulmaceae Ampelocera ruizii 0.648 Ulmaceae Ampelocera verrucosa 0.726

116

Family Species Basic wood specific gravity (g cm-3) Urticaceae Cecropia angustifolia 0.505 Urticaceae Cecropia engleriana 0.49 Urticaceae Cecropia ficifolia 0.266 Urticaceae Cecropia latiloba 0.33 Urticaceae Cecropia membranacea 0.33 Urticaceae Cecropia polystachya 0.312 Urticaceae Cecropia sciadophylla 0.374 Urticaceae Cecropia tessmannii 0.312 Urticaceae Coussapoa ovalifolia 0.462 Urticaceae Coussapoa trinervia 0.462 Urticaceae Coussapoa villosa 0.616 Urticaceae Myriocarpa stipitata 0.269 Urticaceae Pourouma bicolor 0.331 Urticaceae Pourouma cecropiifolia 0.356 Urticaceae Pourouma cucura 0.394 Urticaceae Pourouma cuspidata 0.394 Urticaceae Pourouma guianensis 0.38 Urticaceae Pourouma herrerensis 0.379 Urticaceae Pourouma minor 0.427 Urticaceae Pourouma mollis 0.328 Urticaceae Pourouma palmata 0.394 Urticaceae Pourouma substrigosa 0.394 Urticaceae Pourouma tomentosa 0.395 Urticaceae Urera baccifera 0.18 Urticaceae Urera capitata 0.413 Urticaceae Urera caracasana 0.18 Urticaceae Urera lianoides 0.18 Urticaceae Urera simplex 0.18 Violaceae Gloeospermum sphaerocarpum 0.665 Violaceae Leonia crassa 0.65 Violaceae Leonia glycycarpa 0.6 Violaceae Leonia racemosa 0.633 Violaceae Rinorea apiculata 0.668 Violaceae Rinorea flavescens 0.63 Violaceae Rinorea guianensis 0.78 Violaceae Rinorea lindeniana 0.68 Violaceae Rinorea pubiflora 0.75 Violaceae Rinorea viridifolia 0.515 Violaceae Rinoreocarpus ulei 0.665 Vochysiaceae Qualea paraensis 0.672

117

Family Species Basic wood specific gravity (g cm-3) Vochysiaceae Vochysia biloba 0.476 Vochysiaceae Vochysia kosnipatae 0.476 Vochysiaceae Vochysia leguiana 0.476 Vochysiaceae Vochysia majuscula 0.459

118

Appendix II -Table S2. Statistical moments of mean wood density (g cm-3) distribution on species and stem levels for 41 permanents

plots across the Andes-to-Amazon elevational gradient.

Species level Stem level

Elevation All arborescent life forms Trees All arborescent life forms Trees Plot (m) mean sd skewness kurtosis mean sd skewness kurtosis mean sd skewness kurtosis mean sd skewness kurtosis

APK-01 3625 0.654 0.084 -0.415 -0.984 0.654 0.084 -0.415 -0.984 0.653 0.067 0.085 -1.355 0.653 0.067 0.085 -1.355

ACJ-01 3537 0.635 0.071 0.360 -0.250 0.635 0.071 0.360 -0.250 0.596 0.065 0.451 -0.862 0.596 0.065 0.451 -0.862

TRU-01 3450 0.589 0.115 -0.798 0.065 0.603 0.101 -0.835 0.756 0.600 0.069 -1.114 2.390 0.604 0.061 -0.676 1.195

119 TRU-02 3250 0.567 0.113 -0.480 -0.267 0.591 0.091 -0.340 0.507 0.600 0.103 -0.876 0.529 0.611 0.091 -0.878 1.211

TRU-03 3000 0.587 0.122 -0.618 -0.061 0.612 0.098 -0.529 1.002 0.650 0.088 -0.596 2.926 0.658 0.074 0.368 1.683

WAY-01 3000 0.589 0.107 -0.515 -0.022 0.602 0.093 -0.286 -0.015 0.628 0.066 -1.046 3.475 0.629 0.065 -0.944 3.229

ESP-01 2890 0.573 0.125 -0.424 -0.253 0.594 0.108 -0.444 0.621 0.614 0.089 -1.591 2.815 0.628 0.066 -1.238 3.756

TRU-04 2750 0.562 0.117 -0.576 -0.328 0.594 0.090 -0.607 1.382 0.561 0.130 -0.566 -0.969 0.618 0.078 -0.546 0.386

TRU-05 2500 0.558 0.146 0.220 -0.166 0.601 0.122 0.385 0.952 0.463 0.136 0.728 -0.772 0.586 0.098 0.056 0.195

TRU-06 2250 0.518 0.136 0.014 -0.787 0.559 0.120 -0.348 0.336 0.456 0.137 0.807 -0.768 0.556 0.124 -0.228 -0.699

TRU-07 2000 0.561 0.123 -0.401 -0.379 0.584 0.106 -0.492 0.619 0.564 0.139 -0.330 -1.128 0.623 0.096 -0.496 0.148

TRU-08 1800 0.562 0.123 0.105 -0.305 0.577 0.114 0.169 -0.040 0.547 0.143 0.189 -1.057 0.599 0.116 0.244 -1.014

SPD-01 1750 0.560 0.129 0.553 0.856 0.571 0.122 0.704 1.180 0.521 0.144 0.086 -0.398 0.569 0.115 0.255 0.775

CAL-01 1500 0.518 0.118 0.160 1.152 0.521 0.118 0.131 1.251 0.517 0.118 -0.359 0.854 0.517 0.118 -0.375 0.895

Species level Stem level

Elevation All arborescent life forms Trees All arborescent life forms Trees Plot (m) mean sd skewness kurtosis mean sd skewness kurtosis mean sd skewness kurtosis mean sd skewness kurtosis

SAI-01 1500 0.552 0.119 0.335 0.950 0.559 0.115 0.410 1.160 0.553 0.119 0.448 0.111 0.559 0.117 0.472 0.143

SPD-02 1500 0.538 0.127 0.276 1.167 0.546 0.123 0.268 1.515 0.499 0.124 0.535 0.649 0.513 0.119 0.538 0.949

CAL-02 1250 0.534 0.140 0.415 1.792 0.536 0.138 0.461 1.889 0.545 0.111 -0.285 1.676 0.545 0.110 -0.271 1.686

SAI-02 1250 0.553 0.121 0.050 0.784 0.563 0.115 0.115 1.211 0.497 0.147 0.020 -0.217 0.555 0.112 0.354 1.289

TON-02 1000 0.549 0.132 0.464 0.258 0.558 0.126 0.606 0.283 0.529 0.118 0.514 0.523 0.534 0.115 0.605 0.563

PAN-03 850 0.616 0.140 0.057 -0.620 0.620 0.138 0.082 -0.610 0.622 0.150 0.310 -0.085 0.622 0.150 0.316 -0.075

TON-01 800 0.594 0.135 0.358 -0.037 0.601 0.131 0.402 0.051 0.586 0.134 0.591 0.472 0.589 0.132 0.621 0.543

120

PAN-02 595 0.606 0.148 0.371 0.005 0.608 0.146 0.429 -0.020 0.577 0.171 0.763 -0.053 0.577 0.171 0.770 -0.053

PAN-01 425 0.564 0.143 0.265 -0.226 0.570 0.138 0.381 -0.271 0.551 0.182 0.625 0.041 0.577 0.168 0.849 0.150

ALM-01 400 0.591 0.153 -0.349 -0.220 0.599 0.148 -0.355 -0.105 0.542 0.164 -0.232 -0.690 0.580 0.143 -0.329 -0.106

MNU-08 400 0.594 0.139 -0.114 -0.294 0.599 0.136 -0.116 -0.261 0.489 0.147 0.061 -0.438 0.550 0.120 0.274 0.079

BAB-01 387 0.574 0.151 -0.285 0.007 0.582 0.146 -0.280 0.181 0.521 0.168 -0.062 -0.650 0.563 0.149 -0.127 -0.168

MNU-04 358 0.587 0.145 -0.303 -0.290 0.593 0.140 -0.283 -0.253 0.541 0.150 -0.348 -0.545 0.580 0.128 -0.479 0.197

MNU-05 347 0.578 0.134 -0.237 -0.354 0.582 0.132 -0.232 -0.316 0.536 0.131 0.176 -0.230 0.551 0.128 0.208 -0.390

MNU-06 345 0.571 0.135 -0.045 -0.348 0.578 0.132 -0.042 -0.287 0.517 0.140 -0.086 -0.482 0.559 0.121 0.004 -0.355

MNU-03 312 0.582 0.144 -0.153 -0.274 0.588 0.142 -0.155 -0.232 0.518 0.149 -0.251 -0.579 0.552 0.131 -0.332 0.073

TAM-07 225 0.617 0.145 -0.281 -0.492 0.619 0.142 -0.205 -0.605 0.602 0.146 0.024 -0.893 0.602 0.145 0.069 -0.930

Species level Stem level

Elevation All arborescent life forms Trees All arborescent life forms Trees Plot (m) mean sd skewness kurtosis mean sd skewness kurtosis mean sd skewness kurtosis mean sd skewness kurtosis

TAM-05 220 0.620 0.148 0.079 -0.319 0.623 0.145 0.145 -0.356 0.600 0.149 0.127 -0.604 0.606 0.144 0.227 -0.676

TAM-08 220 0.603 0.142 -0.054 -0.822 0.606 0.139 0.009 -0.889 0.583 0.151 -0.372 -0.287 0.614 0.123 -0.002 -0.261

TAM-01 205 0.609 0.147 -0.152 -0.271 0.616 0.140 0.026 -0.474 0.504 0.187 0.008 -1.180 0.601 0.131 -0.111 -0.039

TAM-02 201 0.593 0.142 -0.110 -0.367 0.599 0.137 -0.010 -0.424 0.520 0.174 -0.147 -1.109 0.604 0.123 -0.346 0.112

TAM-06 200 0.581 0.143 -0.051 -0.171 0.591 0.138 -0.023 -0.102 0.484 0.175 -0.012 -1.072 0.574 0.125 -0.150 0.275

TAM-09 197 0.610 0.144 -0.088 -0.205 0.614 0.139 0.036 -0.315 0.567 0.167 -0.427 -0.530 0.619 0.122 -0.119 0.032

CUZ-01 190 0.558 0.164 -0.291 -0.007 0.567 0.160 -0.337 0.227 0.502 0.169 -0.378 -0.472 0.518 0.168 -0.594 -0.125

121

CUZ-02 190 0.571 0.143 -0.208 -0.162 0.579 0.137 -0.151 -0.076 0.529 0.149 -0.414 -0.542 0.585 0.105 -0.245 0.987

CUZ-03 190 0.588 0.151 -0.238 -0.243 0.595 0.147 -0.256 -0.081 0.551 0.150 -0.485 -0.249 0.593 0.118 -0.505 1.287

CUZ-04 190 0.585 0.137 -0.076 0.264 0.593 0.130 0.054 0.313 0.576 0.136 -0.027 -0.021 0.607 0.118 0.119 0.424

APPENDIX II – FIGURE S1

122

APPENDIX II – FIGURE S2

(a) (b)

(c) (d)

123

APPENDIX II – FIGURE S3

(a) (b) 0.3 % 0.0 % 18.9 % 33.2 % 11.6 %

28.5 %

47.1 %

26.9 %

14.0 % 19.4 %

124

APPENDIX II – FIGURE S4

125

APPENDIX I APPENDIX

126

I

FIGURE

S5

APPENDIX II – FIGURE S6

(a)

(b)

127

APPENDIX II – FIGURE S7

128

CHAPTER III

MOVEMENT OR MORTALITY? PERVASIVE BUT SLOW UPSLOPE TREE

MIGRATION IN THE AMAZON TO THE ANDES REVEALED THROUGH 38

YEARS OF FOREST MONITORING

Abstract

Climate change is thought to be causing species distributional shifts along environmental gradients leading to novel species assemblages, but evidence for those shifts in the Andes is scarce and is almost nonexistent for the Amazon. Based on permanent forest plots with data of 41,352 stems and 1,896 tree species during 38 years of monitoring, we assess the community-level shift in species composition towards taxa that have warmer mean ranges (community thermophilization) and species-level distributional shifts (thermal migration) along a 3500 m elevational gradient in Eastern

Peru. Results showed that the Amazonian tree community’s response to climate change is weak to nonexistent, with a mean migration rate of -0.00021 °C yr-1 based on individuals and +0.00024 °C yr-1 based on basal area. For Andean trees, migration was slow but present, at least on average, with +0.0062 °C yr-1 to +0.0044 °C yr-1 in terms of individuals and basal area basis respectively. However, “migration” or

“thermophilization” results are mainly explained by increases in tree mortality at warmer parts of their ranges rather than “true” shifts of entire ranges upslope. The observed

129 migration was also variable and heterogeneous across both elevation and time for thermophilization, with rates in single plots ranging from -0.0207 to +0.0257 °C yr-1 across years, again with much of the thermal migration being explained by mortality of taxa at the warm end of their ranges in response to episodic drought. Species responses varied across space and time as well, with rates ranging from -0.0319 to +0.0355 °C yr-1, demonstrating the idiosyncratic response of each taxon to warming and drought events.

The observed lag in tree migration is out of equilibrium with current climate change increasing the “climatic debt” or migration that must happen for species to remain in equilibrium with climate in tropical forests.

Keywords: Climate change, community assembly, thermal niches, range shifts, tropical biodiversity, species migration, global warming

130

Introduction

Changes in species ranges in response to climate is one of the central processes in population biology. Paleoecological studies have shown vast plant species migrations across environmental gradients, and wholescale reassortment of communities due to climate changes (Davis 1969, Jackson and Overpeck 2000, Williams and Jackson 2007).

A key question to understand plant responses to ongoing global warming is how to reconcile the millennial-scale results that we see in the paleoecological record—the pattern of migration—with current population-level processes observed on annual to decadal time scales. For instance, processes such as changes in the distributional range of specific plant species (species migration), or the shift in community composition due to the replacement of species with cooler tolerances with those with warm tolerances at any point, a process called thermophilization (De Frenne et al. 2013). At all-time scales plant species ranges change through differential recruitment and mortality rates along environmental gradients or in space, and the process of species migration and community thermophilization result from the integration of these population demography processes across the species that form the local community, and understanding ongoing changes and linking them to longer-term population trajectories requires a demographic approach, first advocated by Harper in

1967.

Atmospheric warming is currently pushing species out of their fundamental niche

(Lenoir et al. 2008). In response to such rapid changes, plant species are predicted to shift their distributions to cooler environments to remain within their thermal niches [“species migration” including range expansion, contraction, and shift (Parmesan et al. 1999, Feeley

2012, Svenning and Sandel 2013)]. The current velocity of climate change is causing rapid

131 shifts in species distributions and community composition due to changes in the abundances of populations (Loarie et al. 2009, De Frenne et al. 2013). For instance, studies on plants migrations in temperate an tropical regions have shown that current plant assemblages are shifting their ranges upslope in response to global warming (Gottfried et al. 2012, Morueta-Holme et al. 2015, Freeman et al. 2018). However, a smaller set has looked at plants species migrations exclusively for tree communities in temperate

(Monleon and Lintz 2015, Savage and Vellend 2015) and tropical (Feeley et al. 2013,

Fadrique et al. 2018) regions, though the time-scales covered and inventory sizes provide limited understanding of global forest responses to global warming.

Tropical regions have warmed at an average of 0.26 °C per decade since the mid-

1970s (Malhi and Wright 2004). And, in the eastern slopes of the Andes specifically, temperature has increased approximately 0.10 - 0.11 °C/decade since 1939 (Vuille and

Bradley 2000) and is predicted to increase 2 - 7 °C this century (Urrutia and Vuille 2009), making the pace of climate change higher than any time in the last 50,000 years (Bush et al. 2004) and presenting unprecedented challenges to western Amazonian and Andean plant species. The speed and magnitude of global warming raise critical questions about how Amazonian and Andean forests will respond to climate change. For instance, there has been a substantial advance in our understanding about drivers of forest dynamics and species compositional change in the Amazonian regions (Phillips and Gentry 1994, ter

Steege et al. 2006, Gomes et al. 2018) and, to some extent, the responses of lowland forests to drought events (Esquivel-Muelbert et al. 2018), but there are few modern data on the effects of temperature changes on these systems. Second, we know little about the drivers of forest dynamics and species composition or even basic ecology for Andean montane

132 forests, however, that is where most of the temperature change studies have been conducted

(Feeley et al. 2011, Duque et al. 2015, Fadrique et al. 2018). Third, studies of Amazonian and Andean forests have drawn an artificial line at 500 m (ter Steege et al. 2006) to separate the two forest types, severing what is currently and has been shown to be in the paleo- record to be a continuum of both species distributions and migrating populations.

Evidence of range shifts to date

The prediction of modern shifts in tropical plant distributions to cooler environments in response to climate change (Foster 2001, Bush 2002, Colwell et al. 2008) is supported by an increasing number of studies documenting community tree migrations in Andean and Mesoamerican montane ecosystems (Feeley et al. 2013, Duque et al. 2015,

Fadrique et al. 2018). However, these results are based mainly on vegetation surveys of forests over ~500 m, whose conclusions could be strongly influenced by the exclusion of populations from the lower elevational range limit of the Andean tree species that can reach the Amazonian regions or, by the exclusion of Amazonian tree species populations that can reach the Andean regions. For example, 39 % of the ~700 species of trees >10 cm DBH known from the lowlands of SE Peru have upper ranges that exceed 500 m (data from this study). Furthermore, tree gamma diversity in the Western Amazon is highest in the ranges straddling 300 - 1200 m, tree community alpha diversity stays approximately constant from the lowlands to ~1700 m, and “Amazonian” tree species routinely have populations that extend fluidly from the lowlands into the Andes, with several lowland dominants extending up to 1500 m in elevation (Gentry 1988, Silman 2007). Because of this, evaluation of

133 tropical forest responses to climate change and improvements in predictions of future responses requires the integration of long-term studies of Amazonian-Andean tree communities across temperature gradients, with the lack of studies linking the Amazonian and Andean forests representing a major gap in the understanding of the mechanisms underlying forest responses to climate change.

Attribution of the cause of distributional change in response to climate change is also difficult. For example, the observed widespread Andean “plant migration” has been interpreted in terms of temperature change (Fadrique et al. 2018), even though we know from the Amazon and also from the cloud base studies (Pounds et al. 1999) that moisture regimes can have a profound effects on forest dynamics, particularly through accelerated tree mortality (Farfan Rios 2011, Esquivel-Muelbert et al. 2018). If these mortality events were to be concentrated in only part of a range across a temperature gradient it would indicate a thermal migration, even though the primary cause was drought, and its linkage to temperature is through differential strengths of drought response with respect to temperature. Furthermore, given the predicted interaction of temperature and drought responses, climate change effects on tropical forests are predicted to happen unevenly in time, as mortality is a fast response, but recruitment, particularly into canopy tree sizes, can take decades to centuries. This is particularly true during drought events where it is possible to observe pulsed tree mortality episodes. All of this makes long-term data central to understanding the tempo of forest responses to climate change.

This study seeks to understand population and community changes with respect to temperature changes—tree migration and community thermophilization—in the Amazon-

Andes. We used one of the world’s largest elevational transect located in the eastern slope

134 of the Peruvian Andes, spanning from the lowland western Amazonian forests (190 m) to the Andean treeline (3700 m). The elevational transect has a comprehensive and permanent forest monitoring network spanning the last 38 years and is probably the best representation of mature Amazonian-Andean forests, providing a synoptic view of tropical forest responses to climate change. Here we ask questions about the pace, causes, and underlying demographic basis of tropical forest responses to temperature changes. Specifically: (1) what is the temporal pattern of tree community thermophilization, and how does this vary across the gradient? (2) As thermophilization is at its core a demographic (birth-death- growth) process, what are the contributions of these elements to observed thermophilization? And (3) migration is a population process, but in the paleoecological record, and in all modern studies to date, it has been examined at higher taxonomic levels

(genus, family). Do we observe individual species migration, and how does it compare with observations taken at the genus level? We focus particularly on episodic events in the climate record and ask whether droughts and other events can lead to thermophilization and apparent thermal migration.

Methods

Study site

The study was performed on the eastern slope of the Peruvian Andes along an elevational gradient extending from the Andean treeline at 3700 m to the Amazon basin at 190 m. The elevational gradient lies in unbroken mature forest ranging from 3700 m to 300 m in the Manu Biosphere Reserve (11.8564° S, 71.7214° W) and extending to 190

135 m in the Tambopata National Reserve (12.9206° S, 69.2819° W), hereafter we will refer this gradient as the Manu-Tambopata elevational transect. Most of the montane plots

(elevations 3700m to 425m) are within 60 km of each other, while the lowland plots extend across the lowlands at the base of the Andes with a maximum inter-plot distance of 250 km. Mean Annual Temperature decreases linearly with increasing elevation along the gradient at a lapse rate of 5.5 o C km-1, with mean annual temperatures ranging from ~

26.6 o C at the lowest elevations to ~ 6.4 o C at treeline (Rapp and Silman 2012, Malhi et al. 2016). Mean annual precipitation varies across the gradient from 2448 to 5500 mm yr-

1, with significant inter-annual variability throughout (Rapp and Silman 2012, Malhi et al.

2016). Additionally, in the study area it has been observed that temperature increases have averaged approximately 0.03 - 0.05 o C y-1 since the late 1950s (Feeley et al. 2011).

Inventory forests plots: Ground data

Plot data were collected from 40 permanent inventory forest plots totaling 46.5 ha across a continuous elevation gradient, extending from lowland forest (≤ 500 m), through sub montane (500-1600 m), lower montane (1600-2500 m), upper montane (2500-3400 m) and treeline (≥ 3400 m) forests types (Young 1992, Pennington et al. 2004). Twenty three 1-ha permanent plots were established and are maintained by the Andes

Biodiversity and Ecosystem Research Group – ABERG

(http://www.andesconservation.org/) and range from 400 to 3625 m of elevation and in age from 2003 to 2017. Additionally, 17 (23.5 ha) permanents plots were established by various investigators, particularly John Terborgh, Percy Nunez, and Alwyn Gentry; and

136 are currently monitored by the Amazon Forest Inventory Network – RAINFOR

(http://www.rainfor.org/), the Global Ecosystem Monitoring Network – GEM

(http://gem.tropicalforests.ox.ac.uk/) and the Cocha Cashu Biological Station – CCBS

(https://cochacashu.sandiegozooglobal.org/) in the lowland forest, ranging from 190 - 405 m of elevation and 1979 to 2014 in age. The forest plots were established and remeasured multiple times following standardized protocols over 40 years (Phillips et al. 2016). In our plot network, 38 of the 40 permanent plots were censused at least three times between

1979 and 2017 (38 years). Excluding the TON-01 and PAN-01 plots (plots with one census), the number of multiple plot censuses varies from 3 to 13 times over the 38 years

[average number of censuses = 6.16 (95% CI = 5.3-7.0), median number of censuses =

5). The oldest plot was established in 1979 in the Tambopata terra firme rain forest and has the highest number of censuses (n = 13) (Table S1). Overall, the permanent plots contain 41,352 stems greater than 10 cm diameter at breast height (dbh) and encompass

1,896 arborescent species and morphospecies including trees, tree ferns, palms, and lianas > 10 cm dbh (hereafter, trees) involving more than 174,000 tree measurements.

Plant identifications

All botanical collections taken from the permanent plots from the ABERG and

RAINFOR networks were identified in situ and in different herbaria, then were compared and standardized. The vouchers were deposited in the Peruvian and USA herbaria (CUZ,

HOXA, HUT, MOL, USM, and DAV, MO, F, WFU respectively). Additionally, local flora and plant checklists were used as references (Cano et al. 1995, Pennington et al.

137

2004, Farfan-Rios et al. 2015, Vasquez M. and Rojas G. 2016) and plant identifications were also confirmed by taxonomic experts. We then combined and standardized the species names from all the permanent plots (n = 40). The combined species list was submitted to the Taxonomic Name Resolution Service (TRNS version 4.0, http://tnrs.iplantcollaborative.org/) online application to standardize and validate the species names (Boyle et al. 2013). All taxa with homogenized morphospecies [e.g. sp1(5984WFR)] and invalid names (e.g. “indet”) were assigned as an “undetermined”.

We followed the APG IV plant classification for the valid species names (Chase et al.

2016). All TNRS “accepted” species names with an overall TNRS-score below 0.9 were manually reviewed and the names were confirmed on

(http://www.theplantlist.org/) and Tropicos (http://www.tropicos.org) database.

However, if the specific epithet was not confirmed, we used the valid genus names as a unique species identifier. Species with an unassigned accepted TNRS name (e.g.

“invalid”, “illegitimate” or “no opinion”) were also manually reviewed and the species names were corrected following the previous criteria. Unidentified taxa at the genus-level were excluded from the analysis.

General trends in plot-to-plot diversity and structure along the gradient

Along the Manu-Tambopata elevational transect, we observed that lowland species richness (~180 spp. ha-1) is maintained to ~1700 m of elevation and decreases abruptly above this elevation up to the treeline (SI Appendix, Fig. S1a). The number of species ranges from a high of 179 species in our plot at 405 m of elevation (ALM-01), to

138 a low of 17 species in our highest elevation plot (APU-01) at treeline. The number of individuals per plot greater than 10 cm diameter at breast height (DBH) ranged from 447

(TON-02) in the sub montane forest to 1262 (TRU-08) in the lower montane forest and overall, the number of individuals on a plot-to-plot basis showed a non-linear relationship with elevation with high stem density between the lower and upper montane forest

(Farfan 2011; SI Appendix, Fig. S1b). The observed high individual density at the lower and upper montane forests is explained by the high abundance of tree ferns (Farfan Rios

2011). Basal area did not show a relationship with elevation, indicating that the high stem-abundance in Andean montane forests compensates for the larger maximum tree size in Amazonian forests (SI Appendix, Fig. S1c).

Species thermal distributions and the estimated thermal optimum

We used established protocols to estimate species thermal distributions for all arboreal species occurring in the 40 permanent forests plots across the elevational gradient (Feeley et al. 2011). For all species occurring in the plots, we downloaded all available georeferenced herbarium records from the Andean-Amazonian countries (i.e.

Bolivia, , Ecuador, and Peru) through the Global Biodiversity Information

Facility data portal (GBIF: http://www.gbif.org). Plant records that were missing coordinates, records that were tagged by the GBIF as a having coordinate errors or that had evident georeferenced errors (e.g. falling in large bodies of water), and duplicate records were discarded. The mean annual temperatures (MAT) of all specimens were calculated at the collection locations by extracting the temperature values from the

139

WorldClim extrapolated climate map at a spatial resolution of 30 arc seconds (Hijmans et al. 2005). We estimated the thermal optimum as the mean MAT (o C) for all the collections locations for each species represented by ≥ 10 herbarium collection records.

For species with < 10 available records, the thermal optimum was estimated as the average collection temperature calculated from all available records of congeneric individuals collected from the tropical Andean-Amazonian region (Feeley et al. 2011).

Community temperature index (CTI) and thermophilization rates (TR)

In this study, we integrated the western Amazonian forests permanent plots below

500 m to include the lower limit populations of Andean tree species (down to 190 m) along their elevational range. If we restrict the analysis of “Andean” taxa (by truncating the analysis at 500 m), we exclude the lower limit populations of 176 Andean species, and therefore their entire geographical distributions along the elevational with the reciprocal being true, excluding the upper range of 98 of our “Amazonian” species along the gradient (SI Appendix, Fig. S2). We calculated the community temperature index

(CTI) using two different approaches. First, we used individual-weighted approach because changes in demography are based on individuals dying (mortality) and living

(recruitment). Second, basal area-weighted approach, because tree size is ecologically important, for instance, the death of a large tree will affect more the ecosystem function than the death of a small tree. In addition, large trees are potentially more closely tied to their climate optimum than smaller trees.

140

CTI was calculated for each forest plot (n = 40 plots) as the average thermal optimum of the arboreal species weighted by the number of individuals and weighted by the relative total basal area at breast height (summed cross-sectional area at 1.3 m above ground) in the respective plot (Feeley et al. 2011). In the CTI individual-weighted approach we exclude individuals with multiple-stems below breast height and only consider the principal stem because changes in CTI integrates the effects of individual tree demography (changes in mortality, recruitment and growth rates). On the other hand, the CTI basal area-weighted approach was calculated combining the basal area of individuals including their multiple stems to give a total basal area for each individual tree. The annual changes in CTI values at the individual- and basal area-weighted approach were then calculated for each forest plot with more than three remeasurements

(n = 38 plots) over all possible consecutive census intervals (n = 234 census intervals).

We observed that trees that died in landslide events caused significant changes in CTI over time for the affected plots (e.g. SPD-01; Fig. S3). Landslides are inherent in the forest dynamics on montane ecosystems and kill a large proportion of trees in short period time. Accordingly, we excluded the trees that died in landslides (outliers) since their started time that the plot was established. The new calculated CTI values were then used to estimate the thermophilization rates (TR) and test the thermophilization hypothesis.

Thermophilization rate (°C) was calculated as the net change in CTI values for

-1 each plot overall consecutive censuses and the overall annualized TRplot (°C yr ) was calculated for each plot as the slope of the linear least-square regression between CTI and the census year, at the individual- and basal area-weighted approach. We also calculated

141

TRplot for each plot only for the tree basal area growth (TRgro), tree basal area recruitment

(TRrec), and tree basal area mortality (TRmor). The TRgro of a plot is the difference in the plot’s CTI as calculated using the initial vs. final basal areas of just the trees surviving through the census period. The TRrec of a plot is the difference in its CTI as calculated using the final basal areas of all stems recorded at the end of the census interval vs. its

CTI as calculated using the final basal areas of just the stems that survived through the census interval. Finally, TRmor will be the difference in its CTI as calculated using the initial basal areas of all stems recorded in the first census vs. its CTI as calculated using the initial basal areas of just the stems that survived through the census interval (Feeley et al. 2013). To test the contributions of TRmor, TRrec and TRgro in changes of TRplot we used generalized linear models (GLMs) using the glm function in R.

Thermal migration rates (TMR) at genus- and species-level

Changes in TRplot is the result of changes in the relative abundance of different taxa along the elevational gradient. Because of this, we also calculated the thermal migration rates (TMR) of dominant taxa at the genus- and species-level to test the changes in the mean temperatures between censuses along the gradient. TMRgenus and

TMRspecies were calculated for all tree genera and species that occurred in at least two of the 38 forest plots and had more than 50 individuals at the initial census along the gradient. For each genus and species that met the criterion, TMR was calculated as the slope of the linear least-square regression between the average of the mean temperatures and the census year weighted by the number of individuals and by the relative basal area

142 within genera and species across plots. We used a binomial probability test to determine whether the number of plots, genera, and species with positive TRplot, TMRgenus, and

TMRspecies values differ significantly from the null expectations of no change in TR and

TMR over time.

Results

Thermophilization of tree communities along the Amazonian-Andean gradient

The average community temperature index (CTI) ranged from 13 to 25 °C and was highly negatively correlated with plot elevation at individual- and basal area-weighted approach, demonstrating the efficacy of the methodology and the relationship between tree-reported temperature and measured temperature, and the importance of the thermal niche in controlling species distributions (Individual-weighted: r = -0.98, P ˂ 0.001; basal area-weighted: r = -0.98, P ˂ 0.001; SI Appendix, Fig. S3). We observed that changes in

CTI varied over time across the plots and along the gradient, however, with some of the plots showing a consistent positive (e.g. TAM-02) or negative (e.g. CUZ-01) CTI trajectory since 1979 for both, individual- and basal area-weighted approach, while others were mixed (Fig. 1a, b; SI Appendix, Fig. S5a, S5b).

Annualized rates of thermophilization varied widely among the plots along the

Amazon to the Andes elevation gradient, ranging from -0.0208 to +0.0257 °C yr-1 in terms of number of individuals and from -0.0113 to +0.0204 °C yr-1 in terms of basal area (Fig.

2a, b; SI Appendix, Table S2). The overall annual community thermophilization rate

-1 (TRplot) across the plots for the entire gradient was +0.0035 °C yr (95% CI = +0.0006 -

143

+0.0065 °C yr-1) for the individual-weighted approach and +0.0023 °C yr-1 (95% CI =

+0.00003 - +0.0047 °C yr-1) for the basal area-weighted approach. Assuming the adiabatic lapse rate of 5.5 °C km−1 (Bush et al. 2004), plot-level mean upward migration corresponds to +0.64 m yr-1 (95% CI = +0.12 - +1.17 m yr-1) and +0.43 m yr-1 (95% CI = +0.004 - +0.85 m yr-1) for individuals- and basal area-weighted basis respectively (SI Appendix, Table

S2). We did not observe a correlation between TRplot with number of censuses (Individual- weighted: r = -0.05, P = 0.78; basal area-weighted: r = -0.02, P = 0.89), which indicates that the overall TRplot are not influenced by the number of censuses, but long-term monitoring takes into account the fluctuation of tree demography over time.

Of the 38 plots with more than three censuses, 66 % (n = 25, individual-weighted) and 68% (n = 26, basal area-weighted) of the plots had positive TRplot. Additionally, 73 %

(n = 16, individual-weighted) and 70 % (n = 14, basal area-weighted) of those plots with positive TRplot significantly increased the thermophilization rates (Consistently increased in CTI; Fig. 1a, b) over time (Fig. 2a, b; SI Appendix, Table S2). This indicates that those plots are increasing in the relative abundances of tree species from relative warmer climates, consistent with the thermophilization hypothesis. The overall number of plots with positive TRplot (n = 25, individuals-weighted; n = 26, basal area-weighted) along the gradient was marginally more than expected under the null expectation of equal proportion of the plots with positive and negative TRplot under random fluctuations on the relative population change and tree species composition (binomial probability; P = 0.04, CI = 0.20

– 0.51 for individuals basis and P = 0.02, CI = 0.18 – 0.49 for basal area basis). The forest plots with the negative TRplot along the gradient were mainly located in the lowland

Amazonian forests with the lowest TRplot values found in the lowland floodplain and

144 treeline forests for both the individual- and basal area-weighted approach (Fig. 2a, b; SI

Appendix, Table S2).

Looking at the TRplot for Amazonian (n = 17 plots) and Andean (n =21 plots) forest plots separately, we observed that the TRplot in the Amazonian plots was significantly lower than their Andean counterparts [Mann-Whitney-Wilcoxon test; P = 0.03 for individuals- weighted (26-fold difference) and P = 0.04 for basal area-weighted basis (21-fold difference); SI Appendix, Fig. S6]. The mean TRplot for Amazonian plots (< 500 m) was essentially zero for both individual- and basal area-weighted measures [+0.00024 °C yr-1

(95% CI = -0.0024 - +0.0028 °C yr-1) in terms of individuals and -0.00021 °C yr-1 (95% CI

= -0.0021 - +0.0017 °C yr-1) for basal area-weighted measures]. Across to the Amazonian sites, the average TRplot for floodplain plots was approximately zero [mean TRplot

-1 -1 individual-weighted = -0.0019 °C yr (95% CI = -0.0098 - +0.0060 °C yr ); mean TRplot basal area-weighted = -0.0027 °C yr-1 (95% CI = -0.0076 - +0.0021 °C yr-1)] compared to

-1 the terra firme plots [mean TRplot individual-weighted = +0.0014 °C yr (95% CI = -0.0004

-1 -1 - +0.0033 °C yr ); mean TRplot basal area-weighted = +0.0012 °C yr ; (95% CI = -0.0004

- +0.0027 °C yr-1); Inset in Fig. 2a, b and SI Appendix, Table S2].

Thermophilization rates observed in the Andean plots were +0.0062 °C yr-1 (95%

CI = +0.0015 - +0.0109 °C yr-1) for individual-weighted and was 25 % higher than the

-1 basal area-weighted, with a mean TRplot of +0.0044 °C yr (95% CI = -0.0006 - +0.0083

°C yr-1). This implies that the Amazonian tree communities are in stasis with respect to

-1 -1 thermophilization [TRplot = +0.04 m yr (95% CI = -0.43 - +0.51 m yr ) in terms of individuals, and -0.04 m yr-1 (95% CI = -0.39 - +0.31 m yr-1) for basal area-weighted].

Andean tree communities showed evidence of weak upslope migration [+1.13 m yr-1 (95%

145

CI = +0.27, +1.99 m yr-1) in terms of individuals and +0.80 m yr-1 (95% CI = +0.10, +1.50 m yr-1) in terms of basal area].

Mortality, growth, and recruitment effects on community thermophilization

The changes in TRplot was driven primarily by tree mortality (TRmor) events (F =

224.5, df = 36, p < 0.001, inset in Fig. 3) as opposed to tree recruitment (TRrec) and growth

(TRgro) (Fig. 3). In 20 of 38 plots, TRmor accounted for a larger proportion of observed thermophilization (53 % of the plots, n = 20 plots) when compared to TRrec (11 %, n = 4 plots) and TRgro (37 %, n = 14 plots). TRplot was significant and positive correlated with tree mortality (r= 0.64, P ˂ 0.001) and moderately correlated with growth (r= 0.38, P ˂

0.05), but did not show a correlation with tree recruitment (r= -0.15, P = 0.36; SI Appendix,

Table S7). High tree mortality, in particular in Andean plots, suggests that the observed thermophilizaton is the result of the mortality of more cold-adapted species at a site rather than changes in tree growth or the recruitment of new individuals into the plots.

Migration of individual taxa

Genus-level thermal migration rates (TMRgenus) were variable along the gradient.

However, we observed the higher TMRgenus in the upper Andean montane forest with both the individual- and basal area-weighted approach (Fig. 4a, b; SI Appendix, Table S3, S4).

For our selected dominant tree genera (n = 78) that occurred at least in 2 of the 38 forest

-1 plots along the gradient, the mean TMRgenus was +0.00593 °C yr (95% CI = +0.0022 -

146

+0.0097 °C yr-1) in terms of individuals and was almost the same in terms of basal area,

-1 -1 with a mean TMRgenus of +0.00594 °C yr (95% CI = +0.0018 - +0.0100 °C yr ). The

TMRgenus was positive in 63 % (n = 49, individuals-weighted) and 60 % (n = 47, basal area- weighted) of the total genera, but only 35 % (n = 17, individuals-weighted) to 43 % (n =

20, basal area-weighted) significantly increased in TMRgenus over time (Fig. 4a, b; SI

Appendix, Table S3, S4). The overall number genera with positive TMRgenus along the gradient was slightly more than expected under the null expectation of equal proportion of the genera with positive and negative TMRgenus (binomial probability; P = 0.02, CI = 0.26

– 0.49 for individuals basis and P = 0.04, CI = 0.29 – 0.51 for basal area basis), though there was high heterogeneity in rates (Fig. 4a, b).

Thermal migration rates calculated at species-level (TMRspecies) showed broad variability in TMRspecies along the gradient with no relationship with elevation. Although we observed widespread variability in TMRspecies, our results also showed an overall mean positive thermal migration rates along the gradient, though the magnitude of the migration was small. TMRspecies for the selected species (n = 79) showed a mean TRspecies of +0.0025

°C yr-1 (95% CI = +0.0011 - +0.0038 °C yr-1) on an individual basis and +0.0024 °C yr-1

(95% CI = +0.0006 - +0.0042 °C yr-1) on a basal area basis. Sixty-seven percent of our species (n = 53) showed a positive TMRspecies for the individuals-weighted and 62 % (n =

49) for the basal area-weighted approach, exceeding the null expectation of equal proportions of the species with positive and negative TMRspecies (binomial probability; P =

0.001, CI = 0.23 – 0.44 for individuals basis and P = 0.02, CI = 0.27 – 0.49 for basal area basis). Even though we observed an overall positive TMRspecies along the gradient, only 30

% (n = 16, individuals-weighted) and 19 % (n = 10, basal area-weighted) significantly

147 increased in TMRspecies over time (Fig. 5a, b; SI Appendix, Table S5, S6). It was not observe a correlation between the tree species with significant positive thermal migration and elevation (Individual-weighted: r = -0.38, P = 0.15; basal area-weighted: r = -0.45, P =

0.18). On the other hand, 31 % (n = 8, individuals-weighted) and 10 % (n = 3, basal area- weighted) of the species showed a significant negative TMRspecies.

Discussion

Our results showed that individual plots in Amazonian-Andean forests are becoming more thermophilic over the last 38 years, but barely so. The overall rates of thermophilization reported here showed an average of +0.0035 °C yr-1 (individuals- weighted) to +0.0023 °C yr-1 (basal area-weighted) are vastly slower compared to results of previous studies across the tropics, being 65 % lower (Feeley et al. 2013, Duque et al.

2015, Fadrique et al. 2018). Moreover, thermophilization as defined here can be caused by species with warmer mean distributions recruiting into a community, growing more within that community, or species with cooler mean temperatures dying within the community. “Migration” of taxa can similarly be due to increased recruitment, growth, or mortality at the upper (lower) edges of ranges. Our results show that both community thermophilization and taxon-based migration is mostly explained by the increase in tree mortality rather than “true” shifts of entire ranges upslope, calling into question the very term migration when applied to these communities. When viewed in the context of predicted climate change the result is striking as it means that by ~2100 the Amazonian-

Andean tree communities will have only changed by around a quarter of a degree Celsius

( +0.28 - +0.19 °C, based in our current migration rates) while the ambient temperature at

148 any plot is predicted to have changed by +2 - +7 °C (Urrutia and Vuille 2009), depending on the position along the elevational gradient. The observed lag in tree migration is out of equilibrium with current climate change by over an order of magnitude and is insufficient, increasing the “climatic debt” or migration that must happen for species to remain in equilibrium with climate (Bertrand et al. 2011, Svenning and Sandel 2013) in tropical forests. Moreover, given the absence of evidence for increased recruitment towards the thermal equilibrium (upslope), this climatic debt will likely increase over the coming decades.

High thermophilization of Andean forests in contrast to Amazonian forests

The overall thermophilization rates across all plots were positive on average and similar whether examined using individual- or basal area-weighted approaches, but with highly heterogeneous rates from plot-to-plot along the gradient (Fig. 2a, b). The velocity of Andean community thermophilization in response to the ongoing climate change was significantly higher than those of Amazonian communities (SI Appendix, Fig. S6). The overall mean Amazonian TRplot over time was no-different from zero (+0.00024 and -

0.00021 °C yr-1 for individuals- and basal area-weighed respectively; SI Appendix, Fig.

S6, Table S2), in other words, we observed no overall thermophilization for Amazonian tree communities. In contrast, the Andean forest increased the TRplot over time (+0.0062 and +0.0044 °C yr-1 for individuals- and basal area-weighed respectively; SI Appendix,

Fig. S6a, b, Table S2). These TRplot for the Amazon and Andean forests are an order of magnitude slower than that required to remain in equilibrium with the observed increase

149 in temperature of 0.03-0.05 oC yr-1 observed over the last half-century in the western

Amazon. Thus, these results indicate that the Amazonian tree community’s response to warming is absent (in terms of plant migration or community thermophilization), and slow but present, at least on average, for Andean tree communities, though highly variable among species, with many showing no detectable migration. Indeed, the signal appears to be more one of climatic disruption (increased mortality rates) rather than climatic migration.

Several plausible factors may explain the lack of thermophilization of Amazonian tree communities in contrast to the Andean forests. First, Amazonian trees may have greater tolerance to climate warming through local historical adaptation and persistence, and also because Amazonian trees have truncated niches, with less niche space on the warm side of their ranges as the MAT of Amazonia is relatively uniform, and temperature change due to atmospheric lapse rate is bounded at the upper end by sea level (Feeley and Silman 2010). In addition, the compensatory changes in demographic rates (Doak and Morris 2010) in the Amazonian forest may buffer population dynamics against the negative effects of global warming causing non-thermophilization. For example, higher growth of tree-individuals can compensate for the lower survival and recruitment rates allowing persistence of Amazonian populations, this trend can be observed in most of the floodplain plots in which tree growth has a negative effect in

TRplot (Figure 3, SI Appendix, Table S2). Second, an additional factor that may be driving the forces preventing thermophilization in the Amazonian forest could be due to the physiographic differences between the floodplain and terra firme forests that could affect tree demography. Floodplain forests are characterized to be underwater for a large

150 portion of the year while the adjacent terra firme stands are on old and highly weathered soils (Pitman et al. 1999). We observed that tree mortality was the cause of positive

TRplot for 73 % of the terra firme plots, in contrast, recruitment was the cause of negative

TRplot in 67 % of the floodplain plots (Fig. 3). This can be explained by the increase of mortality of wet-affiliated taxa (Esquivel-Muelbert et al. 2018) in terra firme forest. In addition, flooded areas could buffer the negative effects of droughts decreasing tree mortality in floodplain forests. Third, multiple droughts are driving slow but directional shifts in species composition across the Amazon in the last three decades (Esquivel-

Muelbert et al. 2018). Likewise, these drought events could also promote longer periods of tree growth in floodplain forests because the roots will potentially be closer to the water table extending the growing season, which can be reflected in high recruitment. For example, the CUZ-01, CUZ-02 plots when analyzed at individuals basis showed the lowest TRplot in comparison with the basal area (Inset in Fig. 2a, b), indicating that the high growth of small size stems is mirrored in the increments of new recruits in the plots.

This current inertia of Amazonian tree communities in response to climate change could lead to future lowland biotic attrition (Colwell et al. 2008).

Mortality causes ‘apparent’ plant migration

Here, we showed that studying tree demographic processes are crucial to comprehend the effects of ongoing warming in Amazonian-Andean tree communities, making long-term forest monitoring imperative to observe the fluctuations of tree populations from the year-to-decades basis. For example, Feeley et al. 2011 reported an

151 upslope tree migration of 2.5 - 3.5 m yr-1 in four years of study (2003-2007), where the high rates of migration were explained by the disbalance in mortality and recruitment that could be the reflection of any climatic or disturbance factors. In this study we monitored

38 years of tree demography capturing the variability of mortality and recruitment over time. First, we observed that tree mortality (TRmor) was the primary driver in changes in

TRplot across the plots (Fig. 3). Second to that was changes in growth. Taken together, changes in growth and mortality accounted for 89% of thermophilization. To turn it around, population shifts or recruitment favoring cooler areas are currently accounting for only 11% of the observed changes in species ranges of community thermophilization.

The pattern has several explanations. First, it may be that the process of mortality and recruitment could be expected to be decoupled in time, particularly with respect to trees reaching a diameter of 10 cm. Trees of this size can be decades to centuries old, having recruited in cooler temperatures than currently found in sites. In this case, thermophilization signals from growth may be a good indicator of future plant performance and recruitment, particularly as mortality is a fast process, while recruitment is a slow process in tree demography. If this is true, an examination of the seedling and small sapling layer should show an accelerated thermophilization or migration rate, with changes concentrated in recruitment as opposed to mortality. Second, the prevalence of positive TRmor cases along the gradient indicates the increase in mortality of cold-adapted species (less-thermophilic) in contrast to warm-adapted species (thermophilic) in response to warming, consistent with the findings from Costa Rica and Colombia (Feeley et al. 2013, Duque et al. 2015). The high tree mortality can be explained by the incapability of species to persist in areas where temperature increase exceeds species

152 thermal tolerance causing dieback along species ranges. In addition, heat-induced mortality can also be caused by an increase in temperature alone, increasing water stress independent of precipitation amounts (Barber et al. 2000).

An alternative is that drought-induced tree mortality—as discussed above—could be causing shifts in species composition and function in the Amazonian forest by killing trees preferentially in the warmer (lower) portions of their ranges. This is supported by the fact that there have been three major drought events in the Amazon basin in the last two decades, increasing tree mortality and reshuffling species composition (Saatchi et al.

2013, Esquivel-Muelbert et al. 2018). As previously stated, tree mortality was the driver of TRplot along the gradient, with the highest TRplot found around the estimate cloud base

(~1500-2000 m, Fig. 2a, b) where high tree mortality was reported (Farfan Rios 2011).

These results contrast with those of Fadrique et al. 2018, who suggested that the cloud base is a barrier for species migrations and who reported negative TRplot across the

Andes. Our results from the Manu-Tambopata transect showed that the cloud base zone is shifting in species composition to a more heat-tolerant species assembly. This trend may be explained due to the interplay of drought events and heat stress are increasing tree mortality globally leading to a future forest die-off in response to climate change (Allen et al. 2009) causing species range contraction, and therefore an inexorable reshuffling in species composition.

153

Past and current climate change shuffle species distribution

Past climate changes have been restructuring forests across the Andes-Amazon system as long as the Andes and Amazon have existed (Garzione et al. 2008, Hoorn et al.

2010) and what sets modern climate change with respect to temperature apart is the pace

(Loarie et al. 2009). Even the fastest-warming during the 5 - 6 oC warming that marked the change from the Last Glacial Maximum to Holocene in Amazonia occurred over ~8 - 10 thousand years (van der Hammen and Absy 1994, Urrego et al. 2005). Ongoing warming is expected to reach a similar magnitude in the system within a century to years (Lenssen et al. 2019), a rate unprecedented in the paleoecological record for the Amazon and forested

Andes (Bush et al. 2004). While modern temperature change may be without analog in the system (Lenssen et al. 2019), modern drought is actually less than that experienced by the system during the mid-Holocene (Baker et al. 2001) and the paleoecological record may provide good analogs for the rapidity at which systems in the Andes-Amazon can be restructured by precipitation in climate change (Malhi et al. 2008).

As discussed above, tree community thermophilization in response to climate change is based in demography, which by definition is a species-level population process

(Harper 1967), but it has not looked in that way in regional and global studies. The lack of studies looking at species-level population changes to understand the mechanisms of species migrations along environmental gradients makes tropical trees excluded from global synthesis studies in species migrations (Chen et al. 2011, Freeman et al. 2018) because long-term tree species-specific data are not available for the majority of tropical species. Thus, here we attempted to show the species-specific responses of tropical trees to ongoing climate change. Although we observed high variability in the thermal migration

154 rates at the species-level, 24 % and 20 % (individuals- and basal area-weighted approach respectively) of our species with positive TMRspecies showed significant positive migration rates (SI Appendix, Table S5, S6). For instance, the hyperdominance of Iriartea deltoideia in the Amazon basin has risen within the last 3000 years (Bush and McMichael 2016) and under the current climate change our results showed a significant upslope migration of this species (SI Appendix, Table S5, S6). These observed variable species-level migration rates suggest the idiosyncratic response of each taxon to climate change. However, we still need to understand the different underlying causes of tree demography—in particular mortality—along specific-species elevational ranges. Accordingly, we can hypothesize high mortality in the lower range-limit of the fast upslope migrators (positive TMRspecies) and high mortality in the upper range-limit for the downslope migrators (negative

TMRspecies). In addition, it is important to understand the role of disturbance (e.g. gaps and landslides) in tree mortality and species movement as potential corridors for species migration.

Here we provide comprehensive evidence of how Amazonian and Andean forests are most probably responding to warming and droughts, shifting their distributions in time and space mainly because of mortality events. The slow thermophilization rates for Andean forests and the absence of thermophiliation from Amazonian forests shows they are in disequilibrium with current climate change. The wide variability of tropical forest response to global change at community- and species-level makes challenging the predictions of winners (upslope migrators) and losers (non or downslope migrators) within specific communities in response to climate change. Forecasting the winners can contribute to

155 forest restoration practices and to most effective strategies for climate change mitigation, in a world with extra room for 0.9 billion hectares of continuous forest (Bastin et al. 2019).

156

Acknowledgements

This paper is a product of the Andes Biodiversity and Ecosystem Research Group

(ABERG; http://www.andesconservation.org/) with contributions for lowland plots data from John Terborgh, Percy Nunez and affiliated networks RAINFOR, GEM, and the

ForestPlots.net data management utility for permanent plots. Data included in this study is the result of an extraordinary effort by a large team in Peru specially from the

Universidad Nacional de San Antonio Abad de Cusco. Special thanks go to Luis Imunda for his assistance in the field sampling campaigns. SERNANP and personnel of Manu

National Park - Peru provided assistance with logistics and permission to work in the protected area. Pantiacolla Tours and the Amazon Conservation Association provided logistical support. Funding came from the Gordon and Betty Moore Foundation’s Andes to Amazon initiative and the US National Science Foundation (NSF) DEB 0743666 and

NSF Long-Term Research in Environmental Biology (LTREB) 1754647. The research was also supported by the National Aeronautics and Space Administration (NASA)

Terrestrial Ecology Program grant # NNH08ZDA001N-TE/ 08-TE08-0037. Support for

RAINFOR and ForestPlots.net plot monitoring in Peru has come from a European

Research Council (ERC) Advanced Grant (T‐FORCES, “Tropical Forests in the

Changing Earth System”, 291585), Natural Environment Research Council grants

(including NE/F005806/), NE/D005590/1, and NE/N012542/1), and the Gordon and

Betty Moore Foundation.

157

Literature cited

Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier,

T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham,

Z. Zhang, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci,

and N. Cobb. 2009. A global overview of drought and heat-induced tree mortality

reveals emerging climate change risks for forests. Forest Ecology and Management

259:660–684.

Baker, P. A., G. O. Seltzer, S. C. Fritz, R. B. Dunbar, M. J. Grove, P. M. Tapia, S. L.

Cross, H. D. Rowe, and J. P. Broda. 2001. The history of South American tropical

precipitation for the past 25,000 years. Science (New York, N.Y.) 291:640–3.

Barber, V. A., G. P. Juday, and B. P. Finney. 2000. Reduced growth of Alaskan white

spruce in the twentieth century from temperature-induced drought stress. Nature

405:668–673.

Bertrand, R., J. Lenoir, C. Piedallu, G. Riofrío-Dillon, P. de Ruffray, C. Vidal, J.-C.

Pierrat, and J.-C. Gégout. 2011. Changes in plant community composition lag

behind climate warming in lowland forests. Nature 479:517–520.

Boyle, B., N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci,

M. L. Narro, W. H. Piel, S. J. McKay, S. Lowry, C. Freeland, R. K. Peet, and B. J.

Enquist. 2013. The taxonomic name resolution service: an online tool for automated

standardization of plant names. BMC bioinformatics 14:16.

Bush, M. B. 2002. Distributional change and conservation on the Andean flank: A

158

palaeoecological perspective. Global Ecology and Biogeography 11:463–473.

Bush, M. B., and C. N. H. McMichael. 2016. Holocene Variability of an Amazonian

Hyperdominant. Journal of Ecology.

Bush, M. B., M. R. Silman, and D. H. Urrego. 2004. 48,000 years of climate and forest

change in a biodiversity hot spot. Science (New York, N.Y.) 303:827–9.

Cano, A., K. R. Young, B. Leon, and R. B. Foster. 1995. Composition and diversity of

flowering plants in the upper montane forest of Manu National Park, Southern Peru.

Pages 271–280 in S. P. Churchill, H. Balslev, E. Forero, and J. L. Luteyn, editors.

Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of the

Neotropical Montane Forest. New York Botanical Garden Pr Dept, United states of

America.

Chase, M. W., M. J. M. Christenhusz, M. F. Fay, J. W. Byng, W. S. Judd, D. E. Soltis, D.

J. Mabberley, A. N. Sennikov, P. S. Soltis, P. F. Stevens, B. Briggs, S. Brockington,

A. Chautems, J. C. Clark, J. Conran, E. Haston, M. Möller, M. Moore, R. Olmstead,

M. Perret, L. Skog, J. Smith, D. Tank, M. Vorontsova, and A. Weber. 2016. An

update of the Angiosperm Phylogeny Group classification for the orders and

families of flowering plants: APG IV. Botanical Journal of the Linnean Society

181:1–20.

Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range

shifts of species associated with high levels of climate warming. Science (New

York, N.Y.) 333:1024–6.

159

Colwell, R. K., G. Brehm, C. L. Cardelús, A. C. Gilman, and J. T. Longino. 2008. Global

warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

Science (New York, N.Y.) 322:258–61.

Davis, M. B. 1969. Climatic changes in southern Connecticut recorded by pollen

deposition at Rogers Lake. Ecology 50:409–422.

Doak, D. F., and W. F. Morris. 2010. Demographic compensation and tipping points in

climate-induced range shifts. Nature 467:959–962.

Duque, A., P. R. Stevenson, and K. J. Feeley. 2015. Thermophilization of adult and

juvenile tree communities in the northern tropical Andes. Proceedings of the

National Academy of Sciences.

Esquivel-Muelbert, A., T. R. Baker, K. G. Dexter, S. L. Lewis, R. J. W. Brienen, T. R.

Feldpausch, J. Lloyd, A. Monteagudo-Mendoza, L. Arroyo, E. Álvarez-Dávila, N.

Higuchi, B. S. Marimon, B. H. Marimon-Junior, M. Silveira, E. Vilanova, E. Gloor,

Y. Malhi, J. Chave, J. Barlow, D. Bonal, N. Davila Cardozo, T. Erwin, S. Fauset, B.

Hérault, S. Laurance, L. Poorter, L. Qie, C. Stahl, M. J. P. Sullivan, H. ter Steege, V.

A. Vos, P. A. Zuidema, E. Almeida, E. Almeida de Oliveira, A. Andrade, S. A.

Vieira, L. Aragão, A. Araujo-Murakami, E. Arets, G. A. Aymard C, P. B. Camargo,

J. G. Barroso, F. Bongers, R. Boot, J. L. Camargo, W. Castro, V. Chama Moscoso,

J. Comiskey, F. Cornejo Valverde, A. C. Lola da Costa, J. del Aguila Pasquel, T. Di

Fiore, L. Fernanda Duque, F. Elias, J. Engel, G. Flores Llampazo, D. Galbraith, R.

Herrera Fernández, E. Honorio Coronado, W. Hubau, E. Jimenez-Rojas, A. J. N.

Lima, R. K. Umetsu, W. Laurance, G. Lopez-Gonzalez, T. Lovejoy, O. Aurelio

160

Melo Cruz, P. S. Morandi, D. Neill, P. Núñez Vargas, N. C. Pallqui, A. Parada

Gutierrez, G. Pardo, J. Peacock, M. Peña-Claros, M. C. Peñuela-Mora, P. Petronelli,

G. C. Pickavance, N. Pitman, A. Prieto, C. Quesada, H. Ramírez-Angulo, M. Réjou-

Méchain, Z. Restrepo Correa, A. Roopsind, A. Rudas, R. Salomão, N. Silva, J. Silva

Espejo, J. Singh, J. Stropp, J. Terborgh, R. Thomas, M. Toledo, A. Torres-Lezama,

L. Valenzuela Gamarra, P. J. van de Meer, G. van der Heijden, P. van der Hout, R.

Vasquez Martinez, C. Vela, I. C. G. Vieira, and O. L. Phillips. 2018. Compositional

response of Amazon forests to climate change. Global Change Biology.

Fadrique, B., S. Báez, Á. Duque, A. Malizia, C. Blundo, J. Carilla, O. Osinaga-Acosta, L.

Malizia, M. Silman, W. Farfán-Ríos, Y. Malhi, K. R. Young, F. Cuesta C., J.

Homeier, M. Peralvo, E. Pinto, O. Jadan, N. Aguirre, Z. Aguirre, and K. J. Feeley.

2018. Widespread but heterogeneous responses of Andean forests to climate change.

Nature 564:207–212.

Farfan-Rios, W., K. Garcia-cabrera, N. Salinas, M. N. Raurau-quisiyupanqui, and M. R.

Silman. 2015. Lista anotada de árboles y afines en los bosques montanos del sureste

peruano : la importancia de seguir recolectando. Revista Peruana de Biología

22:145–174.

Farfan Rios, W. 2011. Changes in forest dynamics along a 2.5 km elevation gradient on

the southeastern flank of the Peruvian Andes. Dissertation, Wake Forest University,

Winston Salem, North Carolina, USA.

Feeley, K. J. 2012. Distributional migrations, expansions, and contractions of tropical

plant species as revealed in dated herbarium records. Global Change Biology

161

18:1335–1341.

Feeley, K. J., J. Hurtado, S. Saatchi, M. R. Silman, and D. B. Clark. 2013. Compositional

shifts in Costa Rican forests due to climate-driven species migrations. Global change

biology 19:3472–80.

Feeley, K. J., and M. R. Silman. 2010. Biotic attrition from tropical forests correcting for

truncated temperature niches. Global Change Biology 16:1830–1836.

Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. G. Cabrera, Y. Malhi, P. Meir, N.

S. Revilla, M. N. R. Quisiyupanqui, and S. Saatchi. 2011. Upslope migration of

Andean trees. Journal of Biogeography 38:783–791.

Foster, P. 2001. The potential negative impacts of global climate change on tropical

montane cloud forests. Earth-Science Reviews 55:73–106.

Freeman, B. G., J. A. Lee-Yaw, J. M. Sunday, and A. L. Hargreaves. 2018. Expanding,

shifting and shrinking: The impact of global warming on species’ elevational

distributions. Global Ecology and Biogeography.

De Frenne, P., F. Rodríguez-Sánchez, D. A. Coomes, L. Baeten, G. Verstraeten, M.

Vellend, M. Bernhardt-Römermann, C. D. Brown, J. Brunet, J. Cornelis, G. M.

Decocq, H. Dierschke, O. Eriksson, F. S. Gilliam, R. Hédl, T. Heinken, M. Hermy,

P. Hommel, M. A. Jenkins, D. L. Kelly, K. J. Kirby, F. J. G. Mitchell, T. Naaf, M.

Newman, G. Peterken, P. Petrík, J. Schultz, G. Sonnier, H. Van Calster, D. M.

Waller, G.-R. Walther, P. S. White, K. D. Woods, M. Wulf, B. J. Graae, and K.

Verheyen. 2013. Microclimate moderates plant responses to macroclimate warming.

162

Pnas 110:18561–5.

Garzione, C. N., G. D. Hoke, J. C. Libarkin, S. Withers, B. MacFadden, J. Eiler, P.

Ghosh, and A. Mulch. 2008. Rise of the Andes. Science (New York, N.Y.)

320:1304–7.

Gentry, A. H. 1988. Changes in Plant Community Diversity and Floristic Composition on

Environmental and Geographical Gradients. Annals of the Missouri Botanical

Garden 75:1–34.

Gomes, V. H. F., S. D. Ijff, N. Raes, I. L. Amaral, R. P. Salomão, L. D. S. Coelho, F. D.

D. A. Matos, C. V. Castilho, D. D. A. L. Filho, D. C. López, J. E. Guevara, W. E.

Magnusson, O. L. Phillips, F. Wittmann, M. D. J. V. Carim, M. P. Martins, M. V.

Irume, D. Sabatier, J.-F. Molino, O. S. Bánki, J. R. D. S. Guimarães, N. C. A.

Pitman, M. T. F. Piedade, A. M. Mendoza, B. G. Luize, E. M. Venticinque, E. M.

M. D. L. Novo, P. N. Vargas, T. S. F. Silva, A. G. Manzatto, J. Terborgh, N. F. C.

Reis, J. C. Montero, K. R. Casula, B. S. Marimon, B.-H. Marimon, E. N. H.

Coronado, T. R. Feldpausch, A. Duque, C. E. Zartman, N. C. Arboleda, T. J.

Killeen, B. Mostacedo, R. Vasquez, J. Schöngart, R. L. Assis, M. B. Medeiros, M.

F. Simon, A. Andrade, W. F. Laurance, J. L. Camargo, L. O. Demarchi, S. G. W.

Laurance, E. D. S. Farias, H. E. M. Nascimento, J. D. C. Revilla, A. Quaresma, F. R.

C. Costa, I. C. G. Vieira, B. B. L. Cintra, H. Castellanos, R. Brienen, P. R.

Stevenson, Y. Feitosa, J. F. Duivenvoorden, G. A. C. Aymard, H. F. Mogollón, N.

Targhetta, J. A. Comiskey, A. Vicentini, A. Lopes, G. Damasco, N. Dávila, R.

García-Villacorta, C. Levis, J. Schietti, P. Souza, T. Emilio, A. Alonso, D. Neill, F.

163

Dallmeier, L. V. Ferreira, A. Araujo-Murakami, D. Praia, D. D. Do Amaral, F. A.

Carvalho, F. C. De Souza, K. Feeley, L. Arroyo, M. P. Pansonato, R. Gribel, B.

Villa, J. C. Licona, P. V. A. Fine, C. Cerón, C. Baraloto, E. M. Jimenez, J. Stropp, J.

Engel, M. Silveira, M. C. P. Mora, P. Petronelli, P. Maas, R. Thomas-Caesar, T. W.

Henkel, D. Daly, M. R. Paredes, T. R. Baker, A. Fuentes, C. A. Peres, J. Chave, J. L.

M. Pena, K. G. Dexter, M. R. Silman, P. M. Jørgensen, T. Pennington, A. Di Fiore,

F. C. Valverde, J. F. Phillips, G. Rivas-Torres, P. Von Hildebrand, T. R. Van Andel,

A. R. Ruschel, A. Prieto, A. Rudas, B. Hoffman, C. I. A. Vela, E. M. Barbosa, E. L.

Zent, G. P. G. Gonzales, H. P. D. Doza, I. P. D. A. Miranda, J.-L. Guillaumet, L. F.

M. Pinto, L. C. D. M. Bonates, N. Silva, R. Z. Gómez, S. Zent, T. Gonzales, V. A.

Vos, Y. Malhi, A. A. Oliveira, A. Cano, B. W. Albuquerque, C. Vriesendorp, D. F.

Correa, E. V. Torre, G. Van Der Heijden, H. Ramirez-Angulo, J. F. Ramos, K. R.

Young, M. Rocha, M. T. Nascimento, M. N. U. Medina, M. Tirado, O. Wang, R.

Sierra, A. Torres-Lezama, C. Mendoza, C. Ferreira, C. Baider, D. Villarroel, H.

Balslev, I. Mesones, L. E. U. Giraldo, L. F. Casas, M. A. A. Reategui, R. Linares-

Palomino, R. Zagt, S. Cárdenas, W. Farfan-Rios, A. F. Sampaio, D. Pauletto, E. H.

V. Sandoval, F. R. Arevalo, I. Huamantupa-Chuquimaco, K. Garcia-Cabrera, L.

Hernandez, L. V. Gamarra, M. N. Alexiades, S. Pansini, W. P. Cuenca, W. Milliken,

J. Ricardo, G. Lopez-Gonzalez, E. Pos, and H. Ter Steege. 2018. Species

Distribution Modelling: Contrasting presence-only models with plot abundance data.

Scientific Reports 8.

Gottfried, M., H. Pauli, A. Futschik, M. Akhalkatsi, P. Barančok, J. L. Benito Alonso, G.

Coldea, J. Dick, B. Erschbamer, M. R. Fernández Calzado, G. Kazakis, J. Krajči, P.

164

Larsson, M. Mallaun, O. Michelsen, D. Moiseev, P. Moiseev, U. Molau, A.

Merzouki, L. Nagy, G. Nakhutsrishvili, B. Pedersen, G. Pelino, M. Puscas, G. Rossi,

A. Stanisci, J.-P. Theurillat, M. Tomaselli, L. Villar, P. Vittoz, I. Vogiatzakis, and

G. Grabherr. 2012. Continent-wide response of mountain vegetation to climate

change. Nature Climate Change 2:111–115. van der Hammen, T., and M. L. Absy. 1994. Amazonia during the last glacial.

Palaeogeography, Palaeoclimatology, Palaeoecology 109:247–261.

Harper, J. L. 1967. A Darwinian Approach to Plant Ecology. Source Journal of Applied

Ecology 4:267–290.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high

resolution interpolated climate surfaces for global land areas. International Journal

of Climatology 25:1965–1978.

Hoorn, C., F. P. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I.

Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D.

Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen, and A.

Antonelli. 2010. Amazonia Through Time: Andean Uplift, Climate Change,

Landscape Evolution, and Biodiversity. Science 330:927–931.

Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations and

communities to environmental changes of the late Quaternary.

https://doi.org/10.1666/0094-8373(2000)26[194:ROPPAC]2.0.CO;2 26:194–220.

Lenoir, J., J. C. Gégout, P. A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant

165

upward shift in plant species optimum elevation during the 20th century. Science

(New York, N.Y.) 320:1768–71.

Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D.

Zyss. 2019. Improvements in the uncertainty model in the Goddard Institute for

Space Studies Surface Temperature (GISTEMP) analysis. Journal of Geophysical

Research: Atmospheres:2018JD029522.

Loarie, S. R., C. B. Field, D. D. Ackerly, P. B. Duffy, G. P. Asner, and H. Hamilton.

2009. The velocity of climate change. Nature 462:1052–1055.

Malhi, Y., C. A. J. Girardin, G. R. Goldsmith, C. E. Doughty, N. Salinas, D. B. Metcalfe,

W. Huaraca Huasco, J. E. Silva-Espejo, J. del Aguilla-Pasquell, F. Farfán

Amézquita, L. E. O. C. Aragão, R. Guerrieri, F. Y. Ishida, N. H. A. Bahar, W.

Farfan-Rios, O. L. Phillips, P. Meir, and M. Silman. 2016. The variation of

productivity and its allocation along a tropical elevation gradient: a whole carbon

budget perspective. New Phytologist.

Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre. 2008. Climate

change, deforestation, and the fate of the Amazon. Science (New York, N.Y.)

319:169–72.

Malhi, Y., and J. Wright. 2004. Spatial patterns and recent trends in the climate of

tropical rainforest regions. Philosophical transactions of the Royal Society of

London. Series B, Biological sciences 359:311–29.

Monleon, V. J., and H. E. Lintz. 2015. Evidence of tree species’ range shifts in a complex

166

landscape. PloS one 10:e0118069.

Morueta-Holme, N., K. Engemann, P. Sandoval-Acuña, J. D. Jonas, R. M. Segnitz, and

J.-C. Svenning. 2015. Strong upslope shifts in Chimborazo’s vegetation over two

centuries since Humboldt. Proceedings of the National Academy of Sciences of the

United States of America.

Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon#, B.

Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M.

Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated

with regional warming. Nature 399:579–583.

Pennington, T. D., C. Reynel, and A. Daza. 2004. Illustrated guide to the Trees of Peru.

Page (T. D. Pennington, C. Reynel, and A. Daza, Eds.). David Hunt, Sherborne, UK.

Phillips, O. L., T. R. Baker, T. R. Feldpausch, and R. Brienen. 2016. RAINFOR, field

manual for plot establishment and remeasurement. The Royal Society:27.

Phillips, O. L., and A. H. Gentry. 1994. Increasing Turnover through Time in Tropical

Forests. Science 263:954–958.

Pitman, N. C. A., J. Terborgh, M. R. Silman, and P. Nuez. 1999. Tree species

distributions in an upper Amazonian forest. Ecology 80:2651–2661.

Pounds, J., M. Fogden, and J. Campbell. 1999. Biological response to climate change on

a tropical mountain. Nature 398:611–615.

Rapp, J. M., and M. R. Silman. 2012. Diurnal, seasonal, and altitudinal trends in

microclimate across a tropical montane cloud forest. Climate Research 55:17–32.

167

Saatchi, S., S. Asefi-Najafabady, Y. Malhi, L. E. O. C. Aragao, L. O. Anderson, R. B.

Myneni, and R. Nemani. 2013. Persistent effects of a severe drought on Amazonian

forest canopy. Proceedings of the National Academy of Sciences 110:565–570.

Savage, J., and M. Vellend. 2015. Elevational shifts, biotic homogenization and time lags

in vegetation change during 40 years of climate warming. Ecography 38:546–555.

Silman, M. R. 2007. Plant species diversity in Amazonian forests. Pages 269–294 in M.

Bush and J. Flenly, editors. Tropical rain forest responses to climate change.

Springer-Praxis, London. ter Steege, H., N. C. A. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque, J. F.

Molino, M. F. Prevost, R. Spichiger, H. Castellanos, P. von Hildebrand, and R.

Vasquez. 2006. Continental-scale patterns of canopy tree composition and function

across Amazonia. Nature 443:444–447.

Svenning, J.-C., and B. Sandel. 2013. Disequilibrium vegetation dynamics under future

climate change. American Journal of Botany 100:1266–1286.

Urrego, D. H., M. R. Silman, and M. B. Bush. 2005. The Last Glacial Maximum:

stability and change in a western Amazonian cloud forest. Journal of Quaternary

Science 20:693–701.

Urrutia, R., and M. Vuille. 2009. Climate change projections for the tropical Andes using

a regional climate model: Temperature and precipitation simulations for the end of

the 21st century. Journal of Geophysical Research 114:D02108.

Vasquez M., R., and R. D. P. Rojas G. 2016. Clave para identificar grupos de familias de

168

Gymnospermae y Angiospermae del Perú. Jardin Botanico de Missouri.

Vuille, M., and R. S. Bradley. 2000. Mean annual temperature trends and their vertical

structure in the tropical Andes. Geophysical Research Letters 27:3885–3888.

Williams, J. W., and S. T. Jackson. 2007. Novel climates, no‐analog communities, and

ecological surprises. Frontiers in Ecology and the Environment 5:475–482.

Young, K. R. 1992. Biogeography of the montane forest zone of the eastern slopes of

Peru. Memorias del Museo de Historia Natural U.N.M.S.M. 21:119–154.

169

Figure legends

Figure III - 1. The estimated community temperature index (CTI) for the 38 permanent forest plots. CTI was calculated as the difference between plots CTI in year i and the plots initial CTI along the Andes-to-Amazon elevational transect in Peru over 38 years.

Positive values represent an increase in the relative abundance of lowland taxa for (a) individual- and (b) basal area-weighted approach. Black dash line represents no change in

CTI. Colored lines correspond to each plot at different time interval along the elevational gradient.

Figure III - 2. Estimated plot-level thermophilization rates (TRplot) for the Andean and

Amazonian forests plots with multiple censuses (n = 38) for (a) individuals- and (b) basal area-weighted approach. TRplot was calculated as the slope of the linear least-regression between CTI and census year. Each circle represents one plot, red and blue colors represent the positive and negative significant TRplot respectively, grey colors represent plots with non-significant TRplot. Error bars despite the 95% confidence intervals based on the linear least- square regressions of the CTI versus census year of each plot. Dashed vertical line indicates the putative transition between the Amazonian and Andean forests.

Solid green line is the generalized additive model (GAM) fit using smoothing function with 95% confidence limits. Inset shows the TRplot for Amazonian plots, “X” and “Y” labels, and the colors legend are equal to the main graph. White triangle in the circles represent floodplain forest and black points represent the terra firme forest.

Figure III - 3. Estimated changes in plot-level thermophilization rates (TRplot) due mortality, recruitment and stem growth along the Manu-Tambopata elevational transect.

170

Plots are ordered from low-to-high elevations. The horizontal lines segments show the positive (red) and negative (blue) TRplot. Positive changes indicate increased abundance of Amazonian taxa consistent the thermophilization hypothesis. Inset shows the contribution of TRmor, TRgrow and TRrec based in GLM model results.

Figure III - 4. Estimated genus-level thermal migration rates (TMRgenus) of 78 genera along the Andes-to-Amazon elevational gradient occurring in at least 2 of the 38 inventory forests permanent plots for (a) individuals- and (b) basal area-weighted approach. Positive TMR values indicate upslope shifts. Red and blue circles represent the positive and negative significant TMRgenus for (a) and (b) respectively, grey colors represent taxa with non-significant TMRgenus. For (a) and (b), error bars despite the 95% confidence intervals based on the linear least-square regressions of the CTI versus census year of each plot, dashed vertical line indicates the putative transition (500 m) between the Amazonian and Andean forests. Solid green lines are the generalized additive model

(GAM) fit using smoothing function with 95% confidence limits.

Figure III - 5. Estimated species-level thermal migration rates (TMRspecies) of 79 tree species along the Andes-to-Amazon elevational gradient occurring in at least 2 of the 38 inventory forests permanent plots for (a) individuals- and (b) basal area-weighted approach. Positive TR values indicate upslope shifts. Red and blue circles represent the positive and negative significant TMRspecies for (a) and (b) respectively, grey colors represent taxa with non-significant TMRspecies. For (a) and (b), error bars despite the 95% confidence intervals based on the linear least-square regressions of the CTI versus census year of each plot, dashed vertical line indicates the putative transition (500 m) between

171 the Amazonian and Andean forests. Solid green lines are the generalized additive model

(GAM) fit using smoothing function with 95% confidence limits.

Appendix III – Figure S1. Species richness (a), number of individuals (b) and basal area

(c) along the Manu-Tambopata elevational transect. Grey solid lines are the generalized additive model (GAM) fit using a smoothing function with 95% confidence limits. Error bars depict bootstrapped 95% confidence intervals. Dashed line indicates the arbitrary division (500 m) between the Amazonian and Andean forests. Red lines correspond to the mean species richness, number of individuals and basal area for the Amazonian plots.

Blue lines correspond to the mean species richness, number of individuals and basal area for the Andean plots.

Appendix III – Figure S2. Estimate elevational rages for 1896 arboreal species including trees, tree ferns, palms and lianas along the Andes-to-Amazon elevational gradient.

Arborescent species list was obtained from the 40 (46.5 ha) permanent inventory plots from the ABERG (http://www.andesconservation.org/) and RAINFOR

(http://www.rainfor.org/) networks. Solid black vertical lines indicate the estimated species elevational range. Red circles indicate the center of the elevational range for each species and dashed horizontal grey line indicates the putative division between the

Amazonian and Andean forests. Inset shows the frequency distribution of the elevational range sizes and the red dashed line shows the mean elevational range for all species.

Appendix III – Figure S3. Mean community temperature index (CTI) calculate as the average of the mean temperatures weighted by the number of individuals (solid grey circles) and the relative basal area (open blue circles) of the species at that census with

172 elevation for 40 permanent forests plots along the Manu-Tambopata elevational transect.

Lines indicate linear regressions between CTI and elevation for individuals- (solid grey line) and basal area-weighted (dotted blue line) approach. Vertical dashed line indicates the arbitrary division (500 m) between the Amazonian and Andean forests.

Appendix III – Figure S4. Estimated community temperature index (CTI) and elevation calculated as the difference between plots CTI in year i and the plots initial CTI. Positive values represent an increase in the relative abundance of lowland taxa for (a, b) individuals- and (c, d) basal area-weighted approach. Black dash line represents no change in CTI. (a, c) change in CTI for plots including dead trees in landslides and (b, d)

CTI change for plots excluding dead trees in landslides. Colors correspond to each plot at different time interval along the gradient. Plot names (SPD-01, TRU-06, TRU-02) correspond to plots that experienced landslides disturbance.

Appendix III – Figure S5. Linear least-square regression lines fitted to the estimated CTI and elevation. Red and blue lines show the trajectory for each forest plot and represent the directionality and consistency in CTI anomaly over time. Red lines (positive values) indicate long-term increase in the relative abundance of Amazonian taxa for (a) individuals- and (b) basal area-weighted approach. Black solid line represents no change in CTI. Inset shows the frequency distribution of the slopes and the red solid line represents the mean slope.

Appendix III – Figure S6. Distribution of the thermophilization rates (TRplot) for the

Amazonian and Andean forests plots along the Manu-Tambopata elevational gradient

173 based on (a) the individuals- and (b) basal area-weighted approach. Dashed vertical lines correspond to the overall mean TRplot for the Amazonian and Andean plots respectively.

Appendix III – Figure S7. Thermophilization rates (TRplot) and the relationship with (a) tree mortality (TRmor), (b) tree recruitment (TRrec) and (c) growth (TRgro) across the elevation gradient. Red dashed lines indicate significant linear regressions.

174

(a) Individuals

(b) Basal area

FIGURE III - 1

175

(a) Individuals

(b) Basal area

FIGURE III - 2

176

FIGURE III - 3

177

Individuals (a)

Basal area (b)

FIGURE III - 4

178

(a)

Individuals

(b)

Basal area

FIGURE III - 5

179

Supporting Information

Title:

Movement or mortality? Pervasive but slow upslope tree migration in the amazon to the

Andes revealed through 38 years of forest monitoring

180

Appendix III - Table S1. Description of the 40 (46.5 ha) permanent forests plots along the

Andes-to-Amazon elevational gradient for stems with DBH ≥ 10 cm. Plots are ordered by

decreasing elevation. Forests types include: Lowlands (TF = terra firme, FP = floodplain;

< 500 m), sub montane (500 - 1600 m), lower montane (1600 - 2500 m), upper montane

(2500 - 3400 m) and treeline (> 3400 m). Forest types are defined based on Young (1992)

and Pennington et al. (2004).

Plot Number Plot Year of Plot Plot size Lat. Lon. Forest type establish of center code name elevation (m) -ment (ha) censuses

APK-01 Apu Kanachuay 1 3625 -13.0957 -71.6299 Treeline 2011.75 3

ACJ-01 Acajanaco 1 3537 -13.1469 -71.6323 Treeline 2013.07 3

TRU-01 Trocha Union 1 1 3402 -13.1137 -71.6070 Treeline 2003.51 5

TRU-02 Trocha Union 2 1 3261 -13.1105 -71.6041 Upper montane 2003.49 5

TRU-03 Trocha Union 3 1 3042 -13.1094 -71.5995 Upper montane 2003.76 5

WAY-01 Wayquecha 1 3032 -13.1906 -71.5875 Upper montane 2003.73 5

ESP-01 Esperanza 1 2852 -13.1759 -71.5948 Upper montane 2006.51 6

TRU-04 Trocha Union 4 1 2755 -13.1059 -71.5892 Upper montane 2003.53 5

TRU-05 Trocha Union 5 1 2528 -13.0940 -71.5740 Upper montane 2003.56 5

181

Plot Number Plot Year of Plot Plot size Lat. Lon. Forest type establish of center code name -ment (ha) elevation (m) censuses

TRU-06 Trocha Union 6 1 2237 -13.0801 -71.5653 Lower montane 2003.67 5

TRU-07 Trocha Union 7 1 2031 -13.0739 -71.5596 Lower montane 2003.67 5

TRU-08 Trocha Union 8 1 1843 -13.0704 -71.5559 Lower montane 2003.61 5

SPD-01 San Pedro 1 1 1757 -13.0473 -71.5422 Lower montane 2006.66 7

CAL-01 Callanga 1 1 1581 -12.8055 -71.7767 Sub montane 2004.70 5

SPD-02 San Pedro 2 1 1518 -13.0490 -71.5365 Sub montane 2006.72 7

SAI-01 San Isidro1 1 1492 -12.9986 -71.5600 Sub montane 2005.53 4

CAL-02 Callanga 2 1 1241 -12.8045 -71.7828 Sub montane 2004.75 5

SAI-02 San Isidro2 1 1217 -12.9947 -71.5550 Sub montane 2005.58 4

TON-02 Tono 2 1 968 -12.9591 -71.5663 Sub montane 2004.55 4

TON-01 Tono 1 1 867 -12.9475 -71.5320 Sub montane 2004.45 1

PAN-03 Pantiacolla 3 1 843 -12.6383 -71.2745 Sub montane 2013.24 3

PAN-02 Pantiacolla 2 1 595 -12.6496 -71.2627 Sub montane 2003.38 5

PAN-01 Pantiacolla 1 1 425 -12.6404 -71.2446 Lowlands (TF) 2002.69 1

ALM-01 Alto maizal 2 405 -11.8000 -71.4667 Lowlands (TF) 1994.73 5

MNU-04 Manu 4 2 358 -11.9047 -71.4025 Lowlands (TF) 1991.71 6

182

Plot Number Plot Year of Plot Plot size Lat. Lon. Forest type establish of center code name -ment (ha) elevation (m) censuses

MNU-05 Manu 5 2.25 347 -11.8785 -71.4086 Lowlands (TF) 1989.78 7

MNU-06 Manu 6 2.25 345 -11.8870 -71.3972 Lowlands (TF) 1989.82 5

MNU-08 Manu 8 2 338 -11.9955 -71.2355 Lowlands (FP) 1991.77 5

MNU-03 Manu 3 2 312 -11.9000 -71.4000 Lowlands (TF) 1991.70 5

TAM-07 Tambopata 7 1 228 -12.8258 -69.2612 Lowlands (TF) 1983.75 10

TAM-08 Tambopata 8 1 225 -12.8264 -69.2694 Lowlands (TF) 2001.53 6

TAM-05 Tambopata 5 1 217 -12.8304 -69.2706 Lowlands (TF) 1983.69 12

TAM-01 Tambopata 1 1 215 -12.8442 -69.2885 Lowlands (TF) 1983.78 11

TAM-02 Tambopata 2 1 213 -12.8345 -69.2862 Lowlands (TF) 1979.87 13

TAM-06 Tambopata 6 1 205 -12.8386 -69.2960 Lowlands (FP) 1983.71 11

TAM-09 Tambopata 9 1 197 -12.8309 -69.2843 Lowlands (TF) 2010.69 5

CUZ-04 Cuzco amazonico 4 1 193 -12.4992 -68.9598 Lowlands (FP) 1989.44 8

CUZ-03 Cuzco amazonico 3 1 192 -12.4997 -68.9630 Lowlands (FP) 1989.42 8

CUZ-01 Cuzco amazonico 1 1 191 -12.4990 -68.9738 Lowlands (FP) 1989.39 8

CUZ-02 Cuzco amazonico 2 1 190 -12.4991 -68.9707 Lowlands (FP) 1989.40 8

183

Appendix III - Table S2. The estimated plot-level thermophilization rates (TRplot) of the 38 (46.5 ha) permanent inventory forest plots

along the Andes-to-Amazon elevational gradient. Positive TR indicates upslope shifts. Plots are ranked by increasing individual-

weighted TRplot across the elevational gradient.

Individuals weighted Basal area weighted

Elevation lower upper lower upper Plot Forest type TR TR P TR TR P (m) 95 % 95 % 95 % 95 % (oC yr-1) (m yr-1) value (oC yr-1) (m yr-1) value CI CI CI CI

184 ACJ-01 Treeline 3537 -0.0208 -3.7746 0.0224 -0.0222 -0.0193 -0.0071 -1.2856 0.3067 -0.0145 0.0003

CUZ-01 Lowlands (FP) 191 -0.0164 -2.9906 0.0165 -0.0264 -0.0065 -0.0106 -1.9322 0.0016 -0.0145 -0.0067

CAL-02 Sub montane 1241 -0.0041 -0.7378 0.0633 -0.0069 -0.0012 0.0014 0.2545 0.7274 -0.0059 0.0087

MNU-03 Lowlands (TF) 312 -0.0027 -0.4920 0.0324 -0.0041 -0.0013 0.0021 0.3746 0.1700 -0.0002 0.0044

TRU-05 Upper montane 2528 -0.0025 -0.4503 0.0131 -0.0034 -0.0015 0.0017 0.3030 0.2992 -0.0010 0.0043

CUZ-02 Lowlands (FP) 190 -0.0019 -0.3510 0.0204 -0.0032 -0.0007 -0.0047 -0.8595 0.0000 -0.0056 -0.0038

MNU-06 Lowlands (TF) 345 -0.0015 -0.2768 0.0453 -0.0024 -0.0006 0.0019 0.3466 0.1975 -0.0004 0.0042

MNU-08 Lowlands (FP) 338 -0.0013 -0.2345 0.2417 -0.0031 0.0005 -0.0031 -0.5663 0.0110 -0.0042 -0.0020

SAI-02 Sub montane 1217 -0.0010 -0.1871 0.6304 -0.0047 0.0026 0.0045 0.8175 0.2326 -0.0008 0.0098

Individuals weighted Basal area weighted

Elevation lower upper lower upper Plot Forest type TR TR P TR TR P (m) 95 % 95 % 95 % 95 % (oC yr-1) (m yr-1) value (oC yr-1) (m yr-1) value CI CI CI CI

TRU-07 Lower montane 2031 -0.0005 -0.0990 0.8353 -0.0053 0.0043 -0.0063 -1.1379 0.0002 -0.0068 -0.0057

TRU-02 Upper montane 3261 -0.0003 -0.0532 0.9311 -0.0065 0.0059 -0.0082 -1.4902 0.0278 -0.0123 -0.0041

TAM-08 Lowlands (TF) 225 -0.0002 -0.0378 0.8229 -0.0019 0.0015 -0.0020 -0.3684 0.0126 -0.0030 -0.0011

PAN-02 Sub montane 595 -0.0002 -0.0298 0.9314 -0.0037 0.0033 0.0080 1.4563 0.0095 0.0053 0.0107

TAM-05 Lowlands (TF) 217 0.00003 0.0048 0.9508 -0.0008 0.0009 -0.0010 -0.1832 0.1040 -0.0021 0.0001

185 ALM-01 Lowlands (TF) 405 0.0003 0.0487 0.7780 -0.0015 0.0020 -0.0028 -0.5055 0.1393 -0.0056 0.0000

TAM-07 Lowlands (TF) 228 0.0004 0.0643 0.3658 -0.0004 0.0011 0.0029 0.5320 0.0041 0.0015 0.0044

MNU-04 Lowlands (TF) 358 0.0012 0.2196 0.4221 -0.0015 0.0039 0.0005 0.0929 0.5648 -0.0011 0.0021

CUZ-03 Lowlands (FP) 192 0.0016 0.2930 0.1758 -0.0005 0.0037 -0.0008 -0.1530 0.5537 -0.0035 0.0018

TAM-06 Lowlands (FP) 205 0.0017 0.3062 0.0042 0.0008 0.0026 0.0006 0.1003 0.1711 -0.0002 0.0013

MNU-05 Lowlands (TF) 347 0.0025 0.4502 0.0151 0.0011 0.0038 0.0032 0.5832 0.0016 0.0022 0.0042

APK-01 Treeline 3625 0.0037 0.6793 0.4360 -0.0024 0.0098 -0.0113 -2.0534 0.4811 -0.0326 0.0100

TAM-01 Lowlands (TF) 215 0.0040 0.7271 0.0000 0.0032 0.0048 0.0028 0.5144 0.0002 0.0019 0.0038

TRU-08 Lower montane 1843 0.0044 0.8054 0.0298 0.0022 0.0067 0.0045 0.8120 0.0051 0.0033 0.0057

Individuals weighted Basal area weighted

Elevation lower upper lower upper Plot Forest type TR TR P TR TR P (m) 95 % 95 % 95 % 95 % (oC yr-1) (m yr-1) value (oC yr-1) (m yr-1) value CI CI CI CI

CUZ-04 Lowlands (FP) 193 0.0050 0.9049 0.0001 0.0039 0.0060 0.0024 0.4406 0.0440 0.0005 0.0043

TAM-02 Lowlands (TF) 213 0.0052 0.9486 0.0000 0.0048 0.0057 0.0047 0.8533 0.0000 0.0041 0.0053

ESP-01 Upper montane 2852 0.0053 0.9696 0.0032 0.0036 0.0070 -0.0021 -0.3848 0.4171 -0.0068 0.0026

CAL-01 Sub montane 1581 0.0055 0.9986 0.2642 -0.0025 0.0135 0.0098 1.7800 0.0919 0.0018 0.0178

TRU-06 Lower montane 2237 0.0056 1.0267 0.0450 0.0022 0.0090 0.0116 2.1039 0.0026 0.0091 0.0141

186 TAM-09 Lowlands (TF) 197 0.0063 1.1434 0.0093 0.0042 0.0084 0.0004 0.0723 0.1408 0.0000 0.0008

SAI-01 Sub montane 1492 0.0065 1.1729 0.1071 0.0019 0.0111 0.0063 1.1384 0.0085 0.0051 0.0074

TRU-03 Upper montane 3042 0.0097 1.7635 0.0096 0.0064 0.0130 0.0003 0.0494 0.7194 -0.0011 0.0016

WAY-01 Upper montane 3032 0.0103 1.8796 0.0142 0.0063 0.0144 0.0168 3.0481 0.0003 0.0150 0.0185

TRU-04 Upper montane 2755 0.0111 2.0242 0.0006 0.0097 0.0126 0.0109 1.9727 0.0040 0.0082 0.0135

PAN-03 Sub montane 843 0.0119 2.1672 0.2469 0.0022 0.0217 0.0027 0.4845 0.3323 -0.0004 0.0057

TRU-01 Treeline 3402 0.0180 3.2649 0.0103 0.0117 0.0242 0.0156 2.8432 0.0005 0.0138 0.0175

SPD-02 Sub montane 1518 0.0211 3.8395 0.0001 0.0172 0.0250 0.0048 0.8778 0.3210 -0.0039 0.0136

SPD-01 Lower montane 1757 0.0212 3.8514 0.0001 0.0177 0.0247 0.0204 3.7041 0.0045 0.0120 0.0287

Individuals weighted Basal area weighted

Elevation lower upper lower upper Plot Forest type TR TR P TR TR P (m) 95 % 95 % 95 % 95 % (oC yr-1) (m yr-1) value (oC yr-1) (m yr-1) value CI CI CI CI

TON-02 Sub montane 968 0.0257 4.6696 0.0019 0.0234 0.0279 0.0086 1.5650 0.0179 0.0063 0.0109

187

Appendix III - Table S3. The estimated genus-level thermal migration rates (TMRgenus) of

78 genera weighted by the number of individuals along the Andes-to-Amazon elevational gradient occurring in at least 2 of the 38 forest inventory plots. Positive TMR indicates upslope shifts. Plots are ranked by increasing TMR across the elevational gradient.

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Ilex 239 2454.3 -0.0231 -4.2074 0.0290 -0.0312 -0.0151

Hieronyma 124 1734.9 -0.0224 -4.0762 0.0062 -0.0260 -0.0189

Sapium 78 1004.2 -0.0195 -3.5464 0.1866 -0.0392 0.0002

Guarea 130 677.8 -0.0165 -3.0047 0.2024 -0.0342 0.0011

Aspidosperma 64 608.0 -0.0151 -2.7486 0.0217 -0.0196 -0.0106

Brunellia 60 2865.2 -0.0143 -2.5929 0.3518 -0.0380 0.0094

Helicostylis 89 1175.8 -0.0141 -2.5711 0.1388 -0.0259 -0.0023

Otoba 72 958.3 -0.0120 -2.1835 0.2337 -0.0262 0.0022

Tapirira 220 1412.2 -0.0097 -1.7607 0.1368 -0.0177 -0.0017

Pouteria 333 583.9 -0.0074 -1.3385 0.2727 -0.0172 0.0025

Palicourea 52 2065.2 -0.0069 -1.2478 0.4556 -0.0218 0.0081

Virola 252 993.6 -0.0053 -0.9694 0.3798 -0.0149 0.0042

Dendropanax 101 1519.3 -0.0048 -0.8784 0.2235 -0.0104 0.0007

Mollinedia 117 1739.9 -0.0045 -0.8197 0.3426 -0.0118 0.0028

Myrcia 219 1744.2 -0.0040 -0.7277 0.1325 -0.0072 -0.0008

Euterpe 177 279.1 -0.0036 -0.6619 0.0200 -0.0047 -0.0026

Prunus 234 2659.5 -0.0033 -0.6063 0.5979 -0.0141 0.0074

188

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Nectandra 303 1578.7 -0.0032 -0.5760 0.6879 -0.0168 0.0105

Sorocea 82 248.5 -0.0031 -0.5670 0.1735 -0.0061 -0.0001

Dictyocaryum 59 1334.1 -0.0026 -0.4688 0.6135 -0.0113 0.0061

Vochysia 55 881.2 -0.0025 -0.4468 0.5037 -0.0085 0.0036

Alzatea 111 2012.2 -0.0024 -0.4416 0.0318 -0.0033 -0.0015

Coussarea 99 1448.2 -0.0015 -0.2652 0.7941 -0.0113 0.0083

Clethra 307 2476.2 -0.0013 -0.2416 0.3179 -0.0033 0.0007

Casearia 69 894.3 -0.0009 -0.1640 0.8773 -0.0112 0.0094

Axinaea 106 3209.1 -0.0004 -0.0659 0.5014 -0.0013 0.0005

Siparuna 116 248.4 -0.0003 -0.0509 0.9346 -0.0063 0.0058

Drypetes 58 226.1 -0.0002 -0.0368 0.7198 -0.0012 0.0008

Pseudolmedia 452 287.6 -0.00004 -0.0077 0.9533 -0.0013 0.0012

Astrocaryum 133 260.4 0.00001 0.0019 0.9978 -0.0067 0.0067

Brosimum 77 299.8 0.0001 0.0255 0.8249 -0.0010 0.0013

Ficus 233 1177.5 0.0002 0.0383 0.9787 -0.0138 0.0142

Iryanthera 204 227.0 0.0003 0.0550 0.4101 -0.0003 0.0009

Oenocarpus 58 229.4 0.0006 0.1112 0.7495 -0.0027 0.0040

Attalea 60 192.3 0.0009 0.1658 0.1138 0.0002 0.0016

Pourouma 413 439.7 0.0012 0.2171 0.5600 -0.0023 0.0046

Oxandra 72 214.2 0.0013 0.2331 0.4805 -0.0017 0.0043

Pausandra 54 347.6 0.0019 0.3393 0.1929 -0.0001 0.0038

Rinorea 130 221.5 0.0019 0.3485 0.1127 0.0005 0.0033

Celtis 70 241.9 0.0023 0.4097 0.2287 -0.0004 0.0049

Theobroma 76 235.9 0.0027 0.4966 0.2391 -0.0006 0.0060

189

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Symplocos 179 3148.0 0.0028 0.5142 0.7280 -0.0113 0.0170

Leonia 198 251.0 0.0030 0.5387 0.0552 0.0015 0.0044

Weinmannia 1086 2930.8 0.0030 0.5402 0.0074 0.0025 0.0035

Licania 55 327.6 0.0030 0.5513 0.1854 0.0000 0.0061

Neea 74 542.1 0.0046 0.8326 0.1593 0.0004 0.0087

Gordonia 62 2147.1 0.0057 1.0343 0.7537 -0.0260 0.0373

Clarisia 123 834.6 0.0075 1.3705 0.1011 0.0023 0.0127

Iriartea 874 362.5 0.0077 1.4001 0.0428 0.0044 0.0110

Sloanea 102 547.1 0.0080 1.4492 0.0294 0.0052 0.0108

Socratea 109 223.8 0.0081 1.4789 0.0315 0.0052 0.0111

Trichilia 107 649.3 0.0089 1.6120 0.4737 -0.0114 0.0291

Meliosma 114 1548.3 0.0089 1.6143 0.4050 -0.0081 0.0258

Cordia 64 648.5 0.0091 1.6518 0.1348 0.0016 0.0165

Ladenbergia 108 1242.0 0.0094 1.7167 0.0309 0.0060 0.0128

Inga 350 794.9 0.0101 1.8372 0.1391 0.0017 0.0185

Cecropia 175 1195.9 0.0103 1.8756 0.1630 0.0008 0.0199

Ocotea 367 1638.8 0.0106 1.9326 0.1521 0.0012 0.0200

Myrsine 275 2857.0 0.0107 1.9461 0.0216 0.0075 0.0139

Lunania 80 232.2 0.0118 2.1533 0.0045 0.0102 0.0134

Quararibea 146 305.0 0.0121 2.2000 0.0153 0.0091 0.0151

Protium 103 1130.7 0.0156 2.8340 0.0280 0.0103 0.0209

Perebea 80 943.1 0.0158 2.8795 0.0926 0.0055 0.0262

Turpinia 79 1272.2 0.0158 2.8799 0.0082 0.0129 0.0187

Tachigali 172 779.7 0.0164 2.9892 0.1170 0.0041 0.0288

190

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Elaeagia 101 1474.2 0.0173 3.1453 0.0733 0.0074 0.0272

Clusia 692 2706.9 0.0187 3.3950 0.0198 0.0133 0.0240

Guatteria 144 1375.7 0.0188 3.4191 0.0878 0.0069 0.0307

Alchornea 290 1932.1 0.0205 3.7199 0.0095 0.0164 0.0245

Endlicheria 97 1128.8 0.0243 4.4238 0.0701 0.0107 0.0379

Allophylus 60 975.9 0.0249 4.5310 0.0783 0.0101 0.0397

Cinchona 70 2410.8 0.0256 4.6536 0.0662 0.0117 0.0395

Persea 175 2319.5 0.0265 4.8206 0.1471 0.0036 0.0495

Cyathea 1593 2233.4 0.0292 5.3012 0.0209 0.0206 0.0377

Miconia 688 2546.5 0.0425 7.7194 0.0060 0.0359 0.0491

Pleurothyrium 51 1240.4 0.0478 8.6866 0.0244 0.0326 0.0630

Hedyosmum 222 2271.4 0.0681 12.3810 0.0031 0.0605 0.0757

Schefflera 80 2467.5 0.0709 12.8826 0.0087 0.0575 0.0842

191

Appendix III - Table S4. The estimated genus-level thermal migration rates (TMRgenus) of

78 genera weighted by basal area along the Andes-to-Amazon elevational gradient occurring in at least 2 of the 38 forest inventory plots. Positive TMR indicate upslope shifts. Plots are ranked by increasing TMR across the elevational gradient.

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Brunellia 60 2849.8 -0.0322 -5.8558 0.3252 -0.0820 0.0176

Hieronyma 124 1734.0 -0.0312 -5.6675 0.0253 -0.0413 -0.0211

Ilex 239 2546.4 -0.0278 -5.0556 0.0101 -0.0334 -0.0222

Casearia 69 868.4 -0.0221 -4.0132 0.1403 -0.0406 -0.0035

Tapirira 220 1370.4 -0.0188 -3.4258 0.0107 -0.0228 -0.0149

Guarea 130 693.6 -0.0164 -2.9841 0.1645 -0.0317 -0.0011

Aspidosperma 64 560.1 -0.0114 -2.0709 0.1400 -0.0209 -0.0018

Helicostylis 89 1110.1 -0.0085 -1.5512 0.1051 -0.0145 -0.0025

Ficus 233 1074.8 -0.0080 -1.4546 0.5592 -0.0310 0.0150

Sapium 78 912.0 -0.0079 -1.4343 0.3465 -0.0208 0.0050

Otoba 72 1052.1 -0.0074 -1.3517 0.3514 -0.0198 0.0049

Clethra 307 2569.9 -0.0074 -1.3391 0.1482 -0.0138 -0.0010

Pouteria 333 534.5 -0.0072 -1.3103 0.2083 -0.0151 0.0007

Myrcia 219 1711.7 -0.0068 -1.2345 0.1038 -0.0115 -0.0020

Virola 252 1030.4 -0.0064 -1.1629 0.3277 -0.0164 0.0036

Mollinedia 117 1730.1 -0.0063 -1.1513 0.2047 -0.0132 0.0005

Vochysia 55 851.6 -0.0062 -1.1207 0.4188 -0.0184 0.0060

192

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Nectandra 303 1573.6 -0.0049 -0.8994 0.6247 -0.0222 0.0123

Palicourea 52 2078.2 -0.0045 -0.8180 0.5812 -0.0183 0.0093

Dictyocaryum 59 1336.1 -0.0042 -0.7681 0.3632 -0.0115 0.0030

Dendropanax 101 1511.3 -0.0036 -0.6554 0.1631 -0.0069 -0.0003

Euterpe 177 270.4 -0.0033 -0.6058 0.0223 -0.0043 -0.0023

Prunus 234 2693.3 -0.0024 -0.4454 0.5824 -0.0100 0.0051

Coussarea 99 1457.5 -0.0023 -0.4252 0.5437 -0.0088 0.0041

Meliosma 114 1336.3 -0.0022 -0.4057 0.8763 -0.0275 0.0231

Pseudolmedia 452 289.6 -0.0018 -0.3347 0.2129 -0.0039 0.0002

Sorocea 82 231.1 -0.0017 -0.3071 0.3074 -0.0042 0.0008

Clarisia 123 698.6 -0.0010 -0.1730 0.8678 -0.0110 0.0091

Alzatea 111 1989.0 -0.0009 -0.1595 0.2609 -0.0020 0.0003

Axinaea 106 3208.8 -0.0006 -0.1057 0.6965 -0.0032 0.0020

Astrocaryum 133 278.1 -0.0006 -0.1024 0.7937 -0.0043 0.0032

Iryanthera 204 226.2 0.0001 0.0220 0.6800 -0.0004 0.0006

Drypetes 58 220.8 0.0002 0.0308 0.5697 -0.0003 0.0007

Siparuna 116 246.7 0.0005 0.0849 0.8625 -0.0043 0.0052

Attalea 60 192.3 0.0009 0.1594 0.1205 0.0002 0.0015

Brosimum 77 288.8 0.0009 0.1616 0.0888 0.0003 0.0015

Oxandra 72 213.5 0.0010 0.1798 0.5868 -0.0021 0.0041

Celtis 70 242.5 0.0012 0.2123 0.6183 -0.0028 0.0052

Rinorea 130 219.1 0.0015 0.2695 0.1352 0.0003 0.0027

Theobroma 76 240.9 0.0019 0.3416 0.4458 -0.0021 0.0059

Pausandra 54 346.3 0.0019 0.3468 0.1817 0.0000 0.0038

193

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Neea 74 535.3 0.0020 0.3673 0.6917 -0.0068 0.0108

Leonia 198 250.0 0.0021 0.3794 0.1910 -0.0001 0.0042

Oenocarpus 58 230.3 0.0024 0.4403 0.5469 -0.0043 0.0092

Licania 55 303.7 0.0029 0.5199 0.1099 0.0008 0.0049

Weinmannia 1086 2954.2 0.0036 0.6595 0.0398 0.0021 0.0051

Pourouma 413 431.1 0.0041 0.7511 0.1964 -0.0002 0.0085

Gordonia 62 1862.6 0.0046 0.8347 0.9090 -0.0664 0.0756

Inga 350 762.6 0.0070 1.2659 0.3404 -0.0043 0.0182

Iriartea 874 354.4 0.0080 1.4465 0.0417 0.0046 0.0113

Ladenbergia 108 1231.0 0.0084 1.5263 0.0713 0.0037 0.0131

Socratea 109 223.9 0.0091 1.6588 0.0093 0.0074 0.0109

Myrsine 275 2859.1 0.0103 1.8763 0.0417 0.0060 0.0147

Lunania 80 229.2 0.0110 2.0017 0.0060 0.0093 0.0127

Symplocos 179 3176.7 0.0112 2.0420 0.3287 -0.0063 0.0288

Turpinia 79 1347.5 0.0116 2.1005 0.0484 0.0063 0.0168

Cinchona 70 2373.3 0.0152 2.7640 0.0107 0.0120 0.0184

Trichilia 107 613.4 0.0155 2.8153 0.2686 -0.0049 0.0359

Allophylus 60 1065.3 0.0163 2.9691 0.1020 0.0050 0.0276

Quararibea 146 309.1 0.0165 3.0051 0.0159 0.0123 0.0207

Endlicheria 97 1140.2 0.0170 3.0997 0.2417 -0.0037 0.0378

Perebea 80 904.4 0.0171 3.1085 0.0905 0.0060 0.0281

Ocotea 367 1610.6 0.0172 3.1335 0.0882 0.0063 0.0282

Elaeagia 101 1479.7 0.0176 3.1922 0.1205 0.0041 0.0310

Sloanea 102 552.2 0.0178 3.2307 0.0300 0.0115 0.0241

194

Center Number lower upper of range TMR TMR Genus of P value 95 % 95 % elevation (oC yr-1) (m yr-1) individuals CI CI (m)

Clusia 692 2728.9 0.0195 3.5523 0.0113 0.0153 0.0237

Cordia 64 678.8 0.0198 3.5910 0.0409 0.0115 0.0280

Cecropia 175 1135.3 0.0210 3.8229 0.0207 0.0149 0.0272

Tachigali 172 761.5 0.0236 4.2828 0.2371 -0.0047 0.0518

Protium 103 1161.0 0.0237 4.3029 0.0433 0.0135 0.0339

Cyathea 1593 2261.1 0.0283 5.1483 0.0123 0.0220 0.0346

Alchornea 290 2007.3 0.0296 5.3783 0.0087 0.0240 0.0351

Persea 175 2367.9 0.0354 6.4360 0.1511 0.0042 0.0666

Pleurothyrium 51 1310.8 0.0400 7.2767 0.0434 0.0228 0.0573

Guatteria 144 1246.8 0.0411 7.4801 0.0076 0.0339 0.0484

Miconia 688 2634.0 0.0458 8.3252 0.0083 0.0374 0.0542

Hedyosmum 222 2261.4 0.0712 12.9499 0.0030 0.0634 0.0790

Schefflera 80 2550.9 0.0718 13.0490 0.0135 0.0549 0.0886

195

Appendix III - Table S5. The estimated species-level thermal migration rates (TMRspecies) of 79 tree species weighted by the number of individuals along the Andes-to-Amazon elevational gradient occurring in at least 2 of the 38 forest inventory plots. Positive TMR indicates upslope shifts. Plots are ranked by increasing TMR across the elevational gradient.

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Otoba parvifolia 72 958.3 -0.0120 -2.1835 0.2337 -0.0262 0.0022

Cecropia angustifolia 71 1587.4 -0.0112 -2.0446 0.0183 -0.0143 -0.0082

Ficus maxima 72 1160.3 -0.0098 -1.7883 0.0162 -0.0124 -0.0073

Symplocos psiloclada 54 3331.9 -0.0079 -1.4454 0.0594 -0.0120 -0.0039

Alchornea grandiflora 82 2510.6 -0.0068 -1.2351 0.1866 -0.0137 0.0001

Pseudolmedia laevigata 78 505.3 -0.0065 -1.1871 0.2639 -0.0150 0.0020

Mollinedia lanceolata 59 1748.5 -0.0058 -1.0561 0.5632 -0.0227 0.0111

Euterpe precatoria 177 279.1 -0.0036 -0.6619 0.0200 -0.0047 -0.0026

Tachigali polyphylla 65 288.3 -0.0031 -0.5671 0.3183 -0.0079 0.0016

Tachigali setifera 80 1446.2 -0.0030 -0.5483 0.1728 -0.0059 -0.0001

Cyathea carolihenrici 88 2262.6 -0.0029 -0.5352 0.0719 -0.0046 -0.0013

Pouteria torta 96 386.4 -0.0026 -0.4696 0.4988 -0.0089 0.0037

Dictyocaryum lamarckianum 59 1334.1 -0.0026 -0.4688 0.6135 -0.0113 0.0061

Alzatea verticillata 111 2012.2 -0.0024 -0.4416 0.0318 -0.0033 -0.0015

Ilex villosula 99 1971.7 -0.0022 -0.4040 0.0279 -0.0030 -0.0015

Persea mutisii 58 2005.2 -0.0019 -0.3527 0.2797 -0.0046 0.0007

196

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Cyathea catacampta 58 2513.4 -0.0018 -0.3189 0.1615 -0.0034 -0.0001

Cyathea lechleri 232 1973.6 -0.0017 -0.3003 0.3874 -0.0047 0.0014

Clusia alata 289 3038.9 -0.0013 -0.2410 0.3678 -0.0036 0.0010

Miconia crassistigma 160 3329.3 -0.0010 -0.1811 0.3458 -0.0026 0.0006

Cyathea sp26(217KGC) 74 1901.6 -0.0010 -0.1759 0.7616 -0.0065 0.0046

Nectandra pulverulenta 58 923.1 -0.0009 -0.1726 0.9077 -0.0154 0.0135

Weinmannia cochensis 154 3375.0 -0.0009 -0.1698 0.0118 -0.0011 -0.0007

Myrcia fallax 62 1851.1 -0.0005 -0.0841 0.0191 -0.0006 -0.0003

Iryanthera laevis 75 221.6 -0.0003 -0.0511 0.0328 -0.0004 -0.0002

Attalea cephalotes 59 192.0 -0.00001 -0.0012 0.8286 -0.0001 0.00005

Sorocea briquetii 60 191.8 0.000004 0.0008 0.8143 -0.00003 0.00004

Weinmannia crassifolia 332 3032.3 0.00002 0.0036 0.0180 0.00001 0.00002

Myrsine youngii 70 3039.4 0.00003 0.0055 0.6897 -0.0001 0.0002

Symplocos quitensis 78 3380.9 0.0004 0.0644 0.4175 -0.0003 0.0011

Iryanthera juruensis 126 230.6 0.0004 0.0705 0.5239 -0.0006 0.0014

Helicostylis tovarensis 52 1691.4 0.0004 0.0720 0.1916 0.0000 0.0008

Prunus huantensis 64 3231.2 0.0004 0.0798 0.7603 -0.0021 0.0030

Weinmannia ovata 51 2040.2 0.0005 0.0973 0.1461 0.0001 0.0010

Pseudolmedia laevis 316 229.2 0.0008 0.1481 0.1169 0.0002 0.0014

Siparuna decipiens 100 227.9 0.0010 0.1813 0.3049 -0.0005 0.0025

Coussarea ecuadorensis 72 1523.9 0.0014 0.2556 0.4901 -0.0019 0.0048

Myrcia rostrata 98 1895.6 0.0014 0.2622 0.0299 0.0009 0.0020

Perebea guianensis 70 1086.0 0.0015 0.2653 0.7444 -0.0063 0.0093

Ilex sessiliflora 80 3255.9 0.0017 0.3042 0.3892 -0.0014 0.0047

197

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Axinaea pennellii 106 3209.1 0.0017 0.3117 0.0854 0.0006 0.0028

Pausandra trianae 54 347.6 0.0019 0.3393 0.1929 -0.0001 0.0038

Rinorea viridifolia 117 224.8 0.0019 0.3397 0.1264 0.0004 0.0033

Pourouma minor 213 313.2 0.0021 0.3771 0.1312 0.0004 0.0037

Celtis schippii 70 241.9 0.0023 0.4097 0.2287 -0.0004 0.0049

Myrsine coriacea 108 3004.0 0.0023 0.4247 0.1148 0.0006 0.0041

Cyathea sp18(922KGC) 102 1692.9 0.0024 0.4312 0.1193 0.0006 0.0042

Prunus integrifolia 107 2869.1 0.0025 0.4525 0.1461 0.0003 0.0046

Pseudolmedia macrophylla 53 315.3 0.0030 0.5413 0.0174 0.0022 0.0038

Theobroma cacao 64 238.9 0.0031 0.5551 0.2338 -0.0006 0.0067

Hedyosmum racemosum 89 1863.9 0.0031 0.5715 0.3675 -0.0023 0.0086

Clusia sphaerocarpa 156 2971.8 0.0032 0.5738 0.0098 0.0025 0.0038

Clusia sp6(1013WFR) 65 1851.2 0.0032 0.5760 0.1312 0.0006 0.0057

Leonia glycycarpa 173 257.1 0.0041 0.7541 0.0607 0.0020 0.0063

Clethra cuneata 53 3241.8 0.0043 0.7797 0.0125 0.0033 0.0053

Pourouma mollis 60 635.1 0.0046 0.8364 0.0723 0.0020 0.0072

Clethra revoluta 170 2010.6 0.0051 0.9187 0.2581 -0.0014 0.0115

Gordonia fruticosa 62 2147.1 0.0057 1.0343 0.7537 -0.0260 0.0373

Weinmannia reticulata 207 2843.2 0.0057 1.0424 0.0117 0.0045 0.0070

Ladenbergia oblongifolia 102 1218.4 0.0068 1.2416 0.0295 0.0044 0.0092

Alchornea latifolia 64 1542.5 0.0071 1.2883 0.0112 0.0056 0.0086

Iriartea deltoidea 874 362.5 0.0077 1.4001 0.0428 0.0044 0.0110

Astrocaryum murumuru 76 223.0 0.0079 1.4349 0.2320 -0.0014 0.0172

Virola sebifera 151 1176.2 0.0080 1.4527 0.2258 -0.0012 0.0172

198

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Ocotea tessmannii 63 1343.1 0.0081 1.4807 0.2421 -0.0018 0.0181

Socratea exorrhiza 104 219.0 0.0089 1.6179 0.0272 0.0059 0.0119

Ficus macbridei 54 1323.6 0.0094 1.7114 0.0901 0.0033 0.0155

Cyathea caracasana 177 2187.5 0.0097 1.7647 0.2314 -0.0017 0.0211

Tapirira sp1(4573WFR) 143 1734.1 0.0097 1.7713 0.2536 -0.0025 0.0220

Cyathea delgadii 617 2449.7 0.0102 1.8483 0.0106 0.0081 0.0123

Quararibea wittii 127 281.5 0.0104 1.8830 0.0199 0.0074 0.0133

Clusia thurifera 113 2113.9 0.0107 1.9438 0.0985 0.0034 0.0179

Lunania parviflora 80 232.2 0.0118 2.1533 0.0045 0.0102 0.0134

Elaeagia mariae 78 1592.1 0.0120 2.1828 0.1274 0.0025 0.0215

Weinmannia bangii 257 2883.3 0.0129 2.3525 0.0436 0.0074 0.0185

Miconia madisonii 52 2779.8 0.0133 2.4118 0.0588 0.0065 0.0200

Clarisia racemosa 93 793.1 0.0155 2.8158 0.0335 0.0097 0.0213

Turpinia occidentalis 79 1272.2 0.0158 2.8799 0.0082 0.0129 0.0187

Hedyosmum goudotianum 63 2563.4 0.0193 3.5002 0.1755 0.0006 0.0379

199

Appendix III - Table S6. The estimated species-level thermal migration rates (TMRspecies) of 79 tree species weighted by basal area along the Andes-to-Amazon elevational gradient occurring in at least 2 of the 38 forest inventory plots. Positive TMR indicates upslope shifts. Plots are ranked by increasing TMR across the elevational gradient.

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Ficus maxima 72 1202.6 -0.0319 -5.7981 0.0570 -0.0478 -0.0160

Cecropia angustifolia 71 1589.5 -0.0152 -2.7600 0.0517 -0.0224 -0.0080

Symplocos psiloclada 54 3346.5 -0.0089 -1.6125 0.1501 -0.0166 -0.0011

Pseudolmedia laevigata 78 569.9 -0.0082 -1.4950 0.2891 -0.0197 0.0033

Mollinedia lanceolata 59 1731.3 -0.0076 -1.3783 0.4320 -0.0231 0.0080

Otoba parvifolia 72 1052.1 -0.0074 -1.3517 0.3514 -0.0198 0.0049

Myrcia fallax 62 1849.3 -0.0062 -1.1226 0.0276 -0.0083 -0.0041

Tachigali setifera 80 1460.2 -0.0053 -0.9575 0.1769 -0.0104 -0.0001

Tachigali polyphylla 65 307.6 -0.0045 -0.8092 0.2395 -0.0098 0.0009

Dictyocaryum lamarckianum 59 1336.1 -0.0042 -0.7681 0.3632 -0.0115 0.0030

Euterpe precatoria 177 270.4 -0.0033 -0.6058 0.0223 -0.0043 -0.0023

Cyathea lechleri 232 1980.0 -0.0024 -0.4299 0.0584 -0.0036 -0.0012

Ilex villosula 99 1970.1 -0.0020 -0.3715 0.0265 -0.0027 -0.0014

Cyathea carolihenrici 88 2259.2 -0.0019 -0.3483 0.0739 -0.0030 -0.0008

Myrsine coriacea 108 3013.4 -0.0018 -0.3269 0.3084 -0.0045 0.0009

Clusia alata 289 3037.2 -0.0015 -0.2795 0.3341 -0.0040 0.0009

Pouteria torta 96 366.3 -0.0015 -0.2782 0.7252 -0.0091 0.0060

200

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Persea mutisii 58 2006.1 -0.0014 -0.2608 0.3741 -0.0040 0.0011

Weinmannia cochensis 154 3373.7 -0.0011 -0.1941 0.0661 -0.0016 -0.0005

Ilex sessiliflora 80 3293.0 -0.0009 -0.1659 0.7099 -0.0052 0.0033

Alzatea verticillata 111 1989.0 -0.0009 -0.1595 0.2609 -0.0020 0.0003

Cyathea sp26(217KGC) 74 1892.8 -0.0008 -0.1404 0.7702 -0.0054 0.0039

Perebea guianensis 70 1087.1 -0.0007 -0.1331 0.8702 -0.0086 0.0072

Cyathea catacampta 58 2507.0 -0.0005 -0.0841 0.4313 -0.0014 0.0005

Helicostylis tovarensis 52 1671.8 -0.0003 -0.0628 0.3220 -0.0009 0.0002

Iryanthera laevis 75 221.1 -0.0003 -0.0572 0.0599 -0.0005 -0.0002

Prunus huantensis 64 3236.8 -0.0002 -0.0327 0.8946 -0.0026 0.0022

Symplocos quitensis 78 3378.1 -0.0001 -0.0210 0.8274 -0.0010 0.0008

Attalea cephalotes 59 192.0 -0.00002 -0.0039 0.5013 -0.0001 0.00003

Sorocea briquetii 60 191.8 -0.00001 -0.0022 0.6254 -0.0001 0.00003

Weinmannia crassifolia 332 3032.4 0.00003 0.0061 0.0245 0.00002 0.00004

Myrsine youngii 70 3039.7 0.00005 0.0087 0.4908 -0.0001 0.0002

Iryanthera juruensis 126 231.2 0.0002 0.0273 0.7725 -0.0008 0.0011

Pseudolmedia laevis 316 223.4 0.0005 0.0834 0.3192 -0.0002 0.0012

Axinaea pennellii 106 3208.8 0.0005 0.0912 0.7576 -0.0023 0.0033

Coussarea ecuadorensis 72 1514.1 0.0007 0.1312 0.5965 -0.0016 0.0030

Clusia sphaerocarpa 156 2951.4 0.0009 0.1615 0.2147 -0.0001 0.0019

Miconia crassistigma 160 3334.2 0.0010 0.1859 0.3015 -0.0005 0.0025

Weinmannia ovata 51 2041.2 0.0010 0.1909 0.0528 0.0005 0.0016

Siparuna decipiens 100 225.0 0.0011 0.1927 0.2628 -0.0003 0.0024

Celtis schippii 70 242.5 0.0012 0.2123 0.6183 -0.0028 0.0052

201

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Myrcia rostrata 98 1899.0 0.0013 0.2432 0.0940 0.0005 0.0022

Alchornea grandiflora 82 2519.7 0.0014 0.2630 0.1687 0.0001 0.0028

Rinorea viridifolia 117 223.5 0.0017 0.3176 0.1175 0.0004 0.0031

Pourouma minor 213 316.3 0.0018 0.3285 0.4400 -0.0020 0.0056

Pausandra trianae 54 346.3 0.0019 0.3468 0.1817 0.0000 0.0038

Theobroma cacao 64 244.0 0.0020 0.3725 0.4407 -0.0022 0.0063

Hedyosmum racemosum 89 1860.0 0.0022 0.3997 0.3844 -0.0018 0.0062

Leonia glycycarpa 173 254.4 0.0029 0.5253 0.1609 0.0002 0.0055

Clethra revoluta 170 2042.6 0.0035 0.6433 0.2603 -0.0010 0.0081

Clusia sp6(1013WFR) 65 1850.3 0.0036 0.6499 0.0868 0.0013 0.0058

Clethra cuneata 53 3258.9 0.0043 0.7879 0.0533 0.0022 0.0064

Clarisia racemosa 93 609.5 0.0045 0.8270 0.3890 -0.0038 0.0129

Gordonia fruticosa 62 1862.6 0.0046 0.8347 0.9090 -0.0664 0.0756

Prunus integrifolia 107 2880.5 0.0050 0.9037 0.0827 0.0019 0.0080

Pseudolmedia macrophylla 53 298.9 0.0053 0.9685 0.0571 0.0027 0.0080

Cyathea sp18(922KGC) 102 1689.1 0.0053 0.9690 0.1151 0.0014 0.0093

Virola sebifera 151 1198.0 0.0059 1.0818 0.3091 -0.0029 0.0148

Alchornea latifolia 64 1530.5 0.0066 1.2044 0.0401 0.0039 0.0094

Ladenbergia oblongifolia 102 1220.3 0.0066 1.2074 0.1068 0.0019 0.0114

Astrocaryum murumuru 76 222.0 0.0069 1.2478 0.2797 -0.0025 0.0162

Weinmannia reticulata 207 2845.0 0.0078 1.4100 0.0440 0.0044 0.0111

Iriartea deltoidea 874 354.4 0.0080 1.4465 0.0417 0.0046 0.0113

Nectandra pulverulenta 58 959.1 0.0084 1.5204 0.2856 -0.0032 0.0199

Pourouma mollis 60 643.5 0.0088 1.5998 0.1330 0.0016 0.0160

202

Center Number lower upper of range TMR TMR P Species of 95 % 95 % elevation (oC yr-1) (m yr-1) value individuals CI CI (m)

Cyathea delgadii 617 2446.4 0.0091 1.6494 0.0040 0.0079 0.0102

Cyathea caracasana 177 2234.7 0.0091 1.6547 0.2938 -0.0038 0.0220

Socratea exorrhiza 104 220.6 0.0097 1.7628 0.0073 0.0080 0.0114

Lunania parviflora 80 229.2 0.0110 2.0017 0.0060 0.0093 0.0127

Elaeagia mariae 78 1612.2 0.0112 2.0325 0.2005 -0.0007 0.0231

Turpinia occidentalis 79 1347.5 0.0116 2.1005 0.0484 0.0063 0.0168

Tapirira sp1(4573WFR) 143 1725.6 0.0117 2.1274 0.2661 -0.0036 0.0270

Miconia madisonii 52 2784.7 0.0119 2.1706 0.1197 0.0028 0.0210

Weinmannia bangii 257 2863.2 0.0121 2.2089 0.0110 0.0096 0.0147

Quararibea wittii 127 275.1 0.0126 2.2822 0.0359 0.0077 0.0174

Clusia thurifera 113 2116.4 0.0136 2.4783 0.1063 0.0040 0.0233

Hedyosmum goudotianum 63 2563.5 0.0159 2.8908 0.1577 0.0015 0.0303

Ficus macbridei 54 1318.2 0.0193 3.5132 0.1254 0.0042 0.0345

Ocotea tessmannii 63 1267.7 0.0355 6.4631 0.1016 0.0110 0.0601

203

APPENDIX III – FIGURE S1

(a)

(b)

(c)

204

APPENDIX III – FIGURE S2

205

APPENDIX III – FIGURE S3

206

APPENDIX III – FIGURE S4

Individuals Basal area

(a) (c)

(b) (d)

207

APPENDIX III – FIGURE S5

(a) Individuals

(b) Basal area

208

APPENDIX III – FIGURE S6

(a)

(b)

209

(a) (b) (c) IIIAPPENDIX

210

FIGURE S6 FIGURE

CHAPTER IV

LONG-TERM STAND AND CARBON DYNAMICS ALONG THE AMAZON-TO-

ANDES ELEVATION GRADIENT.

Abstract

Previous studies have shown that tree turnover (the rate of trees dying and recruiting into a population) and carbon accumulation have (1) decreased with increasing elevation and (2) have increased in lowland mature tropical forest plots in the late twentieth century, both with implications in the net carbon uptake by tropical forests.

Using a comprehensive long-term forest plot data from 41,268 stems and 1,881 tree species across 40 permanent plots, this study aimed to characterize spatial and temporal patterns of tree mortality and recruitment along a 3500 m elevational gradient, and how those rates influenced aboveground carbon dynamics, by using datasets from the Andes- to-Amazon forests that span the past 38 years in Eastern Peru. The results showed: (i) a non-linear decrease of tree mortality rates with increasing elevation, with the highest rates found at middle-elevations (1500 - 2000 m), near the elevation where persistent clouds form. In contrast, (ii) tree recruitment did not show a relationship with elevation until the very highest elevations, where it decreased; (iii) similarly, tree turnover was similar from the lowlands (200 m) to the start of cloud forest at ~2000m and showed that

Andean forests up to 2500 m can be as dynamic as Amazonian forests; (iv) the net change in stem number varied along the gradient, being relatively in balance at low and

211 high elevations, but was negative at the transition from montane forest to cloud forest

(~1200-2000 m) and on average Andean plots lost more stems than Amazonian plots. (v)

Aboveground carbon density (ACD) expressed in mortality and recruitment decreased significantly with increasing elevation and the ACD net change highest carbon losses at middle elevations. Finally (vi) turnover rates did not increase throughout time. In terms of carbon dynamics, (vii) the Amazon and Andean forests are still acting as a long-term carbon sink, storing an average of 0.38 Mg C ha-1 yr-1 (95% CI = 0.16 – 0.60 Mg C ha-1 yr-1). However, Amazonian plots tended to store more carbon (0.45 Mg C ha-1 yr-1; 95%

CI = 0.18 – 0.73 Mg C ha-1 yr-1) than Andean plots (0.31 Mg C ha-1 yr-1; 95% CI = -0.03

– +0.66 Mg C ha-1 yr-1). A tendency of long-term net carbon storage decline was observed due to an increase in ACD mortality, particularly for Andean plots. The temporal and spatial trends are mainly driven by an increase in mortality potentially due to an increase in the frequency of drought events in the last 15 years, causing asynchrony between mortality and recruitment rates over time. Lastly, the occurrence of landslides in three plots decreased the rate of net carbon accumulation by 53% across the entire plot network, highlighting the imperative of understanding the role of landslides in Andean forests and carbon dynamics.

Keywords: Climate change, Andes, Amazon, elevational ranges, carbon, biomass, dynamics, stem length, wood density, carbon storage, tropical forest, carbon sink

212

Introduction

Global forests cover ~30% of the land surface and store around 45% of the terrestrial carbon (Bonan 2008). Tropical forests cover ~44% of the total global forest

(FAO 2011) storing around 55% of forest carbon (Pan et al. 2011) and play a crucial role in the atmospheric carbon sequestration under the global CO2 emissions, accounting for

~70% of global terrestrial net primary productivity (Pan et al. 2011). Tropical forests could offset much of the carbon emissions absorbing around one-fifth of all human fossil fuel emissions (Schimel et al. 2015) and are important for scenarios of atmospheric carbon stabilization (Stephens et al. 2007, Ballantyne et al. 2012, Houghton et al. 2015).

Tree vital rates such as mortality and recruitment estimates are fundamental descriptors of forest tree populations (Harper 1967, Lewis et al. 2004b) and are important in ecosystem carbon balance (Phillips et al. 1998, Saatchi et al. 2011). Tropical forest can change in terms of stem density and carbon accumulation along environmental gradients in both space and time. Empirical evidence shows that tropical forests are responding to global environmental changes increasing or decreasing tree population sizes over time influencing ecosystem properties. Lowland Amazon forests are becoming more dynamic in terms of both mortality and recruitment rates (Phillips et al. 2004, Rice et al. 2004,

Susan et al. 2009) and are hypothesized to have been acting as a long-term carbon sink since the 1970s in response to environmental conditions (Lewis et al. 2004a, Valencia et al. 2009, Brienen et al. 2015). However, it is unknown whether the Andean forest dynamics and long-term carbon accumulation are also changing in response to global change. In Amazonian forests, the gain in stems (recruitment rates) over the loss

(mortality rates) is accelerating the turnover rates over time (Lewis et al. 2004a, Phillips

213 et al. 2004) and potentially increasing the carbon stocks in tropical forests. However, is imperative to account for the tree size to understand carbon dynamics, particularly because large trees account for a major portion of the aboveground biomass in tropical forests (Clark and Clark 1996) and are more vulnerable to die under drought events

(Nepstad et al. 2007, Rowland et al. 2015). Indeed, changes in tree demography are crucial to understanding tree dynamics and carbon balance in tropical forests, however, we don’t know these basic but fundamental trends for the Andes, and much less their causes.

Temporal trends in Amazonian forests appear to be affected by inter-annual climatic fluctuations as well, such as El Niño events (Williamson et al. 2000, Malhi and

Wright 2004, Jiménez-Muñoz et al. 2016), episodic drought (Phillips et al. 2010, Lewis et al. 2011, Feldpausch et al. 2016) and local squalls to large-scale wind-related disturbances (Negron-Juarez et al. 2010), all of which can change net forest carbon balance, as well as shift species composition through increased tree mortality or recruitment (Esquivel-Muelbert et al. 2018). Indeed, episodic events can reverse the trend of forests being a long-term carbon sink (Lewis et al. 2004a, Phillips et al. 2009) and transform them into a carbon source (Gatti et al. 2014). Whether these factors can substantially affect forest dynamics and carbon accumulation in Andean regions remains poorly known due to the scarcity of studies (Budd et al. 2004, Pitman et al. 2011).

Environmental conditions can also cause changes in both forest and carbon dynamics.

For instance, elevation could be a determinant factor in forest dynamics and aboveground carbon accumulation. Across the Andes, turnover rates decrease with increasing elevation

(Báez et al. 2015, Vilanova et al. 2018) and the net primary productivity and carbon

214 stocks also decline with increasing elevation (Girardin et al. 2010, 2013, Leuschner et al.

2013, Malhi et al. 2016). Current carbon estimations in lowland forests include field- collected data of wood density, tree height, and stem diameter as principal components for biomass allometric equations (Chave et al. 2014). However, this can be challenging for the Andean forests, where there is no data on field-sampled wood density and ground- measured tree height, which skew our understanding of carbon dynamics at temporal- and spatial-scales. In this study, we provide field-collected wood density data and ground-measured tree lengths to improve carbon estimations for Andean regions.

There is still debate about the cause of the widespread increases in lowland forest turnover rates through time and its role as a carbon sink. One possible explanation is the

CO2 fertilization hypothesis (Phillips et al. 1998). In this scenario elevated concentrations of CO2 are hypothesized to stimulate forest growth and productivity through increased canopy photosynthetic rates (Lewis et al. 2004a, Phillips et al. 2004). Alternatively, changes in carbon storage Amazonian forests might be due to recovery from widespread anthropogenic disturbances that ended about 500 years ago when local populations radically decreased in size due epidemic diseases from to the European colonization, resulting in the loss of up to 95% of the indigenous population in the Americas

(Heckenberger et al. 1999, McMichael et al. 2017). While these hypotheses may explain long-term forest and carbon dynamics in the Amazon basin, the paucity of long-term forest data from the Andes makes testing the influence of global changes on tree dynamics and carbon accumulation both difficult and urgent. Particularly because mountain regions are 40 % greater than planimetric areas with great potential for carbon storage (Spracklen and Righelato 2014).

215

Large scale studies indicate that tropical forests in general and Amazonian forests in particular, are showing accelerated dynamics and that affects carbon storage (Lewis et al. 2004a, Phillips et al. 2004, Brienen et al. 2015). However, Andean forests are often excluded for analyses of tropical forest stand and carbon dynamics, even though they have the potential to store up to a fifth of the carbon stored in the entire Amazonian lowlands (Saatchi et al. 2011), and might be even more susceptible to both long-term climate change and episodic climate changes such as drought or accelerated landslides due to rain events. While studies concentrate efforts in either the Amazon basin or the

Andes, the forested landscape of the western Amazon basin is continuous from lowlands to the treeline, but the area above 500 m remains poorly understood and little studied, even though it is important to basic understanding of how tropical forests function, and how they respond to climate change. This study leverages 40 long-term monitored forest plots over 38 years, extending from ~200 m in the Amazonian lowlands to ~3700 m at the Andean treeline, to answer questions about climate influences on tree dynamics and the net carbon balance of tropical forests. The questions are: (1) is there consistent patterns in stand dynamics (mortality, recruitment, population change rates) along the gradient and over time? And, (2) are changes in forest carbon dynamics in space and time associated with changes in stand mortality and productivity?

216

Methods

Study site and environmental characteristics

The study was performed on the eastern slope of the Peruvian Andes along an elevational gradient extending from the treeline at 3700 m to the Amazon basin at 190 m in the Manu Biosphere Reserve (11.8564° S, 71.7214° W) and Tambopata National

Reserve (12.9206° S, 69.2819° W). Mean Annual Temperature decreases linearly with increasing elevation along the gradient with a lapse rate of 5.5 o C/km, ranging from ~

26.6 o C at the lowest elevations to ~ 6.4 o C at treeline (Bush et al. 2004, Rapp and

Silman 2012, Malhi et al. 2016). Mean annual precipitation varies across the gradient from < 1000 to > 5500 mm yr-1, with significant inter-annual variability throughout and reaching the highest values between ~1000 to 2000 m of elevation (Rapp and Silman

2012, Malhi et al. 2016). There is a distinct seasonality in rainfall in the lowlands, with the highest rainfall in January and February and the lowest in June and July. Forests on the Andean slope experience seasonality, with an increase in the number of rain-free days during the austral winter, but water balance is always positive in a typical year between

1000 m and 3500 m (Rapp and Silman 2012). The Amazonian basin drought in 2005

(Marengo et al. 2008, Lewis et al. 2011) resulted in lower precipitation in the cloud forest. Rainfall at the Peruvian SENAMHI meteorological station at Rocotal (13°06′41″S,

71°34′14″, approximately 1 km from the transect) showed the lowest values for any year measured (mean May–August precipitation), decreasing from 601 mm (between the 2000

– 2008 years) to 175 mm (in year 2005) in monthly means. (Rapp and Silman 2014; SI

Appendix, Fig. S1). Winds vary little throughout the year, with the dominant pattern

217 being upslope winds during the day and downslope winds at night. Mean wind speeds were higher at lower elevations particularly due to frontal systems during the austral spring (Rapp and Silman 2012). The study area has high cloud frequency in contrast to many other areas of the eastern slope of the Andes, with clouds present in all seasons.

Along the elevational gradient, the cloud base zone lies between 1500 - 2000 m, with the highest mean annual cloud frequency between 2000 - 3500 m (Halladay et al. 2012).

Inventory permanent forests plots

Plot data were collected from 40 permanent inventory forest plots totaling 46.5 ha that extend from lowland forest (≤ 500 m), through submontane (500-1600 m), lower montane (1600-2500 m), upper montane (2500-3400 m) and treeline (≥ 3400 m) forests types (Young 1992, Pennington et al. 2004). Twenty three 1-ha permanent plots were established and are maintained by the Andes Biodiversity and Ecosystem Research

Group – ABERG (http://www.andesconservation.org/). The plots range from 400 to 3625 m of elevation and were installed starting in 2003 (Table S1). Additionally, 17 (23.5 ha) permanents plots from lowland forest, ranging from 190 - 405 m of elevation and installation dates from 1979 to 2014, were used in the study. The lowland plots were installed by various investigators, particularly John Terborgh, Percy Nunez, and Alwyn

Gentry, and are currently monitored by the Amazon Forest Inventory Network –

RAINFOR (http://www.rainfor.org/), the Global Ecosystem Monitoring Network – GEM

(http://gem.tropicalforests.ox.ac.uk/) and the Cocha Cashu Biological Station – CCBS

(https://cochacashu.sandiegozooglobal.org/). RAINFOR plot data were extracted from the ForestPlots.net database (Lopez‐Gonzalez et al. 2009, Lopez-Gonzalez et al. 2011).

218

The forests plots were established and remeasured following standardized protocols over

40 years (Phillips et al. 2016). In the plot network, 38 of the 40 permanent plots were censused at least three times between 1979 and 2017 (38 years). The number of multiple plot censuses varies from 3 to 13 times over the 38 years [average number of censuses =

6.16 (95% CI = 5.3-7.0), median number of censuses = 5]. The oldest plot was established in 1979 in the Tambopata terra firme rain forest and has the major number of censuses (n = 13) (SI Appendix, Table S1).

In the study area, unusual storms in 2010 triggered large-scale landslides that impacted forest and carbon dynamics in the Andean plots (Clark et al. 2015b). The main results of this study exclude trees that died in landslides (outliers) since the initial time when the plot was established because those single events can cause tremendous mortality rates in a short period of time skewing our results. However, the effects of landslides in forest and carbon dynamics were quantified to the affected Andean plots

(TRU-02, TRU-06, SPD-01) to show the influence of these episodic events in ecosystem processes. Overall, the permanent plots contain 41,268 stems greater than 10 cm diameter at breast height (dbh) and encompass 1,881 arborescent species and morphospecies including trees, tree ferns, palms > 10 cm dbh (hereafter, trees) involving more than

174,000 stem measurements.

Vital rates calculation

Annual mortality, recruitment, and change in stem number rates were estimated separately using models assuming a constant probability of mortality and recruitment

219 through each inventory period (Phillips et al. 1994, Sheil et al. 1995, Condit et al. 1999).

Mortality (m), recruitment (r) and stem change (λ) rates were calculated as:

푙푛 푁 −푙푛 푁 푚 = 0 푠 (1) 푡

푙푛 푁 −푙푛 푁 푟 = 푡 푠 (2) 푡

푙푛 푁 −푙푛 푁 휆 = 푡 0 (3) 푡

where N0 is the initial number of stems, Nt is the final number of stems, Ns is the number of stems from the initial survey still standing at the final inventory, and t is the time interval. Turnover rates were calculated for each plot in each period as the mean of the mortality and recruitment rates (Phillips et al. 1994). The obtained values were then converted to percentages for presentation.

Aboveground carbon density estimations

Allometric equations developed for lowland trees can’t be applied to Andean forests because the stems aren’t straight. Due to this limitation in Andean tree architecture, stem lengths were measured to improve carbon estimations for Andean trees. For each stem in each census we estimated aboveground biomass by applying the pantropical model developed by Chave et al. (2014):

220

AGBest = 0.0673 x (ρD2H) 0.976 (4)

Where “ρ” is wood density, “D” the diameter at breast height (dbh) in centimeters, and “H” is tree length expressed in meters. The model was built on 4004 harvested trees from 58 study sites (Africa, South-East Asia, Australia, and Latin

America; Chave et al. 2014). Aboveground carbon density (ACD) was estimated assuming 50 % of dry weight biomass is carbon (Brown et al. 1995).

We estimated annual aboveground carbon density (ACD) productivity from each stem at the census interval from 1979 to 2017. This was calculated using the allometric equation (4) including estimates for stem length (equation 5, see below), and wood density as described below. The ACD of new recruits measured in consecutive censuses were then added. The rate of change in net ACD along the gradient was estimated using equation (3) where ACD of recruitment (addition of trees that exceed 10 cm dbh) and mortality (losses) were integrated.

Wood density

Wood basic specific gravity (henceforth called wood density) defined as oven-dry mass divided by its green volume (Fearnside 1997, Chave et al. 2006, Williamson and

Wiemann 2010), was calculated from wood cores collected from 892 individuals representing 311 species of the dominant arborescent life forms—including trees, arborescent ferns, and palms—along the elevational gradient. We stratified sampling of

221 wood cores across the elevational gradient to ensure coverage of a broad range of taxa and to collect at least one individual for every species at each elevation. Core samples were collected in 51 sites ranging from 346 to 3650 m of elevation. An increment borer was used to extract wood core samples for trees and palms ≥ 10 cm diameter at breast height (dbh). The dbh of the sampled individuals ranged from 10 to 85 cm and core samples were extracted between 1 to 1.3 m above the ground. For trees and palms, the wood cores were taken from the heartwood to the bark to capture the density variation.

For the arborescent ferns, sliced samples were taken from the trunk-like rhizomes in six different sections and the average density value of the individual was used. Core samples were taken from individuals of targeted species outside of the permanent plots across the gradient to avoid effects on plants that are part of long-term studies.

Wood density values obtained from field collections were assigned to each stem of a given species in the plot network along the transect. For stems with no measured density values from the transect, we incorporated wood density values from the Global

Wood Density Data Base (Zanne et al. 2009) and ForestPlots.net network (Lopez‐

Gonzalez et al. 2009, Lopez-Gonzalez et al. 2011). Overall, we compiled 1,231 forest taxa from field-collected samples and published resources. When density values were not available from the combined datasets of field-published resources at the species-level, the mean values at the genus or family level were used.

222

Tree morphometrics

Tree height significantly influences aboveground biomass variation in tropical forests and its inclusion in allometric equations modeling biomass reduces model error from 19.5 to 12.5 % (Chave et al. 2005). Current pantropical height:diameter relationships can reduce biomass uncertainty, but are based on equations developed for lowland forests, where height-diameter relationships can differ substantially from those found in montane forests, where trees tend to be shorter for a given diameter (Feldpausch et al. 2011). And, despite the evidence suggesting that tree height varies across species for a given diameter (King 1996) with important implications for carbon storage in tropical forests (Feldpausch et al. 2011), there are no field-measured tree height data available for Andean forests, potentially introducing systematic errors that compound when scaled to the hectare or landscape level .

In the lowland forest, tree height is usually estimated from the bottom of the tree to the highest point of the crown which is equivalent to the length of the tree. This can be an issue for the Andean forest where the slope and aspect related to the topography can influence on tree architecture in which the height of the tree can potentially be different from the length. In order to reduce uncertainties in biomass calculation in Andean forests, we measured the stem lengths for 11,674 stems, representing 28 % of the total of stems used in this study. Snapped and uprooted stems were excluded from the analysis. Tree lengths were measured with a laser rangefinder (True pulse 360 Hypsometer) with a distance and inclination accuracy of ±0.2 m and ±0.25° respectively. This field-measured length was performed in 2013 across 14 1-ha plots along the gradient, and we developed the following equation:

223

H = β0 + β1 log(D) (5)

Where H is tree length in meters and D is dbh in centimeters. The Intercepts (β0) and Coefficients (β1) for each plot are provided in table S2. This length:diameter relationship (SI Appendix, Table S2) was used to estimate stem lengths for previous and subsequent censuses. The equations were also used for the adjacent plots with no length data.

Results

Vital rates along the elevational gradient

The number of individuals at plot-to-plot basis showed a non-linear relationship with elevation with high stem density between the lower and upper montane forest (SI

Appendix, Fig. S2). Mean plot-level tree mortality along the gradient ranged from 1.2 to

4.4 % ha-1 yr-1, with an overall mean plot mortality rate of 2.3 % ha-1 yr-1 (95% CI = +2.1

- +2.5 % ha-1 yr-1). The highest rates were found at the floodplain forest at 191 m (4.4 % ha-1 yr-1, CUZ-01 plot) and at 1757 and 1581 m in montane forest (3.6 % ha-1 yr-1; SPD-

01 and CAL-01 plots; Fig. 1a). Mean rates of mortality were broadly similar in

Amazonian (2.2 % ha-1 yr-1; 95% CI = +1.8 - +2.6 % ha-1 yr-1) and Andean plots (2.4 % ha-1 yr-1; 95% CI = +2.1 - +2.7 % ha-1 yr-1), with there being no difference in the means

(difference 0.2% ha-1 yr-1, 95% CI of difference = -0.2% , +0.4 % ha-1 yr-1). Along the

224 gradient, tree mortality rates did not show a linear relationship with elevation, with mortality rates being highly variable in lowland forests. Mortality rates increased from

191 m to a maximum ~1500 - 1800 m, and then decreasing to higher elevations around the treeline (Fig. 1a). Rates of tree recruitment (addition of new trees ≥ 10 cm dbh) along the gradient ranged from 0.7 to 4.1 % ha-1 yr-1 and the overall recruitment rates along the gradient were similar to those of morality (2.3 % ha-1 yr-1; 95% CI = +2.0 - +2.5 % ha-1 yr-1). Amazonian plots showed broadly overlapping and slightly higher mean rates of recruitment: (Amazon: 2.5 % ha-1 yr-1; 95% CI = +2.1 - +2.9 % ha-1 yr-1; Andes 2.1 % ha-

1 yr-1; 95% CI = +1.8 - +2.5 % ha-1 yr-1 ; difference 0.4 % ha-1 yr-1; 95% CI = 0, 0.8 % ha-

1 yr-1). Although we observed a decrease in mean plot recruitment rates at the highest elevation, the overall relationship between elevation and recruitment was not significant

(r = -0.27, P = 0.09, n= 38; Fig. 1b). Below 500 m of elevation recruitment was heterogenous and was almost constant to the highest plot. The difference in recruitment was almost six-fold between the lowland floodplain and the treeline plots (Fig. 1b).

Plot-to-plot dynamism (turnover) ranged from 1.1 to 4.3 % ha-1 yr-1 along the gradient, the overall turnover across the plots was mirrored by the average of recruitment and mortality rates (2.3 % ha-1 yr-1; 95% CI = +2.1 - +2.5 % ha-1 yr-1). We observed only a 0.1% absolute difference in turnover rates between the Amazonian (2.4 % ha-1 yr-1;

95% CI = +2.0 - +2.7 % ha-1 yr-1) and Andean (2.3 % ha-1 yr-1; 95% CI = +2.0 - +2.6 % ha-1 yr-1) plots, demonstrating that Andean plots could be as dynamic as Amazonian plots. Turnover did not show a strong relationship with increasing elevation (r = -0.22, P

= 0.18, n = 38; Fig. 1c), remaining constant from Amazonian plots up to the cloud base and then decreasing at treeline (Fig. 1c). However, floodplain plots were almost four-fold

225 more dynamic than the highest plots at the treeline (Fig. 1c). The rate of change in stem numbers along the gradient ranged from -1.3 to +2.1 % ha-1 yr-1 and showed no overall change across the landscape (-0.03 % ha-1 yr-1; 95% CI = -0.24 - +0.19 % ha-1 yr-1), but showed a distinct difference between Amazonian (+0.3 % ha-1 yr-1; 95% CI = -0.08 -

+0.60 % ha-1 yr-1) and Andean (-0.3 % ha-1 yr-1; 95% CI = -0.52 - -0.002 % ha-1 yr-1) plots, with a reversal from accumulating stems in the lowlands to losing them, on average, in the montane forests (Mann-Whitney-Wilcoxon test; P = 0.02, n = 38). The net stem change rates were not linear with elevation, but rather gradually decreased from the

Amazonian plots to the cloud base, reaching the lowest values and then increased again to the upper montane forest. None of the plots around the cloud base had a positive net change, indicating that the loss of individuals exceeded the recruits at each plot around the cloud base (Fig. 1d).

Aboveground carbon density (ACD)changes along the elevational gradient

Estimated aboveground carbon stocks significantly decreased with increasing elevation (n = 40 plots; Fig. 2). ACD loss through mortality ranged from 0.6 to 4.6 Mg C ha-1 yr-1 and the overall ACD mortality across the plots were 2.1 Mg C ha-1 yr-1 (95% CI

= 1.8 – 2.4 Mg C ha-1 yr-1). Amazonian plots showed higher ACD mortality than the

Andean plots (2.4 Mg C ha-1 yr-1; 95% CI = 2.0 – 2.7 Mg C ha-1 yr-1 versus 1.9 Mg C ha-1 yr-1; 95% CI = 1.3 – 2.4 Mg C ha-1 yr-1) though the confidence interval of the difference contained zero (Difference -0.2 Mg C ha-1 yr-1; 95% CI = -0.5, 0.1 Mg C ha-1 yr-1). Along the elevational gradient, ACD mortality significantly decreased with increasing elevation

(r = -0.56, P ˂ 0.0001, n = 38; Fig. 3a), and slightly increased from 191 m to 1500 m of

226 elevation, then decreased to the treeline (Fig. 3a). Taking into account tree growth and recruits, ACD productivity ranged from 0.8 to 4.0 Mg C ha-1 yr-1 along the gradient, and the mean ACD productivity across all the plots were 2.5 Mg C ha-1 yr-1 (95% CI = 1.7 –

2.5 Mg C ha-1 yr-1) in which, Amazonian plots gained more carbon that the Andean plots

(3.0 Mg C ha-1 yr-1; 95% CI = 2.7 – 3.2 Mg C ha-1 yr-1 vs 2.1 Mg C ha-1 yr-1; 95% CI =

1.7 – 2.5 Mg C ha-1 yr-1; difference 0.9 Mg C ha-1 yr-1; 95% CI = 0.6 – 1.2 Mg C ha-1 yr-

1). Furthermore, ACD productivity significantly decreased with increasing elevation (r = -

0.58, P ˂ 0.0001, n = 38; Fig. 3b), with ACD productivity values four-fold higher in

Amazonian plots compared to plots at the treeline, with the lowest values observed around the cloud base. Although ACD productivity shows a general decrease with elevation, there is a sharp transition around the cloud base zone (Fig. 3b).

The annual rate of change in ACD considering carbon loss from ACD mortality and carbon gain from ACD productivity (addition from recruitment and growth) ranged from -1.1 to 2.0 Mg C ha-1 yr-1. Rate of change of net ACD along the gradient did not show a linear relationship with increasing elevation, decreasing from lowland plots to the cloud base, then increasing to the higher plots at the treeline (Fig. 3c). Likewise, we observed that major carbon losses were between 1000 – 1757 m (Fig. 3c). The Amazon-

Andes elevational gradient showed a rate of net carbon sink of 0.38 Mg C ha-1 yr-1 (95%

CI = 0.16 – 0.60 Mg C ha-1 yr-1). And, the Amazonian plots (0.45 Mg C ha-1 yr-1 (95% CI

= 0.18 – 0.73 Mg C ha-1 yr-1) tended to uptake more carbon (Mann-Whitney-Wilcoxon test; P = 0.60, n = 38) than the Andean plots (0.31 Mg C ha-1 yr-1; 95% CI = -0.03 –

+0.66 Mg C ha-1 yr-1) in 38 years of forests monitoring.

227

Effects of landslides on forest and carbon dynamics

Three of the 21 Andean plots of this study experienced landslides. TRU-02 (3261 m), TRU-06 (2237 m) and SPD-01 (1757 m) plots decreased in 24%, 12% and 31% in terms of number of stems, respectively, after the landslides in or around the year 2010.

When landslides were included, mean mortality rates acrosstime increased from 2.5 to

4.1 % ha-1 yr-1 for TRU-02, 2.8 to 2.9 % ha-1 yr-1 for TRU-06 and 3.6 to 9.3 % ha-1 yr-1 for SPD-01 plot. These events caused an overall increase in stem loss across the Andean plots from -0.3 % ha-1 yr-1 (95% CI = -0.52 - -0.002 % ha-1 yr-1) to -0.6 % ha-1 yr-1 (95%

CI = -1.30 - +0.008 % ha-1 yr-1). The carbon loss attributable to landslides for each affected plot was 1.0 Mg C ha-1 (for TRU-02 plot), 9.1 Mg C ha-1 (TRU-06) and 26.9 Mg

C ha-1 (SPD-01). Accordingly, the rate of change of net aboveground carbon density declined from being positive 0.31 Mg C ha-1 yr-1 (95% CI = -0.03 – +0.66 Mg C ha-1 yr-1) to a net loss -0.05 Mg C ha-1 yr-1 (95% CI = -0.92 – +0.82 Mg C ha-1 yr-1) for the Andean plots. Across all the plots in the transect (n = 38 plots) the rate of net carbon change declined in 53 % (from 0.38 Mg C ha-1 yr-1; 95% CI = 0.16 – 0.60 Mg C ha-1 yr-1 to 0.18

Mg C ha-1 yr-1; 95% CI = -0.31 – +0.66 Mg C ha-1 yr-1).

Temporal changes in vital rates along the gradient

Tree mortality rates increased over time (r = 0.25, P = 0.0003; Fig. 4a) and this trend was consistent for the Amazonian (r = 0.22, P = 0.02) and Andean (r = 0.24, P =

0.03) plots independently (SI Appendix, Fig. S3a). Similarly, we observed peaks in mean tree mortality rates after 2005 drought, with a lowland floodplain plot (CUZ-01) showing

228 the highest rates after the 2005 Amazonian drought (Fig. 4a). Stem recruitment, on the contrary, did not show a trend over time, either in aggregate (r = -0.03, P = 0.67; Fig. 4b), or for Amazonian (r = 0.07, P = 0.49) or Andean (r = -0.06, P = 0.57) plots considered separately (SI Appendix, Fig. S3b). Stem turnover rates did not show a significant trend over time (r = 0.12, P = 0.11; Fig. 4c), although there is tendency of positive relationship for Amazonian plots (r = 0.17, P = 0.08; SI Appendix, Fig. S3c) that was not evident in

Andean plots (r = 0.08, P = 0.48; SI Appendix, Fig. S3c). Rate of stem change showed a declining tendency over time (r = -0.21, P = 0.003; Fig. 4d) in particular for the Andean plots (r = -0.24, P = 0.03) as compared to Amazonian plots (r = -0.10, P = 0.29) (SI

Appendix, Fig. S3d), demonstrating that the increase in stem mortality in the forests along the Manu-Tambopata transect has not been compensated by stem recruitment over

38 years.

Temporal changes in aboveground carbon density (ACD)

Looking ACD mortality across all plots in 38 years, we did not observe significant increase over time (r = 0.10, P = 0.18; Fig. 5a), however looking at the

Amazonian (r = 0.23, P = 0.01) and Andean (r = 0.23, P = 0.03) plots separately, we can observe a slight increase of ACD mortality over time (SI Appendix, Fig. S4a), suggesting that this pattern could happen at different times. Likewise, ACD productivity did not show a tendency of increase over time (r = -0.16, P = 0.02; Fig. 5b), however, a positive slope can be observed for the Amazonian plots (r = 0.14, P = 0.14; slope 0.02; Appendix,

Fig. S4b) and negative slope for the Andean plots (r = -0.12, P = 0.30; slope -0.03;

Appendix, Fig. S4b). The rate of net ACD change across all the plots along the gradient,

229 showed a declining tendency in ACD over time (r = -0.16, P = 0.02; Fig. 5c), with this trend being more pronounced in the Andean (r = -0.31, P = 0.005) than the Amazonian plots (r = -0.11, P = 0.26) (Appendix, Fig. S4c). Across all plots along the gradient, the rate of net carbon change is positively related to rates of change in stem number (r = 0.43,

P = 0.007; Appendix, Fig. S5).

Discussion

Stem dynamics along the elevational gradient

Along the 3500 m Andes-to-Amazon elevational gradient, a non-linear decrease of tree mortality rates with increasing elevation was observed, with the highest rates found between 1757 and 1581 m in montane forest. In contrast, tree recruitment did not show a relationship with elevation and as a result tree turnover did not decrease significantly with increasing elevation (Fig. 1). These are contrasting results with previous studies, where the trend of a linear decline in turnover rates with increasing elevation in tropical mountain systems (Clark et al. 2015a, Báez et al. 2015, Vilanova et al. 2018) was not fully supported by these results. This can be explained for a divergence tendency on the tree demographic rates along the gradient. Mean plot-level tree mortality rates tended to increase from Amazonian forests to middle elevations then decreased to the treeline forest, with the change coming at the elevation corresponding to cloud base in this system (Fig. 1a). The trend of increased stem mortality was not compensated by tree recruitment along the gradient as the addition of new trees (≥10 cm dbh) to the plots

230 wassimilar between the Amazonian and Andean forests (Fig. 1b), decreasing only at the highest elevations. As a result, turnover rates —even though higher for some lowland plots—showed a small positive trend with elevation to ~2000 m, though driven by stem loss around cloud base, with a decreasing turnover rate only evident in forests above

2000m (Fig. 1c). Thus, this study reveals that Andean forests show similar stem-based dynamism as Amazonian forests up to ~2000-2500m elevation (Fig. 1c). In addition, the non-synchrony in tree turnover rates along the gradient was markedly influenced by the high tree mortality around the cloud base, where the rate of the net change in the number of stems was negative for all the plots (Fig. 1d).

The elevated mortality rates around the cloud base could be explained by various factors. First, a plausible explanation could be that the Andean trees are dying due to drought-induced embolism around the cloud base in response to the multiple droughts that have occurred in the Neotropics over the last decade (Marengo et al. 2011). Indeed, the multiple droughts in the last 15 years has had a profound effect on Amazonian forests by increasing tree mortality (Phillips et al. 2010, Lewis et al. 2011, Feldpausch et al.

2016) and shifting the Amazonian species composition towards more dry-tolerant taxa

(Esquivel-Muelbert et al. 2018). Andean forests experienced a similar drought in 2005

(SI Appendix, Fig. S1) that was strong enough to kill epiphytes in an experiment that spanned cloud base in the study area (Rapp and Silman 2014). The results of this study suggest that drought similarly affected Andean trees increasing the mortality rates around the cloud base and causing overall dynamics to be marked by a net loss of trees that has yet to be recovered. This is the first study demonstrating cloud base effects on tree mortality in continental tropical montane forests. Accordingly, it can be hypothesized that

231 trees around the cloud base may be dying by drought-induced embolism, in particular, those with low wood density (Hacke et al. 2001, Zanne et al. 2010).

Second, the eastern slope of the Andes is permanently covered by clouds, and the cloud base is estimated to be between 1500 - 2000 m, with a highest mean annual cloud frequency between 2000 - 3500 m (Halladay et al. 2012, Rapp and Silman 2012). This particular zone with particular environmental variables holds countless numbers of tree species specialists (e.g. Incadendron esseri) and oligarchs (e.g. Alzatea verticillate,

Dictyocaryum lamarckianum) whose life histories depend on the stability of this transition zone. Despite the uncertainty in predicting cloud formation in the tropics, global models suggest a reduction in low-level cloudiness in response to climate change

(Foster 2001, Bony et al. 2015). As conditions warm in the Andes, the cloud forest immersion zones could be more susceptible to drying as cloud levels rise in the face of warming (Foster 2001). Changes in cloud frequency may also cause water stress in tree communities that could lead to an increase in tree mortality. Although it is expected that abnormal droughts coupled with changes in cloud formation will cause tree mortality in the tropical Andes, cloud forest tropical trees may be more sensitive to water stress because it will constrain their capacity for foliar water uptake (Goldsmith et al. 2013).

Though, there are no physiological data in the Andes to support this hypothesis.

Third, forest disturbances shift species composition, forest structure and ecosystem function in mountain regions (Crausbay and Martin 2016), in particular, the size and frequency of the landslides. Along the Manu-Tambopata elevational transect, it has been shown that high landslide probability occurs around the cloud base (Clark et al.

2015b). The recurrence of these events may reshuffle forest composition at middle

232 elevations with the dominance of fast-growing species with low wood density, that potentially are more vulnerable to die due to water stress-induced embolism, supporting the hypothesis of low wood density-high mortality trade-off (Muller-Landau 2004, Kraft et al. 2010). Then, one might expect these tree communities to be especially more vulnerable to drought if low wood density and high conductance are advantageous in the cloud base zone.

Landslides, even though only occurring in three of the 21 Andean plots, affected the rates of carbon accumulation change along the entire transect, decreasing net carbon accumulation rates by 53 %. These results have profound implications in the carbon cycle in montane systems, potentially turning tropical forest carbon sinks into sources. The result means that large scale carbon balance in the Andes is not controlled by single-stem dynamics, but rather have a large influence from landslides, which are rarer on the landscape. Small changes in landslide frequency can produce large increases in changes to forest dynamics and carbon cycle, equaling or overwhelming the effects of episodic drought, particularly as soil carbon exceeds above ground carbon density in these forests.

Changes in precipitation intensity, already a known effect of global climate change, may cause large changes in the Andean carbon cycle, as well as downstream changes in river carbon cycling (Clark et al. 2014). Additionally, given that much of the carbon in Andean systems appears to be lost in large-magnitude but spatially rare events, plot-based studies may find that much of the Andes will be found to be accumulating carbon, as much of the landscape will be in a state of old, recovering landslides.

233

Decline of aboveground carbon density with increasing elevation

These results show a significant decrease in ACD mortality and ACD productivity with increasing elevation (Fig. 3a, b) supporting previous findings across the Andes

(Girardin et al. 2010, Moser et al. 2011, Leuschner et al. 2013, Malhi et al. 2016).

However, a negative ACD net change around the cloud base is reported for the first time along an elevational gradient (Fig. 3c), and this trend is explained by the high ACD mortality and low ACD productivity around the cloud base. The ACD mortality increase towards mid-elevations where the clouds persist is mainly explained by the increase in water stress frequency, as explained above. The decline in ACD productivity with increasing elevation could be explained first by the high turnover in species composition from the Amazonian to the Andean treeline (Gentry 1988). Second, new evidence suggests that solar radiation may explain most of the productivity decrease along the elevational gradient, showing that photosynthetic rates follow the variation in light availability rather than temperature (Malhi et al. 2016, Fyllas et al. 2017). The observed solar radiation decline at middle-elevations, associated with a high frequency of both cloud occurrence and cloud immersion and then rises again towards the Andean treeline forest (Halladay et al. 2012, Malhi et al. 2016). Third, the decline in ACD productivity with increasing elevation could be also explained by the shifts in carbon allocation from stem to root productivity, in which the ratio of root to stem biomass increases significantly with increasing elevation (Girardin et al. 2010, Moser et al. 2011). The factors above may explain the decrease in ACD productivity with elevation, however, the sharp transition in ACD productivity reported in this study could also be explained by the

234 low light availability in the cloud base persistent zone between 1500 to 2000 m of elevation, reducing photosynthetic rates (Malhi et al. 2016).

Long-term forest and carbon dynamics

Earlier studies have shown that tree dynamics (increase in turnover rates) have increased in mature tropical forest plots in the late twentieth century due to the increase of recruitment rates over mortality rates (Lewis et al. 2004a, Phillips et al. 2004). In the light of current results, we did not observe an increase in turnover rates over time due to the long-term increase in tree mortality rates and no increase in recruitment rates throughout the study period (Fig. 4; SI Appendix, S3). The multiple drought events may be driving the increase in tree mortality over time, as is explained above. Additionally, , the multiple droughts could lag recruitment rates at annual to decadal scales (Phillips et al. 2004).

Studies have shown that Amazonian forests are acting as a carbon sink due to the gain in carbon by tree growth exceeding carbon losses from tree death (Phillips et al.

1998, Baker et al. 2004, Valencia et al. 2009). Results of this study showed that mature forest along the Andean-Amazonian gradient is still acting as a carbon sink from 1979 to

2017 supporting previous results. However, we observed a long-term carbon decline in the net ACD change throughout census periods due to the increase in ACD mortality despite the slight increase in ACD productivity over time (Fig. 5) supporting Brienen et al. (2015) findings across the Amazonian forests. However, here we reveal that the trend in declining net carbon change over time was stronger in Andean over Amazonian plots

235

(SI Appendix, Fig. S4c). The decline in the net carbon is due to the long-term increase in

ACD mortality for both Andean and Amazonian forests (SI Appendix, Fig. S4a).

The observed increase in ACD mortality can also be observed if ACD is compared before and after drought events. For instance, Amazonian plots decline 64% in net ACD change when comparing before and after the 2000s (0.83 to 0.30 Mg C ha-1 yr-1) and the trend for Andean plots was even more dramatic, declining in 85 % when comparing before and after the 2010s (0.78 to 0.12 Mg C ha-1 yr-1). The increases in drought frequency in the neotropics over the last 15 years, that is often associated with the increase in temperature (Allen et al. 2009), is the most plausible explanation for ACD mortality increase throughout time (Phillips et al. 2010, Lewis et al. 2011, Feldpausch et al. 2016) These events may potentially kill trees by heat- drought-induced stress (Hacke et al. 2001, Zanne et al. 2010), consequently, reducing tree productivity and carbon uptake (Clark et al. 2013). Results of this study highlight the remarkable role that

Amazonian-Andean forests are playing with respect to ecosystem services with increasing importance in the light of rising atmospheric carbon dioxide concentrations and temperatures (Phillips et al. 2004, Leuschner et al. 2013). This study shows that long-term forest plot monitoring provides better estimates of tree and carbon dynamics frequency and fluctuation over time than anecdotal reports of individual events in short periods.

236

Acknowledgments

This paper is a product of the Andes Biodiversity and Ecosystem Research Group

(ABERG; http://www.andesconservation.org/) with contributions for lowland plots data from John Terborgh, Percy Nunez and affiliated networks RAINFOR, GEM, and the

ForestPlots.net data management utility for permanent plots. Data included in this study is the result of an extraordinary effort by a large team in Peru, especially from the

Universidad Nacional de San Antonio Abad de Cusco. Special thanks go to Luis Imunda for his assistance in the field sampling campaigns. SERNANP and personnel of Manu

National Park - Peru provided assistance with logistics and permission to work in the protected area. Pantiacolla Tours and the Amazon Conservation Association provided logistical support. Funding came from the Gordon and Betty Moore Foundation’s Andes to Amazon initiative and the US National Science Foundation (NSF) DEB 0743666 and

NSF Long-Term Research in Environmental Biology (LTREB) 1754647. The research was also supported by the National Aeronautics and Space Administration (NASA)

Terrestrial Ecology Program grant # NNH08ZDA001N-TE/ 08-TE08-0037. Support for

RAINFOR and ForestPlots.net plot monitoring in Peru has come from a European

Research Council (ERC) Advanced Grant (T‐FORCES, “Tropical Forests in the

Changing Earth System”, 291585), Natural Environment Research Council grants

(including NE/F005806/), NE/D005590/1, and NE/N012542/1), and the Gordon and

Betty Moore Foundation.

237

Literature cited

Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier,

T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham,

Z. Zhang, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci,

and N. Cobb. 2009. A global overview of drought and heat-induced tree mortality

reveals emerging climate change risks for forests. Forest Ecology and Management

259:660–684.

Báez, S., A. Malizia, J. Carilla, C. Blundo, M. Aguilar, N. Aguirre, Z. Aquirre, E.

Álvarez, F. Cuesta, Á. Duque, W. Farfán-Ríos, K. García-Cabrera, R. Grau, J.

Homeier, R. Linares-Palomino, L. R. Malizia, O. M. Cruz, O. Osinaga, O. L.

Phillips, C. Reynel, M. R. Silman, and K. J. Feeley. 2015. Large-scale patterns of

turnover and Basal area change in andean forests. PloS one 10:e0126594.

Baker, T. R., O. L. Phillips, Y. Malhi, S. Almeida, L. Arroyo, A. Di Fiore, T. Erwin, T. J.

Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, J. Lloyd, A. Monteagudo, D.

A. Neill, S. Patino, N. C. A. Pitman, J. N. M. Silva, and R. V Martinez. 2004.

Variation in wood density determines spatial patterns in Amazonian forest biomass.

Global Change Biology 10:545–562.

Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White. 2012.

Increase in observed net carbon dioxide uptake by land and oceans during the past

50 years. Nature 488:70–72.

Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate

benefits of forests. Science (New York, N.Y.) 320:1444–9.

238

Brienen, R. J. W., O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G.

Lopez-Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vásquez

Martinez, M. Alexiades, E. Álvarez Dávila, P. Alvarez-Loayza, A. Andrade, L. E.

O. C. Aragão, A. Araujo-Murakami, E. J. M. M. Arets, L. Arroyo, G. A. Aymard C.,

O. S. Bánki, C. Baraloto, J. Barroso, D. Bonal, R. G. A. Boot, J. L. C. Camargo, C.

V. Castilho, V. Chama, K. J. Chao, J. Chave, J. A. Comiskey, F. Cornejo Valverde,

L. da Costa, E. A. de Oliveira, A. Di Fiore, T. L. Erwin, S. Fauset, M. Forsthofer, D.

R. Galbraith, E. S. Grahame, N. Groot, B. Hérault, N. Higuchi, E. N. Honorio

Coronado, H. Keeling, T. J. Killeen, W. F. Laurance, S. Laurance, J. Licona, W. E.

Magnussen, B. S. Marimon, B. H. Marimon-Junior, C. Mendoza, D. A. Neill, E. M.

Nogueira, P. Núñez, N. C. Pallqui Camacho, A. Parada, G. Pardo-Molina, J.

Peacock, M. Peña-Claros, G. C. Pickavance, N. C. A. Pitman, L. Poorter, A. Prieto,

C. A. Quesada, F. Ramírez, H. Ramírez-Angulo, Z. Restrepo, A. Roopsind, A.

Rudas, R. P. Salomão, M. Schwarz, N. Silva, J. E. Silva-Espejo, M. Silveira, J.

Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, J. Terborgh, R. Thomas-Caesar,

M. Toledo, M. Torello-Raventos, R. K. Umetsu, G. M. F. van der Heijden, P. van

der Hout, I. C. Guimarães Vieira, S. A. Vieira, E. Vilanova, V. A. Vos, and R. J.

Zagt. 2015. Long-term decline of the Amazon carbon sink. Nature 519:344–348.

Brown, I. F., L. A. Martinelli, W. W. Thomas, M. Z. Moreira, C. A. Cid Ferreira, and R.

A. Victoria. 1995. Uncertainty in the biomass of Amazonian forests: An example

from Rondônia, . Forest Ecology and Management 75:175–189.

Budd, P., I. May, L. Miles, and J. Sayer. 2004. Cloud Forest Agenda. United Nations

Environment - Programme-World Conservation Monitoring Centre, Cambridge,

239

UK.

Bush, M. B., M. R. Silman, and D. H. Urrego. 2004. 48,000 years of climate and forest

change in a biodiversity hot spot. Science (New York, N.Y.) 303:827–9.

Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Folster, F.

Fromard, N. Higuchi, T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B.

Riera, and T. Yamakura. 2005. Tree allometry and improved estimation of carbon

stocks and balance in tropical forests. Oecologia 145:87–99.

Chave, J., H. C. Muller-Landau, T. R. Baker, T. A. Easdale, H. Ter Steege, and C. O.

Webb. 2006. Regional and phylogenetic variation of wood density across 2456

neotropical tree species. Ecological Applications 16:2356–2367.

Chave, J., M. Réjou-Méchain, A. Búrquez, E. Chidumayo, M. S. Colgan, W. B. C.

Delitti, A. Duque, T. Eid, P. M. Fearnside, R. C. Goodman, M. Henry, A. Martínez-

Yrízar, W. A. Mugasha, H. C. Muller-Landau, M. Mencuccini, B. W. Nelson, A.

Ngomanda, E. M. Nogueira, E. Ortiz-Malavassi, R. Pélissier, P. Ploton, C. M. Ryan,

J. G. Saldarriaga, and G. Vieilledent. 2014. Improved allometric models to estimate

the aboveground biomass of tropical trees. Global change biology 20.

Clark, D. A., D. B. Clark, and S. F. Oberbauer. 2013. Field-quantified responses of

tropical rainforest aboveground productivity to increasing CO2 and climatic stress,

1997-2009. Journal of Geophysical Research: Biogeosciences 118:783–794.

Clark, D. B., and D. A. Clark. 1996. Abundance, growth and mortality of very large trees

in neotropical lowland rain forest. Forest Ecology and Management 80:235–244.

240

Clark, D. B., J. Hurtado, and S. S. Saatchi. 2015a. Tropical Rain Forest Structure, Tree

Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. PloS one

10:e0122905.

Clark, K. E., M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B.

Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi. 2014. The hydrological regime

of a forested tropical Andean catchment. Hydrology and Earth System Sciences

18:5377–5397.

Clark, K. E., A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S.

Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y.

Malhi. 2015b. Storm-triggered landslides in the Peruvian Andes and implications for

topography, carbon cycles, and biodiversity. Earth Surface Dynamics Discussions

3:631–688.

Condit, R., P. S. Ashton, N. Manokaran, J. V LaFrankie, S. P. Hubbell, and R. B. Foster.

1999. Dynamics of the forest communities at Pasoh and Barro Colorado: comparing

two 50-ha plots. Philosophical Transactions of the Royal Society of London Series

B-Biological Sciences 354:1739–1748.

Crausbay, S. D., and P. H. Martin. 2016. Natural disturbance, vegetation patterns and

ecological dynamics in tropical montane forests. Journal of Tropical Ecology

32:384–403.

Esquivel-Muelbert, A., T. R. Baker, K. G. Dexter, S. L. Lewis, R. J. W. Brienen, T. R.

Feldpausch, J. Lloyd, A. Monteagudo-Mendoza, L. Arroyo, E. Álvarez-Dávila, N.

Higuchi, B. S. Marimon, B. H. Marimon-Junior, M. Silveira, E. Vilanova, E. Gloor,

241

Y. Malhi, J. Chave, J. Barlow, D. Bonal, N. Davila Cardozo, T. Erwin, S. Fauset, B.

Hérault, S. Laurance, L. Poorter, L. Qie, C. Stahl, M. J. P. Sullivan, H. ter Steege, V.

A. Vos, P. A. Zuidema, E. Almeida, E. Almeida de Oliveira, A. Andrade, S. A.

Vieira, L. Aragão, A. Araujo-Murakami, E. Arets, G. A. Aymard C, P. B. Camargo,

J. G. Barroso, F. Bongers, R. Boot, J. L. Camargo, W. Castro, V. Chama Moscoso,

J. Comiskey, F. Cornejo Valverde, A. C. Lola da Costa, J. del Aguila Pasquel, T. Di

Fiore, L. Fernanda Duque, F. Elias, J. Engel, G. Flores Llampazo, D. Galbraith, R.

Herrera Fernández, E. Honorio Coronado, W. Hubau, E. Jimenez-Rojas, A. J. N.

Lima, R. K. Umetsu, W. Laurance, G. Lopez-Gonzalez, T. Lovejoy, O. Aurelio

Melo Cruz, P. S. Morandi, D. Neill, P. Núñez Vargas, N. C. Pallqui, A. Parada

Gutierrez, G. Pardo, J. Peacock, M. Peña-Claros, M. C. Peñuela-Mora, P. Petronelli,

G. C. Pickavance, N. Pitman, A. Prieto, C. Quesada, H. Ramírez-Angulo, M. Réjou-

Méchain, Z. Restrepo Correa, A. Roopsind, A. Rudas, R. Salomão, N. Silva, J. Silva

Espejo, J. Singh, J. Stropp, J. Terborgh, R. Thomas, M. Toledo, A. Torres-Lezama,

L. Valenzuela Gamarra, P. J. van de Meer, G. van der Heijden, P. van der Hout, R.

Vasquez Martinez, C. Vela, I. C. G. Vieira, and O. L. Phillips. 2018. Compositional

response of Amazon forests to climate change. Global Change Biology.

FAO. 2011. State of the World’s Forests 2011. Rome.

Fearnside, P. M. 1997. Wood density for estimating forest biomass in Brazilian

Amazonia. Forest Ecology and Management 90:59–87.

Feldpausch, T. R., L. Banin, O. L. Phillips, T. R. Baker, S. L. Lewis, C. A. Quesada, K.

Affum-Baffoe, E. Arets, N. J. , M. , E. S. Brondizio, P. de Camargo, J.

Chave, G. Djagbletey, T. F. Domingues, M. Drescher, P. M. Fearnside, M. B.

242

Franca, N. M. Fyllas, G. Lopez-Gonzalez, A. Hladik, N. Higuchi, M. O. Hunter, Y.

Iida, K. A. Salim, A. R. Kassim, M. Keller, J. Kemp, D. A. King, J. C. Lovett, B. S.

Marimon, B. H. Marimon, E. Lenza, A. R. Marshall, D. J. Metcalfe, E. T. A.

Mitchard, E. F. Moran, B. W. Nelson, R. Nilus, E. M. Nogueira, M. Palace, S.

Patino, K. S. H. Peh, M. T. Raventos, J. M. Reitsma, G. Saiz, F. Schrodt, B. Sonke,

H. E. Taedoumg, S. Tan, L. White, H. Woll, and J. Lloyd. 2011. Height-diameter

allometry of tropical forest trees. Biogeosciences 8:1081–1106.

Feldpausch, T. R., O. L. Phillips, R. J. W. Brienen, E. Gloor, J. Lloyd, G. Lopez-

Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, A. Alarcón, E. Álvarez Dávila, P.

Alvarez-Loayza, A. Andrade, L. E. O. C. Aragao, L. Arroyo, G. A. Aymard C., T.

R. Baker, C. Baraloto, J. Barroso, D. Bonal, W. Castro, V. Chama, J. Chave, T. F.

Domingues, S. Fauset, N. Groot, E. Honorio C., S. Laurance, W. F. Laurance, S. L.

Lewis, J. C. Licona, B. S. Marimon, B. H. Marimon-Junior, C. Mendoza Bautista,

D. A. Neill, E. A. Oliveira, C. Oliveira dos Santos, N. C. Pallqui Camacho, G.

Pardo-Molina, A. Prieto, C. A. Quesada, F. Ramírez, H. Ramírez-Angulo, M. Réjou-

Méchain, A. Rudas, G. Saiz, R. P. Salomão, J. E. Silva-Espejo, M. Silveira, H. ter

Steege, J. Stropp, J. Terborgh, R. Thomas-Caesar, G. M. F. van der Heijden, R.

Vásquez Martinez, E. Vilanova, and V. A. Vos. 2016. Amazon forest response to

repeated droughts. Global Biogeochemical Cycles.

Fyllas, N. M., L. P. Bentley, A. Shenkin, G. P. Asner, O. K. Atkin, S. Díaz, B. J. Enquist,

W. Farfan-Rios, E. Gloor, R. Guerrieri, W. H. Huasco, Y. Ishida, R. E. Martin, P.

Meir, O. Phillips, N. Salinas, M. Silman, L. K. Weerasinghe, J. Zaragoza-Castells,

and Y. Malhi. 2017. Solar radiation and functional traits explain the decline of forest

243

primary productivity along a tropical elevation gradient. Ecology Letters 20:730–

740.

Gatti, L. V, M. Gloor, J. B. Miller, C. E. Doughty, Y. Malhi, L. G. Domingues, L. S.

Basso, A. Martinewski, C. S. C. Correia, V. F. Borges, S. Freitas, R. Braz, L. O.

Anderson, H. Rocha, J. Grace, O. L. Phillips, and J. Lloyd. 2014. Drought sensitivity

of Amazonian carbon balance revealed by atmospheric measurements. Nature

506:76–80.

Gentry, A. H. 1988. Changes in Plant Community Diversity and Floristic Composition on

Environmental and Geographical Gradients. Annals of the Missouri Botanical

Garden 75:1–34.

Girardin, C. A. J., W. Farfan-Rios, K. Garcia, K. J. Feeley, P. M. Jørgensen, A. A.

Murakami, L. Cayola Pérez, R. Seidel, N. Paniagua, A. F. Fuentes Claros, C.

Maldonado, M. Silman, N. Salinas, C. Reynel, D. A. Neill, M. Serrano, C. J.

Caballero, M. de los A. La Torre Cuadros, M. J. Macía, T. J. Killeen, and Y. Malhi.

2013. Spatial patterns of above-ground structure, biomass and composition in a

network of six Andean elevation transects. Plant Ecology & Diversity 7:161–171.

Girardin, C. A. J., Y. Malhi, L. Aragao, M. Mamani, W. H. Huasco, L. Durand, K. J.

Feeley, J. Rapp, J. E. Silva-Espejo, M. Silman, N. Salinas, and R. J. Whittaker.

2010. Net primary productivity allocation and cycling of carbon along a tropical

forest elevational transect in the Peruvian Andes. Global Change Biology 16:3176–

3192.

Hacke, U. G., J. S. Sperry, W. T. Pockman, S. D. Davis, and K. A. McCulloh. 2001.

244

Trends in wood density and structure are linked to prevention of xylem implosion by

negative pressure. Oecologia 126:457–461.

Halladay, K., Y. Malhi, and M. New. 2012. Cloud frequency climatology at the

Andes/Amazon transition: 1. Seasonal and diurnal cycles. J. Geophys. Res.

117:D23102, doi:10.1029/2012JD017770.

Harper, J. L. 1967. A Darwinian Approach to Plant Ecology. Source Journal of Applied

Ecology 4:267–290.

Heckenberger, M. J., J. B. Petersen, and E. G. Neves. 1999. Village Size and Permanence

in Amazonia: Two Archaeological Examples from Brazil. Latin American Antiquity

10:353–376.

Houghton, R. A., B. Byers, and A. A. Nassikas. 2015. A role for tropical forests in

stabilizing atmospheric CO2. Nature Climate Change 5:1022–1023.

Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y.

Malhi, J. A. Sobrino, and G. van der Schrier. 2016. Record-breaking warming and

extreme drought in the Amazon rainforest during the course of El Niño 2015–2016.

Scientific Reports 6:33130.

King, D. A. 1996. Allometry and life history of tropical trees. Journal of Tropical

Ecology 12:25–44.

Kraft, N. J. B., M. R. Metz, R. S. Condit, and J. Chave. 2010. The relationship between

wood density and mortality in a global tropical forest data set. The New phytologist

188:1124–36.

245

Leuschner, C., A. Zach, G. Moser, J. Homeier, S. Graefe, D. Hertel, B. Wittich, N.

Soethe, S. Iost, M. Roderstein, V. Horna, and K. Wolf. 2013. The Carbon Balance of

Tropical Mountain Forests Along an Altitudinal Transect. Pages 117–39 Ecosystem

Services, Biodiversity and Environmental Change in a Tropical Mountain

Ecosystem of South Ecuador Ecological Studies 221. Berlin: Springer.

Lewis, S. L., P. M. Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad.

2011. The 2010 Amazon Drought. Science 331:554.

Lewis, S. L., O. L. Phillips, T. R. Baker, J. Lloyd, Y. Malhi, S. Almeida, N. Higuchi, W.

F. Laurance, D. A. Neill, J. N. M. Silva, J. Terborgh, A. Torres Lezama, R. Vásquez

Martinez, S. Brown, J. Chave, C. Kuebler, P. Núñez Vargas, and B. Vinceti. 2004a.

Concerted changes in tropical forest structure and dynamics: evidence from 50

South American long-term plots. Philosophical Transactions of the Royal Society of

London. Series B: Biological Sciences 359:421–436.

Lewis, S. L., O. L. Phillips, D. Sheil, B. Vinceti, T. R. Baker, S. Brown, A. W. Graham,

N. Higuchi, D. W. Hilbert, W. F. Laurance, J. Lejoly, Y. Malhi, A. Monteagudo, P.

N. Vargas, B. Sonke, N. Supardi, J. W. Terborgh, and R. V Martinez. 2004b.

Tropical forest tree mortality, recruitment and turnover rates: calculation,

interpretation and comparison when census intervals vary. Journal of Ecology

92:929–944.

Lopez-Gonzalez, G., S. L. Lewis, M. Burkitt, and O. L. Phillips. 2011. ForestPlots.net: a

web application and research tool to manage and analyse tropical forest plot data.

Journal of Vegetation Science 22:610–613.

246

Lopez‐Gonzalez, G., S. L. Lewis, M. Burkitt, T. R. Baker, and O. L. Phillips. 2009.

ForestPlots.net Database. Available at: www.forestplots.net. Last accessed July

2017.

Malhi, Y., C. A. J. Girardin, G. R. Goldsmith, C. E. Doughty, N. Salinas, D. B. Metcalfe,

W. Huaraca Huasco, J. E. Silva-Espejo, J. del Aguilla-Pasquell, F. Farfán

Amézquita, L. E. O. C. Aragão, R. Guerrieri, F. Y. Ishida, N. H. A. Bahar, W.

Farfan-Rios, O. L. Phillips, P. Meir, and M. Silman. 2016. The variation of

productivity and its allocation along a tropical elevation gradient: a whole carbon

budget perspective. New Phytologist.

Malhi, Y., and J. Wright. 2004. Spatial patterns and recent trends in the climate of

tropical rainforest regions. Philosophical transactions of the Royal Society of

London. Series B, Biological sciences 359:311–29.

Marengo, J. A., C. A. Nobre, J. Tomasella, M. F. Cardoso, and M. D. Oyama. 2008.

Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005.

Philosophical Transactions of the Royal Society B-Biological Sciences 363:1773–

1778.

Marengo, J. A., J. Tomasella, L. M. Alves, W. R. Soares, and D. A. Rodriguez. 2011. The

drought of 2010 in the context of historical droughts in the Amazon region.

Geophysical Research Letters 38:n/a-n/a.

McMichael, C. N. H., F. Matthews-Bird, W. Farfan-Rios, and K. J. Feeley. 2017. Ancient

human disturbances may be skewing our understanding of Amazonian forests.

Proceedings of the National Academy of Sciences:201614577.

247

Moser, G., C. Leuschner, D. Hertel, S. Graefe, N. Soethe, and S. Iost. 2011. Elevation

effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the

belowground compartment. Global Change Biology 17:2211–2226.

Muller-Landau, H. C. 2004. Interspecific and Inter-site Variation in Wood Specific

Gravity of Tropical Trees. Biotropica 36:20–32.

Negron-Juarez, R. I., J. Q. Chambers, G. Guimaraes, H. C. Zeng, C. F. M. Raupp, D. M.

Marra, G. Ribeiro, S. S. Saatchi, B. W. Nelson, and N. Higuchi. 2010. Widespread

Amazon forest tree mortality from a single cross-basin squall line event.

Geophysical Research Letters 37.

Nepstad, D. C., I. M. Tohver, D. Ray, P. Moutinho, and G. Cardinot. 2007. Mortality of

large trees and lianas following experimental drought in an amazon forest. Ecology

88:2259–2269.

Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips,

A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A.

D. McGuire, S. Piao, A. Rautiainen, S. Sitch, and D. Hayes. 2011. A large and

persistent carbon sink in the world’s forests. Science (New York, N.Y.) 333:988–93.

Pennington, T. D., C. Reynel, and A. Daza. 2004. Illustrated guide to the Trees of Peru.

Page (T. D. Pennington, C. Reynel, and A. Daza, Eds.). David Hunt, Sherborne, UK.

Phillips, O. L., L. E. O. C. Aragão, S. L. Lewis, J. B. Fisher, J. Lloyd, G. López-

González, Y. Malhi, A. Monteagudo, J. Peacock, C. A. Quesada, G. van der

Heijden, S. Almeida, I. Amaral, L. Arroyo, G. Aymard, T. R. Baker, O. Bánki, L.

Blanc, D. Bonal, P. Brando, J. Chave, Á. C. A. de Oliveira, N. D. Cardozo, C. I.

248

Czimczik, T. R. Feldpausch, M. A. Freitas, E. Gloor, N. Higuchi, E. Jiménez, G.

Lloyd, P. Meir, C. Mendoza, A. Morel, D. A. Neill, D. Nepstad, S. Patiño, M. C.

Peñuela, A. Prieto, F. Ramírez, M. Schwarz, J. Silva, M. Silveira, A. S. Thomas, H.

ter Steege, J. Stropp, R. Vásquez, P. Zelazowski, E. A. Dávila, S. Andelman, A.

Andrade, K.-J. Chao, T. Erwin, A. Di Fiore, E. H. C., H. Keeling, T. J. Killeen, W.

F. Laurance, A. P. Cruz, N. C. A. Pitman, P. N. Vargas, H. Ramírez-Angulo, A.

Rudas, R. Salamão, N. Silva, J. Terborgh, and A. Torres-Lezama. 2009. Drought

Sensitivity of the Amazon Rainforest. Science 323:1344–1347.

Phillips, O. L., T. R. Baker, L. Arroyo, N. Higuchi, T. J. Killeen, W. F. Laurance, S. L.

Lewis, J. Lloyd, Y. Malhi, A. Monteagudo, D. A. Neill, P. N. Vargas, J. N. M. Silva,

J. Terborgh, R. V Martinez, M. Alexiades, S. Almeida, S. Brown, J. Chave, J. A.

Comiskey, C. I. Czimczik, A. Di Fiore, T. Erwin, C. Kuebler, S. G. Laurance, H. E.

M. Nascimento, J. Olivier, W. Palacios, S. Patino, N. C. A. Pitman, C. A. Quesada,

M. Salidas, A. T. Lezama, and B. Vinceti. 2004. Pattern and process in Amazon tree

turnover, 1976-2001. Philosophical Transactions of the Royal Society of London

Series B-Biological Sciences 359:381–407.

Phillips, O. L., T. R. Baker, T. R. Feldpausch, and R. Brienen. 2016. RAINFOR, field

manual for plot establishment and remeasurement. The Royal Society:27.

Phillips, O. L., P. Hall, A. H. Gentry, S. A. Sawyer, and R. Vasquez. 1994. Dynamics and

Species Richness of Tropical Rain-Forests. Proceedings of the National Academy of

Sciences of the United States of America 91:2805–2809.

Phillips, O. L., G. van der Heijden, S. L. Lewis, G. Lopez-Gonzalez, L. Aragao, J. Lloyd,

249

Y. Malhi, A. Monteagudo, S. Almeida, E. A. Davila, I. Amaral, S. Andelman, A.

Andrade, L. Arroyo, G. Aymard, T. R. Baker, L. Blanc, D. Bonal, A. C. A. de

Oliveira, K. J. Chao, N. D. Cardozo, L. da Costa, T. R. Feldpausch, J. B. Fisher, N.

M. Fyllas, M. A. Freitas, D. Galbraith, E. Gloor, N. Higuchi, E. Honorio, E.

Jimenez, H. Keeling, T. J. Killeen, J. C. Lovett, P. Meir, C. Mendoza, A. Morel, P.

N. Vargas, S. Patino, K. S. H. Peh, A. P. Cruz, A. Prieto, C. A. Quesada, F.

Ramirez, H. Ramirez, A. Rudas, R. Salamao, M. Schwarz, J. Silva, M. Silveira, J.

W. F. Slik, B. Sonke, A. S. Thomas, J. Stropp, J. R. D. Taplin, R. Vasquez, and E.

Vilanova. 2010. Drought-mortality relationships for tropical forests. New

Phytologist 187:631–646.

Phillips, O. L., Y. Malhi, N. Higuchi, W. F. Laurance, P. V Nunez, R. M. Vasquez, S. G.

Laurance, L. V Ferreira, M. Stern, S. Brown, and J. Grace. 1998. Changes in the

carbon balance of tropical forests: Evidence from long-term plots. Science 282:439–

442.

Pitman, N. C. A., J. Widmer, C. N. Jenkins, G. Stocks, L. Seales, F. Paniagua, and E. M.

Bruna. 2011. Volume and Geographical Distribution of Ecological Research in the

Andes and the Amazon, 1995–2008. Tropical Conservation Science 4:64–81.

Rapp, J. M., and M. R. Silman. 2012. Diurnal, seasonal, and altitudinal trends in

microclimate across a tropical montane cloud forest. Climate Research 55:17–32.

Rapp, J. M., and M. R. Silman. 2014. Epiphyte response to drought and experimental

warming in an Andean cloud forest. F1000Research 3:7.

Rice, A. H., E. H. Pyle, S. R. Saleska, L. Hutyra, M. Palace, M. Keller, P. B. de

250

Camargo, K. Portilho, D. F. Marques, and S. C. Wofsy. 2004. Carbon balance and

vegetation dynamics in an old-growth Amazonian forest. Ecological Applications

14:S55–S71.

Rowland, L., A. C. L. da Costa, D. R. Galbraith, R. S. Oliveira, O. J. Binks, A. A. R.

Oliveira, A. M. Pullen, C. E. Doughty, D. B. Metcalfe, S. S. Vasconcelos, L. V

Ferreira, Y. Malhi, J. Grace, M. Mencuccini, and P. Meir. 2015. Death from drought

in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119–

122.

Saatchi, S. S., N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard, W. Salas, B. R.

Zutta, W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman, and

A. Morel. 2011. Benchmark map of forest carbon stocks in tropical regions across

three continents. Proceedings of the National Academy of Sciences of the United

States of America 108:9899–904.

Schimel, D., B. B. Stephens, and J. B. Fisher. 2015. Effect of increasing CO2 on the

terrestrial carbon cycle. Proceedings of the National Academy of Sciences 112:436–

441.

Sheil, D., D. Burslem, and D. Alder. 1995. The Interpretation and Misinterpretation of

Mortality-Rate Measures. Journal of Ecology 83:331–333.

Spracklen, D. V., and R. Righelato. 2014. Tropical montane forests are a larger than

expected global carbon store. Biogeosciences 11:2741–2754.

Stephens, B. B., K. R. Gurney, P. P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais,

M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N.

251

Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. L. Langenfelds, L.

P. Steele, R. J. Francey, and A. S. Denning. 2007. Weak northern and strong tropical

land carbon uptake from vertical profiles of atmospheric CO2. Science (New York,

N.Y.) 316:1732–5.

Susan, G. W. L., W. F. Laurance, E. M. N. Henrique, A. Andrade, P. M. Fearnside, R. G.

R. Expedito, and R. Condit. 2009. Long-term variation in Amazon forest dynamics.

Journal of Vegetation Science 20:323–333.

Valencia, R., R. Condit, H. C. Muller-Landau, C. Hernandez, and H. Navarrete. 2009.

Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical

Ecology 25:473–482.

Vilanova, E., H. Ramírez-Angulo, A. Torres-Lezama, G. Aymard, L. Gámez, C. Durán,

L. Hernández, R. Herrera, G. van der Heijden, O. L. Phillips, and G. J. Ettl. 2018.

Environmental drivers of forest structure and stem turnover across Venezuelan

tropical forests. PLOS ONE 13:e0198489.

Williamson, G. B., W. F. Laurance, A. A. Oliveira, P. Delamonica, C. Gascon, T. E.

Lovejoy, and L. Pohl. 2000. Amazonian tree mortality during the 1997 El Nino

drought. Conservation Biology 14:1538–1542.

Williamson, G. B., and M. C. Wiemann. 2010. Measuring wood specific

gravity...correctly. American Journal of Botany 97:519–524.

Young, K. R. 1992. Biogeography of the montane forest zone of the eastern slopes of

Peru. Memorias del Museo de Historia Natural U.N.M.S.M. 21:119–154.

252

Zanne, A. E., G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B.

Miller, N. G. Swenson, M. C. Wiemann, and J. Chave. 2009. Data from: Towards a

worldwide wood economics spectrum. Dryad Data Repository.

Zanne, A. E., M. Westoby, D. S. Falster, D. D. Ackerly, S. R. Loarie, S. E. J. Arnold, and

D. A. Coomes. 2010. Angiosperm wood structure: Global patterns in vessel anatomy

and their relation to wood density and potential conductivity. American journal of

botany 97:207–15.

253

Figure legends

Figure IV - 1. Mean annualized vital rates along the Andes-to-Amazon elevational gradient for (a) mortality, (b) recruitment (c), turnover and (d) net stem change. In (d) positive values (blue) represent an increase in abundance of stands and negative (red) a decrease in abundance due to mortality. Each circle represents to 1-ha permanent plot and the size of the circles correspond to the number of censuses. Errors bars despite 95% confidence intervals based on vital rates versus census years of each plot. Solid grey lines are generalized additive models (GAM) fit using the smoothing function. Dashed grey vertical lines represent the division between the Andes and Amazon forests. Blue solid vertical bar represents the cloud base along the gradient.

Figure IV - 2. Above-ground carbon density along the Manu-Tambopata elevational transect. Each circle corresponds to each permanent forest plot. Error bars depict bootstrapped 95% confidence intervals. Grey solid lines are the generalized additive model (GAM) fit using a smoothing function with 95% confidence limits. Dashed line indicates the arbitrary division (500 m) between the Amazonian and Andean forests. Blue solid vertical bar represents the cloud base along the gradient.

Figure IV - 3. Mean aboveground carbon density (ACD) along the Andes-to-Amazon elevational gradient for (a) mortality, (b) recruitment and (c) ACD net change. In (c) positive values (blue) represent an increase in biomass and negative (red) a decrease in net carbon change across the gradient. Each circle represents to 1-ha permanent plot and the size of the circles correspond to the number of censuses. Errors bars despite 95% confidence intervals based on vital rates versus census years of each plot. Solid grey lines are generalized additive models (GAM) fit using the smoothing function for (a) and (c).

254

Dashed vertical grey line represents the division between the Andes and Amazon forests.

Blue vertical bar represents the cloud base along the gradient.

Figure IV - 4. Trends in vital rates for 38 years of forests plots monitoring for stand (a) mortality, (b) recruitment, (c), turnover, and (d) net stem change along the Andes-to-

Amazon elevational gradient. In (d) positive values (blue) represent an increase in abundance of stands and negative (red) a decrease in abundance. Each circle and triangle represent each census of each permanent forest plot. Solid black lines are the generalized additive model (GAM) fit using a smoothing function with 95% confidence limits.

Vertical beige lines indicate the multiple drought events occurred in the study area in

2005, 2010 and 2016.

Figure IV - 5. Trends in aboveground carbon density (ACD) across 38 years of forests plots monitoring for (a) mortality, (b) productivity, and (c) net ACD change along the

Andes-to-Amazon elevational gradient. In (c) positive values (blue) represent an increase in carbon density and negative (red) a decrease in ACD. Each circle and triangle represent each census of each permanent forest plot. Solid black lines are the generalized additive model (GAM) fit using a smoothing function with 95% confidence limits.

Vertical beige lines indicate the multiple drought events occurred in the study area in

2005, 2010 and 2016.

Appendix IV – Figure S1. Monthly precipitation (mm) recorded at the Rocotal meteorological station at 2010 m of elevation maintained by SENAMHI located at ~ 1 km distance from Trocha Union transect. Monthly means with 95% confidence intervals is shown for 2000–2008 excluding 2005 (grey solid line) and compared with 2005 monthly totals (black dashed line).

255

Appendix IV – Figure S2. Number of stems along the Manu-Tambopata elevational transect. Each circle corresponds to each permanent forest plot Error bars depict bootstrapped 95% confidence intervals. Grey solid lines are the generalized additive model (GAM) fit using a smoothing function with 95% confidence limits. Dashed line indicates the arbitrary division (500 m) between the Amazonian and Andean forests. Blue vertical bar represents the cloud base along the gradient.

Appendix IV – Figure S3. Trends in vital rates for 38 years of forests plots monitoring for stand (a) mortality, (b) recruitment, (c) turnover and (d) net stem change along the

Andes-to-Amazon elevational gradient. In (d) positive values (blue) represent an increase in abundance of stands and negative (red) a decrease in abundance. Each circle and triangle represent each census for each permanent forest plot. Black and grey lines represent the linear regressions fit; solid lines represent significant relationship with 95 % confidence limits and dashed lines no significant. Grey lines are the fit for Andean plots and black lines Amazonian plots. Vertical beige lines indicate the multiple drought events occurred in the study area in 2005, 2010 and 2016.

Appendix IV – Figure S4. Trends in aboveground carbon density (ACD) for 38 years of forests plots monitoring for (a) mortality, (b) productivity and (c) net ACD change along the Andes-to-Amazon elevational gradient. In (c), positive values (blue) represent an increase in carbon density and negative (red) a decrease in ACD. Each circle and triangle represent each census for each permanent forest plot. Black and grey lines represent the linear regressions fit; solid lines represent significant relationship with 95 % confidence limits and dashed lines no significant. Grey lines are the fit for Andean plots and black

256 lines Amazonian plots. Vertical beige lines indicate the multiple drought events occurred in the study area in 2005, 2010 and 2016.

Appendix IV – Figure S5. Relationship between annual net change in aboveground carbon density of individual plots and their annual change in stem number per hectare.

257

Amazon Andes Amazon Andes

(a) (b) FIGUREIV

258

-

1 (c) (d)

FIGURE IV - 2

259

Amazon Andes

(a)

(b)

(c)

FIGURE IV - 3 260

(a) (b) FIGUREIV

261

(c) (d)

-

4

(a)

(b)

(c)

FIGURE IV - 5 262

Supporting information

Title:

Long-term stand and carbon dynamics along the Amazon-to-Andes elevation gradient.

263

Appendix IV - Table S1. Description of the 40 permanent forests plots along the Andes- to-Amazon elevational gradient for stems with DBH ≥ 10 cm. Plots are ordered by decreasing elevation. Forests types include: Lowlands (TF = terra firme, FP = floodplain;

< 500 m), sub montane (500 - 1600 m), lower montane (1600 - 2500 m), upper montane

(2500 - 3400 m) and treeline (> 3400 m). Forest types are defined based on Young (1992) and Pennington et al. (2004).

Plot Plot Number Year of Plot Plot center size Lat. Lon. Forest type establish of Code name elevation -ment (ha) censuses (m)

APK-01 Apu Kanachuay 1 3625 -13.0957 -71.6299 Treeline 2011.75 3

ACJ-01 Acajanaco 1 3537 -13.1469 -71.6323 Treeline 2013.07 3

TRU-01 Trocha Union 1 1 3402 -13.1137 -71.6070 Treeline 2003.51 5

TRU-02 Trocha Union 2 1 3261 -13.1105 -71.6041 Upper montane 2003.49 5

TRU-03 Trocha Union 3 1 3042 -13.1094 -71.5995 Upper montane 2003.76 5

WAY-01 Wayquecha 1 3032 -13.1906 -71.5875 Upper montane 2003.73 5

ESP-01 Esperanza 1 2852 -13.1759 -71.5948 Upper montane 2006.51 6

TRU-04 Trocha Union 4 1 2755 -13.1059 -71.5892 Upper montane 2003.53 5

TRU-05 Trocha Union 5 1 2528 -13.0940 -71.5740 Upper montane 2003.56 5

264

Plot Plot Number Year of Plot Plot center size Lat. Lon. Forest type establish of Code name elevation -ment (ha) censuses (m)

TRU-06 Trocha Union 6 1 2237 -13.0801 -71.5653 Lower montane 2003.67 5

TRU-07 Trocha Union 7 1 2031 -13.0739 -71.5596 Lower montane 2003.67 5

TRU-08 Trocha Union 8 1 1843 -13.0704 -71.5559 Lower montane 2003.61 5

SPD-01 San Pedro 1 1 1757 -13.0473 -71.5422 Lower montane 2006.66 7

CAL-01 Callanga 1 1 1581 -12.8055 -71.7767 Sub montane 2004.70 5

SPD-02 San Pedro 2 1 1518 -13.0490 -71.5365 Sub montane 2006.72 7

SAI-01 San Isidro1 1 1492 -12.9986 -71.5600 Sub montane 2005.53 4

CAL-02 Callanga 2 1 1241 -12.8045 -71.7828 Sub montane 2004.75 5

SAI-02 San Isidro2 1 1217 -12.9947 -71.5550 Sub montane 2005.58 4

TON-02 Tono 2 1 968 -12.9591 -71.5663 Sub montane 2004.55 4

TON-01 Tono 1 1 867 -12.9475 -71.5320 Sub montane 2004.45 1

PAN-03 Pantiacolla 3 1 843 -12.6383 -71.2745 Sub montane 2013.24 3

PAN-02 Pantiacolla 2 1 595 -12.6496 -71.2627 Sub montane 2003.38 5

PAN-01 Pantiacolla 1 1 425 -12.6404 -71.2446 Lowlands (TF) 2002.69 1

ALM-01 Alto maizal 2 405 -11.8000 -71.4667 Lowlands (TF) 1994.73 5

265

Plot Plot Number Year of Plot Plot center size Lat. Lon. Forest type establish of Code name elevation -ment (ha) censuses (m)

MNU-04 Manu 4 2 358 -11.9047 -71.4025 Lowlands (TF) 1991.71 6

MNU-05 Manu 5 2.25 347 -11.8785 -71.4086 Lowlands (TF) 1989.78 7

MNU-06 Manu 6 2.25 345 -11.8870 -71.3972 Lowlands (TF) 1989.82 5

MNU-08 Manu 8 2 338 -11.9955 -71.2355 Lowlands (FP) 1991.77 5

MNU-03 Manu 3 2 312 -11.9000 -71.4000 Lowlands (TF) 1991.70 5

TAM-07 Tambopata 7 1 228 -12.8258 -69.2612 Lowlands (TF) 1983.75 10

TAM-08 Tambopata 8 1 225 -12.8264 -69.2694 Lowlands (TF) 2001.53 6

TAM-05 Tambopata 5 1 217 -12.8304 -69.2706 Lowlands (TF) 1983.69 12

TAM-01 Tambopata 1 1 215 -12.8442 -69.2885 Lowlands (TF) 1983.78 11

TAM-02 Tambopata 2 1 213 -12.8345 -69.2862 Lowlands (TF) 1979.87 13

TAM-06 Tambopata 6 1 205 -12.8386 -69.2960 Lowlands (FP) 1983.71 11

TAM-09 Tambopata 9 1 197 -12.8309 -69.2843 Lowlands (TF) 2010.69 5

CUZ-04 Cuzco amazonico 4 1 193 -12.4992 -68.9598 Lowlands (FP) 1989.44 8

CUZ-03 Cuzco amazonico 3 1 192 -12.4997 -68.9630 Lowlands (FP) 1989.42 8

CUZ-01 Cuzco amazonico 1 1 191 -12.4990 -68.9738 Lowlands (FP) 1989.39 8

266

Plot Plot Number Year of Plot Plot center size Lat. Lon. Forest type establish of Code name elevation -ment (ha) censuses (m)

CUZ-02 Cuzco amazonico 2 1 190 -12.4991 -68.9707 Lowlands (FP) 1989.40 8

267

Appendix IV - Table S2. Parameters values to estimate height (m) with diameters expressed in centimeters denotes as D. All equations are of the form of H = β0 + β1 log(D)

Plot Elevation (m) Number of stems Intercept, β0 Coefficient of (D), β1

APK-01 3625 562 -3.5200 3.8773

ESP-01 2852 879 -8.3790 7.0761

PAN-02 595 746 -6.9699 8.5462

SPD-01 1757 1235 -4.5336 5.7237

SPD-02 1518 842 -8.1487 7.7569

TRU-01 3402 700 -2.9956 4.0791

TRU-02 3261 863 -5.8776 5.7313

TRU-03 3042 602 -1.4966 4.0629

TRU-04 2755 819 -4.4140 5.4799

TRU-05 2528 601 -14.3088 8.7003

TRU-06 2237 630 -6.2177 5.9925

TRU-07 2031 779 -4.1295 4.6937

TRU-08 1843 1135 -3.1419 4.6455

WAY-01 3032 1281 0.3381 3.9154

268

APPENDIX IV – FIGURE S1

269

APPENDIX IV – FIGURE S2

270

(a) (b) APPENDIX IVAPPENDIX

271

FIGURES3

(c) (d)

APPENDIX IV – FIGURE S4

(a)

(b)

(c)

272

APPENDIX IV – FIGURE S5

273

CHAPTER V

AN ANNOTATED CHECKLIST OF TREES AND RELATIVES IN TROPICAL

MONTANE FORESTS OF SOUTHEAST PERU: THE IMPORTANCE OF

CONTINUED BOTANICAL COLLECTING

LISTA ANOTADA DE ÁRBOLES Y AFINES EN LOS BOSQUES MONTANOS DEL

SURESTE PERUANO: LA IMPORTANCIA DE SEGUIR COLECTANDO

Published in Spanish in the “Revista Peruana de Biologia 22(2): 145 - 174 (2015)”

William Farfan-Rios1,2*, Karina Garcia-Cabrera1,2, Norma Salinas2,3,4, Mireya N. Raurau-

Quisiyupanqui2, Miles R. Silman1,5

1Department of Biology, Wake Forest University, 1834 Wake Forest Rd, Winston Salem,

NC 27106, USA.

2Universidad Nacional de San Antonio Abad del Cusco, Facultad de Biología, Av. La

Cultura 733 Cusco, Perú.

3Seccion Química, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima,

Perú

274

4Environmental Change Institute, School of Geography and the Environment, South Parks

Road, Oxford, OX1 3QY, U.K.

5Center for Energy, Environment and Sustainability, Wake Forest University, Winston-

Salem, NC 27106, USA.

*Corresponding author

Email *William Farfan-Rios: [email protected], [email protected]

Email Karina Garcia-Cabrera: [email protected]

Email Norma Salinas: [email protected]

Email Mireya N. Raurau-Quisiyupanqui: [email protected]

Email Miles R. Silman: [email protected]

Contribution of the authors:

The authors declare that they participated in: WF: In the compilation, identification, validation of registered species, revision and drafting of the manuscript; KG: Identification of registered species, revision and drafting of the manuscript; NS: Identification of registered species, revision and drafting of the manuscript; MN: Identification and validation of registered species; MS: Identification of registered species and drafting of the manuscript.

275

Funding Source:

This work was funded by: “The United States National Science Foundation (NSF)”,

Gordon and Betty Moore Foundation’s Andes to Amazon” and “Amazon Conservation

Association”.

276

Abstract

The tropical Andes and adjacent Amazon are Earth’s highest biodiversity hotspot.

Manu National Park in southeastern Peru encompasses an entire watershed, ranging from

Andean highlands to Amazonian lowlands, and is a megadiverse landscape on the Andes to Amazon transition. Here we present an annotated checklist of trees and related species is along an elevation gradient in the Manu Biosphere Reserve that runs from sub-montane forests at 800 m elevation up to the tree line at 3,625 m. Based on a network of 21 1-hectare permanent tree plots and botanical explorations, the floristic information is systematized by elevation ranges, geographical distribution, and endemism. These preliminary results show 1,108 species. Of these, 43% are new records for the region of Cusco, 15 species are new records for the Peruvian flora, 40 species are endemics for Peru, and 30 are potentially new species for science. Another 39.7% are identified to genus or family level and remain morphospecies. Additionally, we show altitudinal range expansion for 45.2% of identified species (302 species). These results were found in a transect of plots spanning only 20 km of geographic distance and are a sample of the high tree diversity in these montane ecosystems. The data show how poorly collected and understudied these ecosystems are.

Basic floristic studies and collections are imperative for a better understanding of species distributions and ecosystem function, and the basic biodiversity of the tropical Andes.

Studies in this region will also help to answer a major, unresolved question in modern global ecology of how tropical forests will respond to global climate change.

Keywords: Andes, altitudinal range, climate change, species distribution, tree diversity, tropical montane forest.

277

Resumen

Los Andes están considerados como los puntos calientes más diversos de los trópicos, dentro de estos se encuentra el Parque Nacional del Manu, cuyas complejas condiciones climáticas y fisiográficas albergan una mega-diversidad y endemismo. Se presenta una lista anotada de especies arbóreas y afines a lo largo de un gradiente de elevación desde los bosques submontanos a 800 m hasta la línea de bosque a 3,625 m en la Reserva de Biosfera del Manu. En base a una red de 21 parcelas permanentes de una hectárea y exploraciones botánicas se sistematiza la información florística por rangos de elevación, distribución geográfica y endemismo. Estos resultados preliminares se traducen en 1,108 especies de las cuales el 39.7% son morfoespecies, el 43 % de las especies determinadas son registros nuevos para la región del Cusco, 15 especies son nuevos registros para la flora peruana, 40 especies son endémicas para Perú y 30 son potenciales especies nuevas para la ciencia. Adicionalmente, se resalta la expansión del rango altitudinal para el 45.2% de las especies determinadas (302 especies). Estos resultados son una muestra de la alta diversidad arbórea y afines en estos ecosistemas montañosos registrados en tan solo ~20 km de distancia geográfica, además muestra lo escasamente colectados y poco estudiados que se encuentran. Mas colecciones botánicas son necesarias

- estos estudios básicos de florística son imperativos para un mejor entendimiento de la distribución de especies y la función de ecosistemas, además ayudara a responder una de las grandes preguntas en la ecología global moderna, ¿Cómo responderán los bosques tropicales al cambio climático global?

Palabras clave: Andes, Bosque montano tropical, cambio climático, diversidad arbórea, distribución de especies, rangos de elevación.

278

Introduction

Peru is considered one of the megadiverse tropical countries of the world, within its ecological and topographic complexity highlights the Andes mountain range, which is considered one of the most diverse areas or hot spots of biodiversity in the tropics (Myers et al. 2000). The first botanical explorations in Peru were conducted in the eighteenth century by Hipólito Ruiz López and José Pavón, who, after extensive field campaigns, returned to Spain with more than 3000 plant specimens (Alvarez Lopez 1953). Alexander von Humboldt and Aimé Bonpland made valuable contributions to the Peruvian flora during the nineteenth century, setting the foundation for plant ecology and modern biogeography (Egerton 1970, Lomolino 2001). The “Flora de Perú” by Macbride (1936-

1970) was the most extensive and comprehensive botanical review for Peru until the late

1990s. In the 1990s Brako and Zarucchi published the “Catalogo de las Angiospermas y

Gimnospermas del Perú” (Brako and Zarucchi 1993), an invaluable annotated that updated understanding of the Peruvian flora and also increased understanding of endemism, species distributions and plant ecology. One of the last comprehensive contributions to the

Peruvian flora is the “Guía Ilustrada de Arboles de Perú”, where it was estimated that for

Peru there are approximately 6,350 tree species, a figure could increase by at least 10% with improved botanical knowledge (Pennington et al. 2004).

The Peruvian Andes began to have greater botanical exploration in the nineteenth century, with explorers, naturalists, and scientists such as Hugh Weddell, Augusto

Weberbauer and Antonio Raimondi. In the twentieth century, eminent Peruvian botanists were Fortunato L. Herrera and Cesar Vargas (León et al. 2006) as well as Ramón Ferreyra.

In the last decades there were multiple lists and additions to the flora of the Andes,

279 increasing our knowledge in the different groups of Gymnosperms and Angiosperms

(Galiano 1993, Vargas 1994, Ulloa Ulloa et al. 2004, Tupayachi H. 2005, León et al. 2006,

Rodríguez et al. 2006, Monteagudo Mendoza and Huamán 2010). To these are added the botanical campaigns carried out by the Missouri Botanical Garden and The Field

Museum of Natural History, especially with the publication of “Las Guías de Plantas

Tropicales” (http://fm2.fieldmuseum.org/plantguides/), a remarkable contribution led by

Robin Foster. Finally, A. Gentry made invaluable contributions to the exploration and understanding of the Andean flora, in particular, the book “A Field Guide to the Families and Genera of Woody Plants of North West : (Colombia, Ecuador, Peru).

Researchers, naturalists, and explorers have been accumulating extensive information about the flora in the Manu National Park since the 1970s, but have mainly concentrated in lowland forests, specifically in the areas surrounding Cocha Cashu

Biological Station and a guard post at Pakitza (Cano et al. 1995, Wilson and Sandoval

1996). An example of this information is the virtual platform of “Manu plants”

(http://manuplants.org/) in which 970 species of trees and from lowland forests are systematized. Recently, botanical information from the montane forests of Manu National

Park has been increasing, but in varied and limited ways, such as the multiple illustrated guides made by R. Foster (http://fm2.fieldmuseum.org/plantguides/) and the study of vegetation in the upper montane forest of the Manu National Park (Cano et al. 1995).

Recently, the platform Atrium (http://atrium.andesamazon.org/) is increasing the botanical knowledge in Manu Park with its biodiversity virtual online platform with free access.

Because of the limited botanical information for montane forests, and their central importance to understanding biodiversity, we present this annotated checklist of trees and

280 related functional groups for Manu Biosphere Reserve montane forests. The checklist is based on inventories from 21 1-ha permanent plots and multiple explorations in different locations in the Manu Biosphere. The aim is to increase understanding of the arborescent and related flora in megadiverse Neotropical ecosystems.

Methods

The study area is located in the Manu National Park (MNP) and its buffer zone, in the Andean region of Southeast Peru. MNP is one of the largest Peruvian protected areas

(1.7 million ha) and in 1987 it was declared a Natural Patrimony of Humanity by UNESCO

(Gamboa M. et al. 2013). The exceptional biodiversity of this protected area expands from the lowland rainforests at~ 200 m of elevation through the montane forests reaching the humid high-Andean at ~4000 m of elevation (Fig. 1). The climate in the park shows a marked seasonality with the presence of constant fog throughout the year. Annual precipitation is highly variable along the gradient, from > 5000 mm per year around 890 m of elevation through 2000m, decreasing to < 1000 mm per year at 4130 m of elevation.

Temperature decreases linearly along the elevational gradient in a range of 24 ° C to 7.7 °

C (Rapp 2010, Rapp and Silman 2012).

The checklist includes all individuals ≥ 10 cm in diameter at breast height measured at 1.3 m above the ground, including native species present in undisturbed montane forests.

Within the sampled functional groups are included trees, tree ferns, palms, and lianas. The checklist is drawn in large part from the network of 1 ha permanent plots established by the Andes Biodiversity and Ecosystem Research Group (ABERG;

281 http://www.andesconservation.org/) along an elevation gradient in the Manu National

Park. For the purposes of this publication, we included all records from the sub-montane forests at 800 m elevation to the tree line at 3625 m, based on 21 1-ha permanent plots and explorations in adjacent areas since 2003.

The studied material corresponds to the collections made in the permanent plots and adjacent areas, which are deposited in Peruvian herbaria (CUZ, HUT, MOL, USM) with duplicates in international herbaria (DAV, MO, F, WFU). The process of identification of this botanical material continues with the collaboration of different taxonomists belonging to several institutions. In this catalog, we used the species names recognized by the APG III (Angiosperm Phylogeny Group. 2009). The TNRS tool version

3.2 was used (http://tnrs.iplantcollaborative.org) for semantic correction, possible errors in writing and especially for the correction of false names (Boyle et al. 2013). For geographic distribution and altitudinal ranges, we used the websites of “Tropicos”

(http://www.tropicos.org), “Plant List” (http://www.theplantlist.org), JSTOR – Global

Plants (http://plants.jstor.org/), the biodiversity platform “Atrium”

(http://atrium.andesamazon.org/) and the “Global Biodiversity Information Facility -

GBIF” (http://www.gbif.org/) platform. Likewise, we used the Red Book of the Endemic

Plants of Peru (León et al. 2006) and the “A Regional Red List of Montane Tree Species of the Tropical Andes” (Tejedor Garavito et al. 2014) to catalog the endemic species.

282

Results and discussion

Preliminary results showed 95 families, 272 genera and 1108 species of trees and arborescent life forms, a high number of species considering the small number of plots and limited geographic distance of ~ 20 km along the gradient. Of the total species, 60.3%

(668 species) are identified at the species-level, 43% (287 species) of the determined species are new records for Cusco, 15 species are new records for Peruvian flora, 40 species are endemic for Peru and 30 are potentially new species for science. In addition, we extended the elevational range for 302 species (45.2%) of the determined species. Finally,

12 arboreal species were registered within the conservation category of "globally threatened" according to the red list of montane arboreal species in the Tropical Andes

(Tejedor Garavito et al. 2014), these species correspond to: Alchornea anamariae Secco,

Axinaea glandulosa Ruiz & Pav. ex D. Don, Ilex sessiliflora Triana & Planch., Brunellia brunnea J.F. Macbr., Brunellia inermis Ruiz & Pav., Freziera dudleyi A.H. Gentry,

Oreopanax ruizii Decne. & Planch. ex Harms, Persea brevipes Meisn., Prunus pleiantha

Pilg., Schefflera inambarica Harms, Sessea dependens Ruiz & Pav., Symplocos reflexa A.

DC. Most of the arboreal records showed above were found in the premontane to montane forest, approximately between 1000 - 2500 m elevation.

Before this study only one list of flowering plants that includes herbs, shrubs, and trees existed for the montane forest of Manu National Park, but the work was limited to families and genera (Cano et al. 1995). This makes this study an important contribution to the knowledge of the flora of the Manu National Park and the Neotropical montane forests in general. In the Table II - 1, the floristic information is systematized alphabetically, in the order of Pteridophyta, Gymnospermae y Angiospermae, and recorded by elevation

283 ranges. Likewise, the geographical distribution and endemism for Peru was recorded. The new records for Cusco are indicated with (*), the new records for Peruvian flora are indicated with (**), and the expansion of the distribution ranges is indicated with (^). In addition, potential new species are indicated with (&) which are being reviewed by the specialists and correspond to: Annonaceae [Guatteria (1), Rollinia (1), P. Mass],

Araliaceae [Dendropanax (1), Oreopanax (1), Schefflera (1), J. Wen com pers.], Ebenaceae

[Lissocarpa (1), R. Liesner], Euphorbiaceae [Alchornea (1), N. Hensold; Micrandra (1) K.

Wurdack], Lacistemataceae [Lozania (1), R. Liesner], Lauraceae [Endlicheria (1),

Nectandra (3), Ocotea (3), Persea (2), H. van der Werff com pers.], Melastomataceae

[Miconia (2), F. Michelangeli com pers.] Myrtaceae [Myrcia (1) L. Kawasaki], Moraceae

[Ficus (1)], Rubiaceae [Psychotria (2) C.M. Taylor com pers.], Sabiaceae [Meliosma (1),

R. Liesner], Sapotaceae [Chrysophyllum (1), Sarcaulus (1), R. Foster], Symplocaceae

[Symplocos (1)], Urticaceae [Cecropia (1)], Vochysiaceae [Vochysia (1), L. Kawasaki].

Of the total number of species found in the study area, 39.7% remain morphospecies, mainly because the collections are in a sterile state, making it difficult to identify them either by comparison in herbaria or using dichotomous keys. These (more than 400) morphospecies have the potential to belong to other taxa and can probably be new species for science. Lauraceae, Fabaceae, Melastomataceae y Cyatheaceae were the families that presented the highest number of morphospecies and are the families that deserve greater attention in their taxonomy. The results demonstrate how poorly studied these montane ecosystems are, in this case in terms of arboreal plants.

The shortage of botanical material in herbaria makes difficult to determine plant samples to species-level. For instance, Guatteria terminalis R.E. Fr. (SI Appendix – Fig.

284

S1) was collected for the first time in Puno by Lechler in August of 1854 at ~2000 m of elevation, and, after 149 years, we collected it again in the Manu National Park between

1800-2250 m elevation, taking five years to identify the specimen. Likewise, Clusiacae,

Primulaceae y Sabiaceae are the families poorly studied in montane forests because of the limited collections and the lack of taxonomic specialists. In SI Appendix (Fig. S1 - S3), illustrated guides with examples of endemic species are presented [Guatteria terminalis

(SI Appendix, Fig. S1), Cyathea multisegmenta y Ocotea glabriflora (SI Appendix, Fig.

S2) and Symplocos psiloclada (SI Appendix, Fig. S3)]; potential new species [Schefflera sp.1_158WHH (SI Appendix, Fig. S1)]; common species [Prunus integrifolia, Symplocos psiloclada, (SI Appendix, Fig. S3)] and Retrophyllum rospigliosii (SI Appendix, Fig. S3) as a rare species for the study area.

The montane forests of the Manu National Park are a natural repository that encompasses high biodiversity. These results, in particular, the potential new species, the new records for Peru and the expansion of elevational ranges, makes this natural laboratory one of the most important protected areas in Peru and will generate a comprehensive understanding of the distribution of species. In addition, continued studies in the montane areas of MNP will help to answer fundamental questions in biogeography and modern plant ecology, thus contributing to the conservation and protection policies of these Tropical

Andean ecosystems.

Is it important to continue collecting botanical samples?

More botanical collections are necessary. In the tropics, nine out of ten species are poorly collected with < 20 records (Feeley and Silman 2011), the scarcity of this basic but

285 fundamental information has large implications in the better understanding of species distributional patterns and species conservation. Likewise, the lack of records makes most species invisible to modern modeling of species distribution by limiting simulations in different scenarios of global warming. More efforts are needed to increase geo-referenced collections of plant species, that combined with the digitization of existing collections in herbaria and museums, the impact of climate change on tropical species can be predicted.

(Feeley et al. 2011, Feeley and Silman 2011).

The technological revolution in modern ecology, as is the case of remote sensing combined with foliar-level spectrometry data, now allows sampling (for the identification of tree species) of a set of species at multiple geographic scales, from the individual-level to the landscape-scale (Asner and Martin 2009, Silman 2014). However, these modern techniques are still limited by the presence of morphospecies in tropical forests.

Currently, thanks to multiple inventories and botanical collections, it is estimated that there are approximately 16,000 species of trees in the Amazon. Of these, at least 10,000 species are named, and only 5,000 of them were found in networks of permanent plots (ter

Steege et al. 2013). How many tree species exist across the Andes? It is a question that we are not able to answer yet due to the scarce and dispersed botanical and ecological information that exists in these majestic montane ecosystems.

286

Acknowledgments

This study was possible thanks to the support of “Andes Biodiversity and

Ecosystem Research Group (ABERG)”, the authors express their gratitude to the directors and curators of the different herbaria: Herbario Vargas (CUZ), Herbario del Museo de

Historia Natural- Universidad Nacional Mayor de San Marcos (USM), Herbario Nacional de Bolivia (LPB), al Field Museum (F) and the Missouri Botanical Garden Herbarium

(MO) for access to botanical collections. We thank to GBIF, JSTOR, TROPICOS, TNRS and to all the institutions that made it possible for botanical data to be available for publication. Special thanks to all students of the “Universidad Nacional de San Antonio

Abad del Cusco” for the extraordinary effort in the different field campaigns, especially to

Marlene Mamani, Darcy Galiano, Vicky Huamán, Juan A. Jibaja, Israel Cuba, Alex Nina,

W. Huaraca, Erickson Urquiaga, Tatiana Boza, Jhoel Delgado, A. Rozas, B.G. Valencia,

Carlos A. Salas, Rudy S. Cruz, Percy Chambi y Luis Imunda. To the “Dirección General de Gestión Sostenible del Patrimonio Forestal y de Fauna Silvestre (DGFFS)”, to “Servicio de Áreas Naturales Protegidas por el Estado (SERNANP)” and to the Manu National Park for the respective research authorizations and logistical support. To Pantiacolla tours,

“Asociación para la Conservación de la Cuenca Amazónica” and the “Albergue Gallito de las Rocas” for providing logistical support. Likewise, our recognition and thanks to Robin

Foster, Paul Mass, Ronald Liesner, Jun Wen, Kenneth Wurdack, Nancy Hensold, Henk van der Werff, Fabian A. Michelangeli, Lucia Kawasaki and Charlote M. Taylor for the help in the botanical identifications. Funding came from the Gordon and Betty Moore

Foundation’s Andes to Amazon initiative and the US National Science Foundation (NSF)

DEB 0743666.

287

Literature cited

Alvarez Lopez, E. 1953. Algunos aspectos de la obra de Ruiz y Pavon. Anales Inst. Bot.

Cavanilles 12:5–113.

Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group

classification for the orders and families of flowering plants: APG III. Botanical

Journal of the Linnean Society 161:105–121.

Asner, G. P., and R. E. Martin. 2009. Airborne spectranomics: mapping canopy chemical

and taxonomic diversity in tropical forests. Frontiers in Ecology and the

Environment 7:269–276.

Boyle, B., N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci,

M. L. Narro, W. H. Piel, S. J. McKay, S. Lowry, C. Freeland, R. K. Peet, and B. J.

Enquist. 2013. The taxonomic name resolution service: an online tool for automated

standardization of plant names. BMC bioinformatics 14:16.

Brako, L., and J. Zarucchi. 1993. Catálogo de las Angiospermas y Gimnospermas del

Perú. Monogr. Syst. Bot. Missouri Bot. Garden 45.

Cano, A., K. R. Young, B. Leon, and R. B. Foster. 1995. Composition and diversity of

flowering plants in the upper montane forest of Manu National Park, Southern Peru.

Pages 271–280 in S. P. Churchill, H. Balslev, E. Forero, and J. L. Luteyn, editors.

Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of the

Neotropical Montane Forest. New York Botanical Garden Pr Dept, United states of

America.

Egerton, F. N. 1970. Humboldt, Darwin, and Population. Journal of the History of

288

Biology 3:325–360.

Feeley, K. J., and M. R. Silman. 2011. The data void in modeling current and future

distributions of tropical species. Global Change Biology 17:626–630.

Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. G. Cabrera, Y. Malhi, P. Meir, N.

S. Revilla, M. N. R. Quisiyupanqui, and S. Saatchi. 2011. Upslope migration of

Andean trees. Journal of Biogeography 38:783–791.

Galiano, S. . W. 1993. Diversidad Biológica en los Andes Sur-Orientales. Rev.

Q’ente.CC. BB. Cusco.

Gamboa M., P., C. E. Cabello M., and R. A. Valdivia P. 2013. Plan Maestro del Parque

Nacional del Manu - Periodo 2013-2018.

León, B., J. Roque, C. Ulloa Ulloa, N. Pitman, P. M. Jørgensen, and A. Cano. 2006. El

libro rojo de las plantas endémicas del Perú. Revista Peruana de Biología 13:1–965.

Lomolino, M. V. 2001. Elevation gradients of species-density: historical and prospective

views. Global Ecology and Biogeography 10:3–13.

Monteagudo Mendoza, A. L., and M. Huamán Guerrero. 2010. Catálogo de los arboles y

afines de la Selva Central del Perú. Arnaldoa 17:203–242.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000.

Biodiversity hotspots for conservation priorities. Nature 403:5.

Pennington, T. D., C. Reynel, and A. Daza. 2004. Illustrated guide to the Trees of Peru.

Page (T. D. Pennington, C. Reynel, and A. Daza, Eds.). David Hunt, Sherborne, UK.

Rapp, J. 2010. Climate control on plant performance across an Andean altitudinal

gradient. Dissertation, Wake Forest University, Winston Salem, North Carolina,

289

USA.

Rapp, J. M., and M. R. Silman. 2012. Diurnal, seasonal, and altitudinal trends in

microclimate across a tropical montane cloud forest. Climate Research 55:17–32.

Rodríguez, E. F., R. Vásquez, R. Rojas, G. Calatayud, B. Leon, and J. Campos. 2006.

Nuevas adiciones de angiospermas a la flora del Perú. Revista Peruana de Biología

13:129–138.

Silman, M. R. 2014. Functional megadiversity. Proceedings of the National Academy of

Sciences of the United States of America 111:5763–4. ter Steege, H., N. C. A. Pitman, D. Sabatier, C. Baraloto, R. P. Salomão, J. E. Guevara,

O. L. Phillips, C. V Castilho, W. E. Magnusson, J.-F. Molino, A. Monteagudo, P.

Núñez Vargas, J. C. Montero, T. R. Feldpausch, E. N. H. Coronado, T. J. Killeen, B.

Mostacedo, R. Vasquez, R. L. Assis, J. Terborgh, F. Wittmann, A. Andrade, W. F.

Laurance, S. G. W. Laurance, B. S. Marimon, B.-H. Marimon, I. C. Guimarães

Vieira, I. L. Amaral, R. Brienen, H. Castellanos, D. Cárdenas López, J. F.

Duivenvoorden, H. F. Mogollón, F. D. de A. Matos, N. Dávila, R. García-Villacorta,

P. R. Stevenson Diaz, F. Costa, T. Emilio, C. Levis, J. Schietti, P. Souza, A. Alonso,

F. Dallmeier, A. J. D. Montoya, M. T. Fernandez Piedade, A. Araujo-Murakami, L.

Arroyo, R. Gribel, P. V. A. Fine, C. A. Peres, M. Toledo, G. A. Aymard C, T. R.

Baker, C. Cerón, J. Engel, T. W. Henkel, P. Maas, P. Petronelli, J. Stropp, C. E.

Zartman, D. Daly, D. Neill, M. Silveira, M. R. Paredes, J. Chave, D. de A. Lima

Filho, P. M. Jørgensen, A. Fuentes, J. Schöngart, F. Cornejo Valverde, A. Di Fiore,

E. M. Jimenez, M. C. Peñuela Mora, J. F. Phillips, G. Rivas, T. R. van Andel, P. von

Hildebrand, B. Hoffman, E. L. Zent, Y. Malhi, A. Prieto, A. Rudas, A. R. Ruschell,

290

N. Silva, V. Vos, S. Zent, A. A. Oliveira, A. C. Schutz, T. Gonzales, M. Trindade

Nascimento, H. Ramirez-Angulo, R. Sierra, M. Tirado, M. N. Umaña Medina, G.

van der Heijden, C. I. A. Vela, E. Vilanova Torre, C. Vriesendorp, O. Wang, K. R.

Young, C. Baider, H. Balslev, C. Ferreira, I. Mesones, A. Torres-Lezama, L. E.

Urrego Giraldo, R. Zagt, M. N. Alexiades, L. Hernandez, I. Huamantupa-

Chuquimaco, W. Milliken, W. Palacios Cuenca, D. Pauletto, E. Valderrama

Sandoval, L. Valenzuela Gamarra, K. G. Dexter, K. Feeley, G. Lopez-Gonzalez, and

M. R. Silman. 2013. Hyperdominance in the Amazonian tree flora. Science (New

York, N.Y.) 342:1243092.

Tejedor Garavito, N., E. Álvarez Dávila, S. Arango Caro, A. Araujo Murakami, A.

Baldeón, H. Beltrán, C. Blundo, T. E. Boza Espinoza, A. Fuentes Claros, J. Gaviria,

N. Gutiérrez, S. Khela, B. León, M. A. La Torre Cuadros, R. López Camacho, L.

Malizia, B. Millán, M. R. Moraes, A. C. Newton, S. Pacheco, C. Reynel, C. Ulloa

Ulloa, and O. Vacas Cruz. 2014. A Regional Red List of Montane Tree Species of

the Tropical Andes: Trees at the top of the world.

Tupayachi H., A. 2005. Flora de la Cordillera de Vilcanota. Arnaldoa 12:126–144.

Ulloa Ulloa, C., J. L. Y. Zarucchi, and B. León. 2004. Diez años de adiciones a la flora

del Perú: 1993-2003. Arnaldoa Edición Especial Nov.2004:1–142.

Vargas, C. 1994. Flora del Sur del Peru: Catálogo Sistemático del Herbario Vargas

(CUZ). FCB - UNSAAC. GTZ:393 pp.

Wilson, D. E., and A. Sandoval. 1996. Manu - The Biodiversity of Southeastern Peru.

291

Table V - 1. List of trees and arborescent species.

K. Garcia, et al. 153 (CUZ, MO) PTERIDOPHYTA AM, CA, CU, PA, PU, SM Cyathea multisegmenta R.M. Tryon 1800 - 2250 m. Endémico CYATHEACEAE Kaulf. K. Garcia, et al. 208 (CUZ, HUT, Alsophila cuspidata (Kunze) D.S. MO, USM, WFU) Conant CU, PA 1250 - 2250 m. ^ Cyathea pallescens (Sodiro) Domin K. Garcia, et al. 741 (CUZ, 2890 - 3450 m. * ^ MOL) K. Garcia, et al. 145 (CUZ, MO, AM, CU, HU, LO, MD, PA, PU, USM, WFU) UC AM, JU, PA, SM, UC Alsophila erinacea (H. Karst.) D.S. Cyathea ruiziana Klotzsch Conant 2250 m. Endémico 1250 - 2500 m. K. Garcia, et al. 625 (CUZ) K. Garcia, et al. 211 (CUZ, MO, CU, JU, PA, SM USM, WFU) Cyathea sp1(238KGC) CA, CU, MD, PA, SM 2250 - 3000 m. Alsophila sp1(743KGC) K. Garcia, et al. 238 (CUZ, MO) 1250 m. Cyathea sp10(1568KGC) K. Garcia, et al. 743 (CUZ, 2500 m. USM) K. Garcia, et al. 1568 (USM) Alsophila sp2(953KGC) Cyathea sp11(1567KGC) 1750 m. 2500 m. K. Garcia, et al. 953 (USM) K. Garcia, et al. 1567 (USM) Cyathea andina (H. Karst.) Domin Cyathea sp12(1597KGC) 850 m. * 2250 m. W. Farfan, et al. 5563 (CUZ) K. Garcia, et al. 1597 (USM) JU, LO, MD, PA Cyathea sp13(726KGC) Cyathea caracasana (Klotzsch) Domin 1250 - 1500 m. 2000 - 3250 m. K. Garcia, et al. 726 (USM) K. Garcia, et al. 140 (CUZ, MO) Cyathea sp14(571KGC) AM, CA, CU, JU, PA, SM 1500 m. Cyathea delgadii Sternb. K. Garcia, et al. 571 (USM) 2250 - 3250 m. Cyathea sp15(1043KGC) K. Garcia, et al. 147 (CUZ, HUT, 1500 - 1750 m. MO, USM, WFU) K. Garcia, et al. 1043 (USM) AM, CA, CU, HU, JU, MD, PA, Cyathea sp16(1225KGC) SM 1500 m. Cyathea divergens Kunze K. Garcia, et al. 1225 (USM) 2500 - 3450 m. ^ Cyathea sp17(1131KGC) K. Garcia, et al. 146 (CUZ, MO) 1500 m. CU, JU, PA K. Garcia, et al. 1131(USM) Cyathea lechleri Mett. Cyathea sp18(922KGC) 1800 - 2750 m. 1500 - 1750 m. 292

K. Garcia, et al. 922 (USM) 2250 m. Cyathea sp19(354KGC) K. Garcia, et al. 1605 (USM) 800 - 1500 m. Cyathea sp9(1610KGC) K. Garcia, et al. 354 (USM) 2250 - 2500 m. Cyathea sp2(242KGC) K. Garcia, et al. 1610 (USM) 3000 m. Cyathea squamipes H. Karst. K. Garcia, et al. 242 (CUZ, 2000 - 2250 m. DAV, HUT, MO, USM, WFU) K. Garcia, et al. 213 (CUZ, MO, Cyathea sp20(940KGC) USM, WFU) 1750 m. AM, CA, CU, PA K. Garcia, et al. 940 (USM) Cyathea sp21(977KGC) DICKSONIACEAE M.R. Schomb. 1750 m. Dicksonia sellowiana Hook. K. Garcia, et al. 977 (USM) 2250 - 3000 m. Cyathea sp22(170KGC) K. Garcia, et al. 162 (CUZ, MO) 800 - 2500 m. AM, CA, CU, HU, PA, SM K. Garcia, et al. 170 (CUZ, MO) Cyathea sp23(220KGC) 1250 - 2250 m. GYMNOSPERMAE K. Garcia, et al. 220 (CUZ, MO, USM, WFU) Cyathea sp24(157KGC) PODOCARPACEAE Endl. 2500 m. Podocarpus oleifolius D. Don ex Lamb. K. Garcia, et al. 157 (CUZ, 1800 - 3000 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 3322 (CUZ, Cyathea sp25(209KGC) USM, WFU) 800 - 2890 m. AM, CA, CU, HU, JU, LO, PA, K. Garcia, et al. 209 (CUZ, MO) SM Cyathea sp3(180KGC) Prumnopitys harmsiana (Pilg.) de Laub. 1800 - 2000 m. 1250 - 1500 m. K. Garcia, et al. 180 (CUZ, MO, W. Farfan, et al. 1633 (CUZ, F, USM) USM) Cyathea sp4(156KGC) AY, CA, CU, JU, PA, SM 2250 - 2750 m. Retrophyllum rospigliosii (Pilg.) C.N. K. Garcia, et al. 156 (CUZ, MO) Page Cyathea sp5(230KGC) 1500 - 1750 m. * 2000 m. K. Garcia, et al. 932 (CUZ, F, K. Garcia, et al. 230 (CUZ, MO, USM) USM, WFU) JU, LI, PA Cyathea sp6(151KGC) 2750 - 3000 m. K. Garcia, et al. 151 (MO, USM) Cyathea sp7(1645KGC) 1800 m. K. Garcia, et al. 1645 (USM) ANGIOSPERMAE Cyathea sp8(1605KGC)

293

W. Farfan, et al. 4128 (MOL, ACTINIDIACEAE Gilg & Werderm. WFU) Saurauia glabra (Ruiz & Pav.) Soejarto AM, CU, HU, JU, LO, MD, PA, 1750 m. * ^ SM, UC K. Garcia, et al. 1051 (USM, Tapirira obtusa (Benth.) J.D. Mitch. WFU) 1500 - 1750 m. * ^ CA, PA K. Garcia, et al. 1119 (CUZ, F, Saurauia peruviana Buscal. MO, USM) 1500 - 1750 m. * AM, LO, MD, PA, SM K. Garcia, et al. 1084 (USM, Tapirira sp1(4573WFR) WFU) 1250 - 1800 m. AM, CA, LL, PA, SM W. Farfan, et al. 4573 (MOL, Saurauia sp3(2547WFR) WFU) 1750 m. W. Farfan, et al. 2547 (CUZ, F, ANNONACEAE Juss. USM, WFU) Annona excellens R.E. Fr. 850 m. * ^ ADOXACEAE E. Mey. W. Farfan, et al. 5467 (CUZ) Viburnum ayavacense Kunth LO, MD, SM 1500 - 2250 m. * ^ Annona papilionella (Diels) H. Rainer W. Farfan, et al. 1016 (CUZ, F, 1250 - 1500 m. ^ MO, USM) K. Garcia, et al. 628 (CUZ, CA, JU, LA, PI USM, F, WFU) Viburnum hallii (Oerst.) Killip & A.C. AM, CU, HU, LO, MD, PA, SM, Sm. UC 1500 - 2250 m. Annona williamsii (Rusby ex R.E. Fr.) K. Garcia, et al. 1030 (CUZ, F, H. Rainer USM) 1250 - 1500 m. ^ AM, CA, CU, HU, U, PA W. Farfan, et al. 3977 (CUZ, F, Viburnum reticulatum (Ruiz & Pav. ex USM, WFU) Oerst.) Killip CU, SM, MD 2890 - 3000 m. * ^ Guatteria dielsiana R.E. Fr. W. Farfan, et al. 4683 (MOL, 850 m. ^ WFU) W. Farfan, et al. 5463 (CUZ) AM, CA, SM CU, LO, MD, SM, UC Guatteria duodecima Maas & Westra ALZATEACEAE S.A. Graham 1250 - 1750 m. * ^ Alzatea verticillata Ruiz & Pav. W. Farfan, et al. 1585 (CUZ, F, 1750 - 2250 m. ^ USM, WFU) W. Farfan, et al. 1102 (CUZ, LO, MD, PA, SM MO, USM) Guatteria glauca Ruiz & Pav. CA, CU, JU, PA, UC 1500 - 1800 m. W. Farfan, et al. 1071 (CUZ, F, ANACARDIACEAE R. Br. USM, WFU) Aubl. AM, CA, CU, HU, LO, MD, PA, 800 - 1000 m. ^ SM

294

Guatteria guentheri Diels K. Garcia, et al. 587 (CUZ, F, 1250 m. ^ USM, WFU) K. Garcia, et al. 793 (CUZ, F, PA, PU USM, WFU) Klarobelia napoensis Chatrou CU, LO, MD, PA, PU 1250 m. * Guatteria sp1(1536WFR) W. Farfan, et al. 2289 (CUZ, F, 800 - 1000 m. USM, WFU) W. Farfan, et al. 1536 (CUZ, F, AM, LO, SM USM, WFU) Porcelia ponderosa (Rusby) Rusby Guatteria sp12(1129KGC) 1000 - 1500 m. 1500 m. W. Farfan, et al. 1614 (CUZ, F, K. Garcia, et al. 1129 (USM, USM, WFU) WFU) CU, MD, HU, LO Guatteria sp14(3151WFR) Rollinia andicola Maas & Westra 2250 m. 1500 - 2250 m. * ^ W. Farfan, et al. 3151 (MOL, W. Farfan, et al. 1065 (CUZ, F, WFU) USM, WFU) Guatteria sp15(3257WFR) AM, CA, PA, PI, SM 1000 m. Rollinia cuspidata Mart. W. Farfan, et al. 3257 (MOL, 1250 m. ^ WFU) W. Farfan, et al. 4096 (CUZ, F, Guatteria sp2(1180WFR) USM, WFU) 2000 m. AM, CU, LO, MD, PA, SM, UC W. Farfan, et al. 1180 (CUZ, Rollinia sp1(1138WFR) MO) 2250 m. & Guatteria sp3(3152WFR) W. Farfan, et al. 1138 (CUZ, 2250 m. MO, F, USM) W. Farfan, et al. 3152 (MOL, sp1(1934WFR) sp1(1934WFR) WFU) 1250 m. Guatteria sp6(2216WFR) W. Farfan, et al. 1934 (CUZ, 1500 - 1750 m. & MO, F, USM) W. Farfan, et al. 2216 (CUZ, F, Unonopsis guatterioides R.E. Fr. USM, WFU) 1250 - 1500 m. * ^ Guatteria terminalis R.E. Fr. K. Garcia, et al. 593 (CUZ, MO, 1800 - 2250 m. * ^ F, USM) W. Farfan, et al. 1112 (CUZ, AM, HU, LO, MD, SM, UC DAV, HUT, MO, USM, WFU) Unonopsis spectabilis Diels PU 850 m. * ^ Guatteria tomentosa Rusby W. Farfan, et al. 5454 (CUZ) 1500 m. AM, HU, LO, PA, PU, SM, UC W. Farfan, et al. 2260 (CUZ, F, Xylopia benthamii R.E. Fr. USM, WFU) 1000 m. CU, LO, MD, PA, SM, UC W. Farfan, et al. 1502 (CUZ, Guatteria ucayalina Huber MO) 1500 - 1750 m. * ^ CU, LI, LO, MD, PU, UC Xylopia calophylla R.E. Fr.

295

800 m. * AQUIFOLIACEAE Bercht. & J. Presl W. Farfan, et al. 1298 (CUZ, Ilex aggregata (Ruiz & Pav.) Loes. MO, F, USM) 1800 - 2250 m. * ^ LO, MD, PA W. Farfan, et al. 1113 (CUZ, MO, USM) APOCYNACEAE Juss. HU, PA Aspidosperma excelsum Benth. Ilex biserrulata Loes. 850 m. * 2750 - 3000 m. * ** ^ W. Farfan, et al. 5496 (USM) J. E. Silva, et al. 642 (CUZ, MO, AM, LO, MD, PA, SM, TU USM) Aspidosperma parvifolium A. DC. Ilex gabrielleana Loizeau & Spichiger 850 m. * 1500 - 1750 m. * ^ W. Farfan, et al. 5488 (CUZ) K. Garcia, et al. 939 (USM, MO) AM, LO, MD, SM, UC LO, AM, SM, PA Aspidosperma rigidum Rusby Ilex guayusa Loes. 800 - 1000 m. ^ 2500 m. * ^ W. Farfan, et al. 1397 (CUZ, W. Farfan, et al. 947 (CUZ, MO, MO, WFU) USM, WFU) AM, CU, HU, LO, MD, UC AM, CA, LA, LO, MD, PA, PU Aspidosperma sp1(698KGC) Ilex karstenii Loes. 1250 - 1500 m. 3450 m. * ^ K. Garcia, et al. 698 (CUZ, F, W. Farfan, et al. 2967 (USM, USM) WFU) Aspidosperma sp2(2078WFR) CA 1250 m. Ilex laurina Kunth W. Farfan, et al. 2078 (CUZ, F) 2250 - 2500 m. * Aspidosperma sp4(5478WFR) W. Farfan, et al. 3086 (CUZ, F, 850 m. USM, WFU) W. Farfan, et al. 5478 (CUZ) AM, CA, MD, PA, SM Lacmellea peruviana (Van Heurck & Ilex microdonta Reissek Müll. Arg.) Markgr. 1800 - 2000 m. * ** 800 - 1250 m. * ^ W. Farfan, et al. 1099 (CUZ, W. Farfan, et al. 1873 (CUZ, F, MO, USM, WFU) USM, WFU) Ilex nayana Cuatrec. AM, HU, LO, PA, SM 800 - 1000 m. * ^ Rauvolfia leptophylla A.S. Rao W. Farfan, et al. 1325 (CUZ, F, 1500 m. USM, WFU) K. Garcia, et al. 1236 (CUZ, F, LO USM, WFU) Ilex nervosa Triana CU, LO, PA 1750 - 2250 m. Rauvolfia sprucei Müll. Arg. K. Garcia, et al. 1093 (CUZ, F, 1000 - 1500 m. USM, WFU) W. Farfan, et al. 3949 (CUZ, F, AN, CA, CU, SM USM, WFU) Ilex sessiliflora Triana & Planch. AM, CU, HU, LO, MD, PA, SM 3000 - 3450 m. ^

296

W. Farfan, et al. 836 (CUZ, K. Garcia, et al. 328 (CUZ, MO, DAV, HUT, MO, USM, WFU) USM) CU, HU, PA AM, CU, HU, LO, PA, SM Ilex sp1(1157WFR) Dendropanax weberbaueri (Harms) 2000 m. Harms W. Farfan, et al. 1157 (CUZ, 1500 - 1750 m. Endémico ^ HUT, MO, USM, WFU) M. N. Raurau, et al. 1429 (MOL) Ilex sp8(1028KGC) CU, HU, LO 1750 m. Dendropanax williamsii (Harms) Harms K. Garcia, et al. 1028 (CUZ, F, 1500 - 1750 m. Endémico ^ USM, WFU) K. Garcia, et al. 425 (CUZ, F, Ilex trichoclada Loes. USM, WFU) 3450 m. * ** CU, PA, SM W. Farfan, et al. 853 (CUZ, Oreopanax capitatus (Jacq.) Decne. & HUT, MO, USM, WFU) Planch. Ilex villosula Loes. 1750 - 2250 m. 1800 - 2000 m. Endémico* W. Farfan, et al. 1149 (CUZ, F, W. Farfan, et al. 985 (CUZ, USM, WFU) DAV, HUT, MO, USM, WFU) CU, AM, JU, SM, PA, LO AM, HU, LL, PA, PU Oreopanax kuntzei Harms 3450 m. * ** ^ ARALIACEAE Juss. W. Farfan, et al. 856 (CUZ, MO, Dendropanax arboreus (L.) Decne. & USM, WFU) Planch. Oreopanax microflorous Borchs. 1000 - 1500 m. * ^ 2250 - 3000 m. * ^ K. Garcia, et al. 317 (CUZ, F, W. Farfan, et al. 939 (CUZ, MO, USM, WFU) USM) AM, JU, LO, MD, PA, PU, SM CA Dendropanax cuneatus (DC.) Decne. & Oreopanax ruizii Decne. & Planch. ex Planch. Harms 1250 - 1750 m. * ^ 3625 m. K. Garcia, et al. 401 (CUZ, F, A. Nina, et al. 75 (CUZ) USM, WFU) CU HU, LO, MD, SM, UC Oreopanax sp1(29ANQ) Dendropanax sp1(1017WFR) 3537 m. 1500 - 2250 m. & A. Nina, et al. 29 (CUZ) W. Farfan, et al. 1017 (CUZ, Oreopanax sp2(159WHH) DAV, HUT, MO, USM, WFU) 2500 - 3000 m. & Dendropanax sp5(4748WFR) W. Huaraca, et al. 159 (CUZ, 1250 m. MO, USM) W. Farfan, et al. 4748 (MOL, Oreopanax sp3(2102WFR) WFU) 1500 m. Dendropanax umbellatus (Ruiz & Pav.) W. Farfan, et al. 2102 (CUZ, F, Decne. & Planch. USM, WFU) 1000 - 1250 m. ^ Oreopanax sp4(4688WFR) 2890 m.

297

W. Farfan, et al. 4688 (MOL, 2000 m. WFU) W. Farfan, et al. 1170 (CUZ, Schefflera acuminata (Ruiz & Pav.) MO, USM) Harms Dictyocaryum lamarckianum (Mart.) H. 1750 m. Wendl. W. Farfan, et al. 4919 (MOL) 1250 - 1800 m. * CA, CU, HU, JU, PA W. Farfan, et al. 1038 (CUZ) Schefflera allocotantha (Harms) Frodin PA, MD, SM 1800 - 3250 m. * ** ^ Euterpe precatoria Mart. A. R. Davila, et al. 36 (CUZ, 800 - 1500 m. * DAV, HUT, MO, USM, WFU) W. Farfan, et al. 1311 (CUZ, F) Schefflera inambarica Harms AM, CA, LO, JU, MD, PA, SM, 2000 - 2250 m. UC W. Farfan, et al. 3122 (CUZ, F, Geonoma undata Klotzsch USM, WFU) 3000 m. ^ CU, JU, PA, PU K. Garcia, et al. 1515 (CUZ, F, Schefflera morototoni (Aubl.) Maguire, USM) Steyerm. & Frodin AM, CA, CU, HU, MD, PA, SM 1250 m. ^ Iriartea deltoidea Ruiz & Pav. K. Garcia, et al. 745 (CUZ, F, 1000 - 1500 m. USM, WFU) W. Farfan, et al. 2351 (CUZ, F, AM, CU, HU, JU, LO, MD, SM, USM) UC AM, CU, HU, JU, LO, MD, PA, Schefflera patula (Rusby) Harms SM, UC 1800 - 2250 m. Socratea exorrhiza (Mart.) H. Wendl. W. Farfan, et al. 3338 (CUZ, F, 1000 - 1250 m. * ^ USM, WFU) W. Farfan, et al. 1955 (CUZ, F) AM, CA, CU, CU, LO, PA, PU, AM, JU, LO, MD, PA, SM SM Schefflera sp1(158WHH) ASTERACEAE Bercht. & J. Presl 3000 - 3250 m. & Ageratina sp1(156WHH) W. Huaraca, et al. 158 (CUZ, 3000 m. DAV, HUT, MO, USM, WFU) W. Huaraca, et al. 156 (CUZ, Schefflera sprucei Harms DAV, HUT, MO, USM, WFU) 850 m. Ageratina sp2(4609WFR) W. Farfan, et al. 5497 (USM) 3000 m. AM, CU, LO, MD, PA, PU, SM, W. Farfan, et al. 4609 (MOL, UC WFU) Baccharis oblongifolia (Ruiz & Pav.) ARECACEAE Bercht. & J. Presl Pers. Bactris setulosa H. Karst. 3000 m. * 1500 m. * ^ W. Farfan, et al. 1249 (CUZ, F, W. Farfan, et al. 2750 (USM, USM) WFU) AM, CA, PA AM, CA, PA, SM Baccharis salicifolia (Ruiz & Pav.) Pers. Ceroxylon sp1(1170WFR) 2890 m.

298

W. Farfan, S.N. (CUZ) AM, AN, AP, CA, CU, HU, JU, AM, AN, AP, AR, CA, CU, HU, LL, LI, PA, PI, PU, TA LL, LI, LA, MD, PA, SM, UC Barnadesia caryophylla (Vell.) S.F. BIGNONIACEAE Juss. Blake Jacaranda copaia (Aubl.) D. Don 1250 m. * 800 m. ^ W. Farfan, et al. 1928 (CUZ, F, W. Farfan, et al. 1554A (CUZ, F, USM) USM) AM, JU, PA, PU AM, CU, HU, LO, MD, PA, SM, Gynoxys nitida Muschl. UC 3537 - 3625 m. Jacaranda glabra (A. DC.) Bureau & K. A. Nina, et al. 120 (CUZ) Schum. AN, AY, CU, LI, JU, PA 1000 - 1500 m. Nordenstamia repanda (Wedd.) Lundin K. Garcia, et al. 1268 (CUZ, F, 3250 - 3450 m. USM, WFU) W. Farfan, et al. 858 (CUZ, AM, AY, CU, HU, LO, MD, PA, DAV, HUT, MO, USM, WFU) PU, SM, UC CU, PU Nordenstamia sp1(817WFR) BORAGINACEAE Juss. 3250 - 3450 m. Cordia mexiana I.M. Johnst. W. Farfan, et al. 817 (CUZ, 1250 m. * ^ USM, WFU) W. Farfan, et al. 2328 (CUZ, F, Pentacalia oronocensis (DC.) Cuatrec. USM, WFU) 3000 - 3450 m. AM, LO, MD, PU, SM W. Huaraca, et al. 153 (CUZ, Cordia panamensis L. Riley DAV, HUT, MO, USM, WFU) 1500 m. * ** AM, CA, CU, HU, PA W. Farfan, et al. 2725 (CUZ, F, Pentacalia sp1(37ANQ) USM, WFU) 3537 m. Cordia scabrifolia A. DC. A. Nina, et al. 37 (CUZ) 1000 m. * ^ Piptocarpha lechleri (Sch. Bip.) Baker W. Farfan, et al. 1497 (CUZ, F, 1500 m. ^ USM) K. Garcia, et al. 1245 (F, USM) LO, MD, SM AM, CU, JU, MD, UC Cordia sp5(1484AWFR) Piptocarpha poeppigiana (DC.) Baker 1000 m. 800 m. W. Farfan, et al. 1484 (CUZ, F, W. Farfan, et al. 1391 (CUZ, F, USM) USM) Cordia sp6 AM, CU, HU, JU, LO, MD, PA, 1500 m. SM, UC W. Farfan S.N. (CUZ) Cordia trachyphylla Mart. BETULACEAE Gray 800 - 1000 m. * ^ Alnus acuminata Kunth W. Farfan, et al. 3293 (CUZ, F, 2250 - 2500 m. USM) W. Farfan S.N. (CUZ) LO

299

Cordia ucayaliensis (I.M. Johnst.) I.M. CU, PA Johnst. 850 m. BURSERACEAE Kunth W. Farfan, et al. 5500 (CUZ) Dacryodes peruviana (Loes.) H.J. Lam AM, CA, CU, HU, LO, MD, 850 m. * PA, PU, SM, UC W. Farfan, et al. 5507 (CUZ) AM, HU, LO, MD, PA, SM BRUNELLIACEAE Engl. Dacryodes sp1(621KGC) Brunellia boliviana Britton ex Rusby 1500 m. 3250 - 3450 m. ^ K. Garcia, et al. 621 (CUZ, F, W. Farfan, et al. 829 (CUZ, MO, USM, WFU) USM, WFU) Protium altsonii Sandwith CU 800 m. * Brunellia brunnea J.F. Macbr. W. Farfan, et al. 1285 (CUZ, 2000 m. ^ MO, USM, WFU) W. Farfan, et al. 1181 (CUZ, LO, PA, SM MO, USM, WFU) Protium decandrum (Aubl.) Marchand CU, JU, SM 800 - 1500 m. * ^ Brunellia cuzcoensis Cuatrec. W. Farfan, et al. 1278 (CUZ, 3000 m. Endémico MO, USM, WFU) J. E. Silva, et al. 638 (CUZ, LO, AM DAV, HUT, MO, USM, WFU) Protium glabrescens Swart CU 1500 - 1750 m. * ^ Brunellia dulcis J.F. Macbr. W. Farfan, et al. 4171 (MOL, 2250 m. Endémico* WFU) W. Farfan, et al. 1082 (CUZ, AM, LO, MD, PA, SM MO, USM, WFU) Protium hebetatum D.C. Daly CA, PA 800 m. Brunellia inermis Ruiz & Pav. W. Farfan, et al. 1232 (CUZ, 2500 - 3450 m. * ^ MO, USM, WFU) W. Farfan, et al. 843 (CUZ, MO, LO, PA USM, WFU) Protium montanum Swart CA, HU, JU, PA 1250 - 1800 m. ^ Brunellia littlei Cuatrec. W. Farfan, et al. 1014 (CUZ, 2000 m. * ** MO, USM, WFU) W. Farfan, et al. 1130 (CUZ, CU MO, USM, WFU) Protium opacum cf. Swart Brunellia stenoptera Diels 800 m. ^ 1500 m. * ^ W. Farfan, et al. 1400 (CUZ, F, K. Garcia, et al. 1134 (CUZ, F, USM, WFU) USM, WFU) AM, CU, HU, LO, MD, PA, PU, JU SM Brunellia weberbaueri Loes. Protium plagiocarpium Benoist 2750 m. Endémico ^ 800 m. * ^ W. Farfan, et al. 892 (CUZ, W. Farfan, et al. 1394 (CUZ, DAV, HUT, MO, USM, WFU) MO, USM, WFU)

300

LO, MD Styloceras brokawii A.H. Gentry & R.B. Protium rhynchophyllum (Rusby) D.C. Foster Daly 1500 m. * ^ 1500 - 1750 m. K. Garcia, et al. 1271 (CUZ, F, K. Garcia, et al. 1665 (CUZ, F, USM, WFU) USM, WFU) MD LO, MD Protium sagotianum Marchand CALOPHYLLACEAE J. Agardh 850 m. * ^ Calophyllum brasiliense Cambess. W. Farfan, et al. 5523 (CUZ) 850 m. * AM, LO, MD, SM, UC W. Farfan, et al. 5526 (CUZ) Protium sp1(1040WFR) AM, LO, MD, PA, SM 1750 - 1800 m. Marila laxiflora Rusby W. Farfan, et al. 1040 (CUZ, 1250 m. ^ MO, USM, WFU) W. Farfan, et al. 4150 (MOL, Protium sp2(973KGC) WFU) 1750 m. AM, CU, HU, LO, MD, PA, K. Garcia, et al. 973 (CUZ, PU, SM USM, WFU) Marila sp1(5532WFR) Protium spruceanum (Benth.) Engl. 850 m. 1500 m. * ^ W. Farfan, et al. 5532 (CUZ) W. Farfan, et al. 4793 (MOL, WFU) CAMPANULACEAE Juss. AM, LO, MD, PA Centropogon sp1 Tetragastris panamensis (Engl.) Kuntze 3537 m. 850 m. * W. Farfan S.N. (CUZ) W. Farfan, et al. 5507A (USM) Siphocampylus vatkeanus Zahlbr. AM, JU, LO, MD, PA, SM, UC 3625 m. ^ Trattinnickia boliviana (Swart) D.C. A. Nina, et al. 81 (CUZ) Daly CU, PU 800 m. * ^ W. Farfan, et al. 2014 (CUZ, F, CANNABACEAE Martinov USM, WFU) Trema micrantha (L.) Blume AM, PA 1250 - 1500 m. Trattinnickia burserifolia Mart. W. Farfan, et al. 1589 (CUZ, F, 800 - 1750 m. * ^ USM, WFU) W. Farfan, et al. 1293 (CUZ, AM, AP, CA, CU, HU, JU, LO, MO, USM, WFU) MD, PA, SM, UC, TU LO, MD Trattinnickia glaziovii Swart CARDIOPTERIDACEAE Blume 800 m. * ^ Citronella incarum (J.F. Macbr.) R.A. W. Farfan, et al. 1260 (CUZ, Howard WFU) 1500 m. LO, MD, PA K. Garcia, et al. 1284 (CUZ, F, USM, WFU) BUXACEAE Dumort.

301

AM, CA, CU, HU, LO, MD, PA, Cheiloclinium cognatum (Miers) A.C. PI, PU, SM, UC Sm. Dendrobangia boliviana Rusby 1500 m. * 800 m. * K. Garcia, et al. 619 (CUZ, F, W. Farfan, et al. 1319 (CUZ, F, USM, WFU) USM, WFU) AM, HU, JU, LI, LO, MD, PA, AM, LO, MD, PA, SM SM, UC Dendrobangia sp1(1905WFR) Maytenus ebenifolia Reissek 1250 m. 1250 m. W. Farfan, et al. 1905 (CUZ, F, K. Garcia, et al. 756 (CUZ, F, USM) USM, WFU) CU, JU, HU CARICACEAE Dumort. Maytenus macrocarpa (Ruiz & Pav.) Jacaratia digitata (Poepp. & Endl.) Briq. Solms 1250 m. * 1250 - 1500 m. W. Farfan, et al. 3391A (CUZ, W. Farfan, et al. 1776 (CUZ, F, USM) USM) AM, HU, LO, MD, PA, SM, TU AM, CU, JU, HU, LO, MD, PA, Maytenus sp1(5536WFR) PI, SM 850 m. W. Farfan, et al. 5536 (CUZ) CARYOCARACEAE Voigt Maytenus sp3(3391WFR) Anthodiscus peruanus Baill. 1250 m. 800 m. * W. Farfan, et al. 3391 (CUZ, F, W. Farfan, et al. 1292 (CUZ, USM) MO) Salacia sp1(4541WFR) AM, HU, LO, MD, PA, SM 2000 m. Caryocar amygdaliforme Ruiz & Pav. ex W. Farfan, et al. 4541 (MOL, G. Don WFU) 800 - 1500 m. * ^ W. Farfan, et al. 2556 (CUZ, F, CHLORANTHACEAE R. Br. ex Sims USM, WFU) Hedyosmum anisodorum Todzia LO, MD, PA, SM 2250 m. Caryocar glabrum Pers. W. Farfan, et al. 1148 (CUZ, 800 - 1750 m. * MO, USM, WFU) K. Garcia, et al. 281 (CUZ, MO, CA, CU, PA USM, WFU) Hedyosmum cuatrecazanum Occhioni AM, HU, JU, LL, LO, PA, SM 1500 - 2890 m. ^ Caryocar pallidum A.C. Sm. K. Garcia, et al. 929 (CUZ, F, 1500 - 1750 m. ^ USM, WFU) K. Garcia, et al. 963 (CUZ, MO, CA, CU, HU, PA, SM USM, WFU) Hedyosmum goudotianum Solms CU, LO, MD, PU 1800 - 3250 m. * W. Farfan, et al. 577 (CUZ, CELASTRACEAE R. Br. DAV, HUT, MO, USM, WFU) CA, JU, MD, PA, SM

302

Hedyosmum maximum (Kuntze) K. 800 m. Schum. W. Farfan, et al. 1378A (CUZ, F) 3000 - 3250 m. ^ Hirtella triandra Sw. M. Mamami, et al. 333 (CUZ, 1250 m. MO, USM, WFU) K. Garcia, et al. 664 (USM) CU CA, CU, HU, LO, MD, SM, UC Hedyosmum peruvianum Todzia Licania kunthiana Hook. f. 1750 - 2890 m. Endémico* ^ 800 m. * W. Farfan, et al. 918 (CUZ, W. Farfan, et al. 1300 (CUZ, DAV, HUT, MO, USM, WFU) MO, USM, WFU) CA, HU, PA, SM AM, PU Hedyosmum racemosum (Ruiz & Pav.) Licania macrocarpa Cuatrec. G. Don 1500 - 1750 m. * ^ 1750 - 2000 m. K. Garcia, et al. 594 (CUZ, F, W. Farfan, et al. 3339 (CUZ, F, USM, WFU) USM, WFU) LO, HU, PA AM, CA, CU, HU, JU, LA, MD, Licania micrantha Miq. PA, SM 800 - 1000 m. * ^ Hedyosmum scabrum (Ruiz & Pav.) W. Farfan, et al. 1397 (CUZ, F, Solms USM, WFU) 2890 - 3450 m. ^ AM, HU, LO, PA W. Farfan, et al. 850 (CUZ, Licania octandra (Hoffmanns. ex Roem. DAV, HUT, MO, USM, WFU) & Schult.) Kuntze AM, CA, CU, JU, PA, PI, SM 850 m. ^ Hedyosmum sp1(57ANQ) W. Farfan, et al. 5546 (CUZ) 3537 m. CU, LO, MD, PA, SM, UC A. Nina, et al. 57 (CUZ) Licania sp3 Hedyosmum sp3(4510WFR) 1750 m. 2250 m. W. Farfan S.N. (CUZ) W. Farfan, et al. 4510 (MOL, Parinari occidentalis Prance WFU) 850 m. * ^ Hedyosmum translucidum Cuatrec. W. Farfan, et al. 5557 (CUZ) 1750 - 2890 m. * LO, MD, PA W. Farfan, et al. 1030 (CUZ, Parinari parilis J.F. Macbr. DAV, HUT, MO, USM, WFU) 1500 - 1750 m. ^ AM, CA, PA, PI K. Garcia, et al. 998 (CUZ, F, USM, WFU) CHRYSOBALANACEAE R. Br. CU, LO, MD, PA, SM Couepia bernardii Prance 850 m. * ^ CLETHRACEAE Klotzsch W. Farfan, et al. 5544 (CUZ) Clethra castaneifolia Meisn. LO 2890 m. Couepia sp1(5541WFR) W. Farfan, et al. 4681 (MOL, 850 m. WFU) W. Farfan, et al. 5541 (CUZ) AM, CA, CU, SM, JU, LA, PA, Hirtella sp1(1378AWFR) SM

303

Clethra cuneata Rusby W. Farfan, et al. 812 (CUZ, MO, 2890 - 3537 m. USM) W. Farfan, et al. 813 (CUZ, LO, CU, PA, SM DAV, HUT, MO, USM, WFU) Clusia ducuoides Engl. AM, CA, CU, JU, PA, SM 1800 - 2250 m. * Clethra ferruginea (Ruiz & Pav.) Link W. Farfan, et al. 3124 (CUZ, F, ex Spreng. USM, WFU) 3000 - 3450 m. AM, CA, HU, PA, PI, SM W. Farfan, et al. 852 (CUZ, MO, Clusia elliptica Kunth USM) 1750 - 2890 m. * ^ CA, CU, HU, SM W. Farfan, et al. 1035 (CUZ, Clethra obovata (Ruiz & Pav.) G. Don DAV, HUT, MO, USM, WFU) 1250 - 2500 m. AM, CA, PA, SM W. Farfan, et al. 1974 (CUZ, F, Clusia pavonii Planch. & Triana USM) 3450 m. ^ CU, JU, PA, SM W. Farfan, et al. 861 (CUZ, Clethra revoluta (Ruiz & Pav.) Spreng. DAV, HUT, MO, USM, WFU) 1750 - 2750 m. AM, CA, CU W. Farfan, et al. 967 (CUZ, MO, Clusia sp1(1048WFR) USM, WFU) 2000 m. AM, CA, CU, PA, SM W. Farfan, et al. 1048 (CUZ, Clethra scabra Pers. DAV, HUT, MO, USM, WFU) 1250 m. Clusia sp10(755MRQ) W. Farfan, et al. 1961 (CUZ, F, 1750 m. USM, WFU) W. Farfan, et al. 755 (CUZ, F) JU, CU, AM, PA, CA Clusia sp13(3751WFR) Clethra sp1(584WFR) 1750 m. 2750 - 3537 m. W. Farfan, et al. 3751 (CUZ, W. Farfan, et al. 584 (CUZ, USM, WFU) DAV, HUT, MO, USM, WFU) Clusia sp14(4955WFR) Clethra sp2(876WFR) 1750 m. 2750 m. W. Farfan, et al. 4955 (MOL, W. Farfan, et al. 876 (CUZ, F, WFU) USM) Clusia sp4(3101)WFR) Clethra sp3(1119WFR) 2750 m. 2000 m. W. Farfan, et al. 3101 (CUZ, F, W. Farfan, et al. 1119 (CUZ) USM) Clusia sp6(1013WFR) CLUSIACEAE Lindl. 1800 m. Chrysochlamys ulei Engl. W. Farfan, et al. 1013 (CUZ, 1250 - 1500 m. ^ MO, USM, WFU) W. Farfan, et al. 2722 (CUZ, F, Clusia sp7(4536WFR) USM, WFU) 2000 m. MD, LO, CU W. Farfan, et al. 4536 (MOL, Clusia alata Planch. & Triana WFU) 2750 - 3450 m. Clusia sphaerocarpa Planch. & Triana

304

1750 - 3450 m. ^ AM, CA, CU, HU, PA, SM W. Farfan, et al. 597 (CUZ, MO) Weinmannia balbisiana Kunth CA, CU, HU, PA, PI 2000 m. * ^ Clusia thurifera Planch. & Triana W. Farfan, et al. 1103 (CUZ, 1750 - 2250 m. ^ HUT, MO, USM, WFU) W. Farfan, et al. 3106 (CUZ, F, CA, PA, SM USM, WFU) Weinmannia bangii Rusby CU, PA, PU, SM 2500 - 3250 m. ^ Clusia trochiformis Vesque W. Farfan, et al. 630 (CUZ, 2250 - 2890 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 4682 (MOL, CU WFU) Weinmannia cochensis Hieron. AM, CU, JU, PA, SM 3250 - 3537 m. * ^ Garcinia madruno (Kunth) Hammel W. Farfan, et al. 838 (CUZ, MO, 1250 - 1500 m. * ^ USM, WFU) K. Garcia, et al. 565 (CUZ, F, PA USM, WFU) Weinmannia crassifolia Ruiz & Pav. AM, HU, JU, LO, MD, PA, SM, 2890 - 3000 m. ^ UC W. Farfan, et al. 1184 (CUZ, Rheedia brasiliensis (Mart.) Planch. & DAV, HUT, MO, USM, WFU) Triana CU, PA, JU 800 - 1500 m. * ^ Weinmannia fagaroides Kunth W. Farfan, et al. 1420 (CUZ, F, 3537 - 3625 m. USM) W. Farfan, et al. 4396 (MOL, LO, MD WFU) Symphonia globulifera L. f. AM, CA, CU, HU, PA, PI, SM 1000 - 1250 m. ^ Weinmannia lechleriana Engl. W. Farfan, et al. 2306 (CUZ, 1750 - 2000 m. * ^ MO, USM, WFU) W. Farfan, et al. 1114 (CUZ, AM, CU, HU, JU, LO, MD, PA, MO, USM) PU, SM, UC CA, PA, SM Tovomita sp1(1048WFR) Weinmannia mariquitae Szyszył. 1750 - 1800 m. 2750 m. * ** W. Farfan, et al. 1048 (CUZ, W. Farfan, et al. 882 (CUZ, MO, USM, WFU) DAV, HUT, MO, USM, WFU) Tovomita weddelliana Planch. & Triana Weinmannia multijuga Killip & A.C. 800 - 2000 m. * ^ Sm. W. Farfan, et al. 1158 (CUZ, 2250 - 2890 m. MO, USM, WFU) W. Farfan, et al. 1081 (CUZ, AM, LO, MD, PA, PU, SM MO, USM, WFU) CU, PA, SM CUNONIACEAE R. Br. Weinmannia ovata Cav. Weinmannia auriculata D. Don 1800 - 2250 m. 3000 - 3537 m. W. Farfan, et al. 1089 (CUZ, W. Farfan, et al. 626 (CUZ, DAV, HUT, MO, USM, WFU) DAV, HUT, MO, USM, WFU) AM, AY, CA, CU, PA

305

Weinmannia pinnata L. AM, CU, HU, LO, MD, PU, SM, 1750 - 2000 m. UC K. Garcia, et al. 1017 (CUZ, F, Sloanea guianensis (Aubl.) Benth. USM, WFU) 800 - 1500 m. ^ AM, CA, CU, PI, SM W. Farfan, et al. 1280 (CUZ, F, Weinmannia reticulata Ruiz & Pav. USM, WFU) 2500 - 3000 m. AM, CU, HU, LO, MD, PA, PU, W. Farfan, et al. 943 (CUZ, MO, SM, UC USM, WFU) Sloanea latifolia (Rich.) K. Schum. CA, CU, HU, PA, SM 850 m. * ^ W. Farfan, et al. 5588 (CUZ) DICHAPETALACEAE Baill. AM, LO, MD, PA Tapura peruviana K. Krause Sloanea laurifolia (Benth.) Benth. 1250 m. ^ 800 m. * ^ W. Farfan, et al. 2369 (CUZ, F, W. Farfan, et al. 1359 (CUZ, F) USM, WFU) PA, SM, LO AM, CU, LO, MD, PA, SM Sloanea meianthera Donn. Sm. 1000 m. * ^ DIPENTODONTACEAE Merr. W. Farfan, et al. 1471 (CUZ, F, Perrottetia sessiliflora Lundell USM) 1250 - 1750 m. * ^ PA, LO W. Farfan, et al. 2567 (CUZ, F, Sloanea obtusifolia (Moric.) K. Schum. USM, WFU) 850 m. * ^ SM W. Farfan, et al. 5601 (CUZ) AM, LO , MD, PU EBENACEAE Gürke Sloanea pubescens Benth. Diospyros artanthifolia Mart. 850 m. * ^ 1250 m. * ^ W. Farfan, et al. 5565 (CUZ) K. Garcia, et al. 771 (CUZ, F, LO, MD, PA USM, WFU) Sloanea robusta Uittien AM, LO, MD, SM, UC 1000 m. * ^ Lissocarpa sp1(1046WFR) W. Farfan, et al. 1541 (CUZ, F) 1500 - 1800 m. & PA, PU, LO, SM, JU W. Farfan, et al. 1046 (CUZ, F, Sloanea rufa Planch. ex Benth. USM, WFU) 800 - 1000 m. * W. Farfan, et al. 1267 (CUZ, F, ELAEOCARPACEAE Juss. USM, WFU) Sloanea brevipes Benth. LO, HU, MD, PA, SM 850 m. * Sloanea sinemariensis Aubl. W. Farfan, et al. 5568 (CUZ) 1000 - 1500 m. * AM, LO, MD, PA W. Farfan, et al. 1518 (CUZ, F) Sloanea fragrans Rusby AM, LO, MD, SM 1500 - 1800 m. ^ Sloanea sp1(1385WFR) W. Farfan, et al. 1019 (CUZ, 800 m. MO, USM, WFU) W. Farfan, et al. 1385 (CUZ, F, USM, WFU)

306

Sloanea stipitata Spruce ex Benth. Erythroxylum patens Ruiz ex O.E. 800 m. * Schulz W. Farfan, et al. 1418 (CUZ, F, 850 m. * USM) W. Farfan, et al. 5610 (CUZ) LO, PU, AM AM, CA, HU, MD, SM Sloanea terniflora (DC.) Standl. Erythroxylum sp2(949WFR) 800 - 1000 m. * ^ 2500 m. W. Farfan, et al. 1539 (CUZ, F, W. Farfan, et al. 949 (CUZ, MO, USM, WFU) USM, WFU) LO, MD, SM, UC Erythroxylum squamatum Sw. Sloanea tuerckheimii Donn. Sm. 1500 - 1750 m. * 800 - 1000 m. W. Farfan, et al. 2641 (CUZ, F, W. Farfan, et al. 1424 (CUZ, F, USM, WFU) USM, WFU) CA, LO, PA, SM AM, CU, LO, MD, SM Vallea sp1(87ANQ) ESCALLONIACEAE R. Br. ex 3625 m. Dumort. A. Nina, et al. 87 (CUZ) L. f. Vallea stipularis L. f. 3000 m. 2890 - 3625 m. W. Huaraca, et al. 137 (CUZ, W. Farfan, et al. 2998 (CUZ, F, MO, USM, WFU) USM, WFU) AM, AP, AR, AY, CA, CU, HU, AM, AN, AP, AY, LO, CU, HV, JU, LL, MO, PA, PI, PU, SM HU, JU, LL, PA, PI, PU Escallonia paniculata (Ruiz & Pav.) Roem. & Schult. ERICACEAE Juss. 2250 - 3000 m. Bejaria aestuans Mutis ex L. W. Farfan, et al. 1084 (CUZ, 2000 - 3000 m. DAV, HUT, MO, USM, WFU) V. Huaman, et al. 30 (CUZ, AM, CA, CU, LL, PA, PI DAV, HUT, MO, USM, WFU) AM, AY, CA, CU, HU, JU, LL, EUPHORBIACEAE Juss. LA, PA, PI, PU, SM Acalypha stenoloba Müll. Arg. Cavendishia bracteata (Ruiz & Pav. ex 1500 m. J. St.-Hil.) Hoerold W. Farfan, et al. 4796 (MOL, 2250 - 3000 m. WFU) W. Farfan, et al. 1161 (CUZ, AM, CU, HU, JU, LO, MD, PA, DAV, HUT, MO, USM, WFU) SM, UC AM, CA, CU, HU, JU, LL, PA, Alchornea acutifolia Müll. Arg. PI, PU, SM 1750 - 2000 m. ^ W. Farfan, et al. 1100 (CUZ, ERYTHROXYLACEAE Kunth MO, USM, WFU) Erythroxylum deciduum A. St.-Hil. AM, CA, CU, SM 2500 - 3000 m. * ^ Alchornea anamariae Secco W. Farfan, et al. 972 (CUZ, MO, 1750 - 1800 m. * ^ USM, WFU) W. Farfan, et al. 1024 (CUZ, PA, AM MO, USM, WFU)

307

JU W. Farfan, et al. 1087 (CUZ, Alchornea brittonii Secco MO, USM, WFU) 1000 - 1750 m. * ^ Alchornea sp2(434KGC) K. Garcia, et al. 332 (CUZ, MO) 1750 m. JU, PA K. Garcia, et al. 434 (CUZ, MO) Alchornea glandulosa Poepp. Alchornea sp4(294KGC) 800 - 1000 m. 800 - 1000 m. K. Garcia, et al. 325 (CUZ, MO, K. Garcia, et al. 294 (CUZ, F) USM, WFU) Alchornea sp6(975KGC) AM, CA, CU, HU, JU, LO, MD, 1750 m. PA, SM K. Garcia, et al. 975 (CUZ, MO, Alchornea grandiflora Müll. Arg. USM) 1800 - 2750 m. ^ Alchornea sp7(982KGC) W. Farfan, et al. 893 (CUZ, 1750 m. DAV, HUT, MO, USM, WFU) K. Garcia, et al. 982 (CUZ, MO, AM, CA, CU, HU, LO, MD, PA, USM) PU, SM Alchornea sp8(1026KGC) Alchornea grandis Benth. 1750 m. 1000 - 2250 m. K. Garcia, et al. 1026 (CUZ, W. Farfan, et al. 1108 (CUZ, MO) MO) Alchornea sp9(1147KGC) CU, PA, SM 1500 - 1800 m. Alchornea hilariana Baill. K. Garcia, et al. 1147 (CUZ, 1500 - 1750 m. * ^ MO) K. Garcia, et al. 429 (CUZ, MO, Alchornea triplinervia (Spreng.) Müll. USM, WFU) Arg. MD 800 m. Alchornea latifolia Sw. K. Garcia, et al. 284 (CUZ, F, 1250 - 1800 m. * ^ USM) K. Garcia, et al. 475 (CUZ, MO, LO, PA, AM, CU, UC, SM USM, WFU) Aparisthmium cordatum (A. Juss.) Baill. CA, LO, SM, UC 800 m. * Alchornea pearcei Britton ex Rusby K. Garcia, et al. 283 (CUZ, MO, 2250 m. * ^ USM) W. Farfan, et al.1146 (CUZ, MO, AM, HU, LO, MD, PA, PU, SM, USM, WFU) UC CA, LO, PA, PU, SM Croton sp1(656KGC) Alchornea sp1(400KGC) 1250 m. 1500 m. K. Garcia, et al. 656 (CUZ, F, K. Garcia, et al. 400 (CUZ, MO) USM, WFU) Alchornea sp10(3297AWFR) Croton sp2(4588WFR) 800 m. 1800 m. W. Farfan, et al. 3297A (CUZ) W. Farfan, et al. 4588 (MOL, Alchornea sp11(1087WFR) WFU) 1800 - 2000 m. & Hevea guianensis Aubl. 800 m.

308

K. Garcia, et al. 280 (CUZ, F, W. Farfan, et al. 1490 (CUZ, F, USM, WFU) USM, WFU) AM, CU, HU, JU, LO, MD, PA, AM, LO, MD, PA, PU PU, SM, UC Andira inermis (W. Wright) Kunth ex Micrandra sp1(1049WFR) DC. 1800 - 2250 m. & 800 - 1000 m. ^ K. Garcia, et al. 1049 (CUZ, M. Mamami, et al. 370 (CUZ, MO, USM, WFU) MO, USM, WFU) Sapium glandulosum (L.) Morong AM, CU, LO, MD, PA, SM, UC 1500 - 1750 m. Bauhinia sp1(5698WFR) K. Garcia, et al. 1080 (CUZ, F, 850 m. USM, WFU) W. Farfan, et al. 5698 (CUZ) AM, CA, CU, HU, JU, LO, MD, Cedrelinga cateniformis (Ducke) Ducke PA, SM, TU, UC 800 - 1000 m. ^ Sapium laurifolium (A. Rich.) Griseb. W. Farfan, et al. 1327 (CUZ, F, 1250 - 1500 m. USM, WFU) W. Farfan, et al. 3969 (CUZ, F, AM, CU, HU, JU, LO, MD, PA, USM) PU, SM AM, CU, HU, LO, MD, PA, PI, Cyathostegia mathewsii cf. (Benth.) SM, TU, UC Schery Sapium marmieri Huber 1000 - 1250 m. 1500 m. W. Farfan, et al. 1503 (CUZ, F, K. Garcia, et al. 592 (CUZ, F, USM) USM, WFU) AM, AP, CA, CU, LI AM, CU, HU, LO, MD, PA, SM, Dussia tessmannii Harms UC 1250 - 1500 m. Sapium sp1(1103KGC) W. Farfan, et al. 2348A (CUZ, F, 1500 m. USM, WFU) K. Garcia, et al. 1103 (CUZ, F, AM, CU, LO, MD, PA, SM USM, WFU) Enterolobium sp1(5686WFR) Senefeldera inclinata Müll. Arg. 850 m. 800 m. W. Farfan, et al. 5686 (CUZ) W. Farfan, et al. 1399 (CUZ, F, Erythrina ulei Harms USM, WFU) 1500 m. AM, CU, HU, LO, MD, PU, SM, W. Farfan, et al. 2259 (CUZ, F, UC USM, WFU) Tetrorchidium rubrivenium Poepp. AM, CU, HU, JU, LO, MD, PA, 1250 - 1500 m. SM, UC K. Garcia, et al. 409 (CUZ, F, Hymenaea oblongifolia Huber USM, WFU) 850 m. * ^ AM, CU, HU, JU, LO, PA, SM W. Farfan, et al. 5671 (CUZ) AM, HU, LO, MD, PA, SM, UC FABACEAE Lindl. Inga acrocephala Steud. Abarema jupunba (Willd.) Britton & 1250 - 1500 m. Killip W. Farfan, et al. 1909 (CUZ, F, 800 - 1000 m. * USM, WFU)

309

AM, CU, LO, MD, PA, SM, TU AM, CA, CU, HU, JU, LO, Inga alba (Sw.) Willd. MD, PA, SM, UC 800 - 1500 m. ^ Inga gracilifolia Ducke W. Farfan, et al. 1405 (CUZ, F, 850 m. ^ USM) W. Farfan, et al. 5664 (CUZ) AM, CU, JU, LO, MD, PA, SM, AM, CU, LO, MD, PA UC Inga heterophylla Willd. Inga auristellae Harms 1500 - 1800 m. ^ 800 m. * W. Farfan, et al. 1075 (CUZ, W. Farfan, et al. 1442 (CUZ, F, DAV, HUT, MO, USM, WFU) USM) AM, CU, PU, JU, LO, MD, PA, AM, LO, MD, PA, SM SM Inga barbata Benth. Inga killipiana J.F. Macbr. 1500 m. * ^ 1500 - 1750 m. Endémico ^ K. Garcia, et al. 616 (CUZ, F, W. Farfan, et al. 2563 (CUZ, F) USM, WFU) SM, CU, PA MD Inga laurina (Sw.) Willd. Inga bourgonii (Aubl.) DC. 1250 m. * 1250 - 1500 m. * ^ W. Farfan, et al. 2302 (CUZ, F, W. Farfan, et al. 1910 (CUZ, F, USM, WFU) USM) JU, LO, MD, TU, UC AM, JU, LO, MD, PA, SM Inga leiocalycina Benth. Inga capitata Desv. 800 - 1000 m. 800 - 1250 m. * W. Farfan, et al. 1299 (CUZ, K. Garcia, et al. 704 (CUZ, F, MO, USM, WFU) USM, WFU) AM, CU, LO, MD, PA, SM AM, CA, HU, LO, MD, PA, SM, Inga macrophylla Humb. & Bonpl. ex UC Willd. Inga chartacea Poepp. 1250 - 1750 m. ^ 1250 m. K. Garcia, et al. 728 (CUZ, F, W. Farfan, et al. 2329 (CUZ, F, USM, WFU) USM, WFU) CU, HU, LO, MD, PA, SM AM, CU, LO, MD, PA, PU, SM, Inga multinervis T.D. Penn. UC 1250 m. * ^ Inga cordatoalata Ducke K. Garcia, et al. 778 (CUZ, F, 850 m. * USM, WFU) W. Farfan, et al. 5665 (CUZ) AM, HU, LO, PA AM, LO, PA Inga nobilis Willd. Inga densiflora Benth. 1250 - 1750 m. 1250 m. W. Farfan, et al. 1601 (CUZ, F, K. Garcia, et al. 794 (CUZ, F, USM, WFU) USM, WFU) AM, CA, CU, JU, LO, MD, PA, AM, CA, CU, HU, LO, MD, SM SM, UC Inga edulis Mart. Inga pezizifera Benth. 1500 - 1750 m. 1500 m. * ^ K. Garcia, et al. 1288 (CUZ, F) K. Garcia, et al. 1274 (CUZ, F)

310

LO, MD, AM W. Farfan, et al. 2606 (CUZ, F, Inga ruiziana G. Don USM) 1500 m. * Inga sp19(1031WFR) W. Farfan, et al. 2122 (CUZ, F, 1750 m. USM, WFU) W. Farfan, et al. 1031 (CUZ, AM, HU, LO, MD, PA, SM, UC MO, USM) Inga sapindoides cf. Willd. Inga sp2(1361WFR) 1000 m. 800 - 1500 m. W. Farfan, et al. 1590 (CUZ, W. Farfan, et al. 1361 (CUZ, F, MO, USM, WFU) USM, WFU) LO, PA, CA, MD, CU Inga sp20(1089WFR) Inga sp1(1183WFR) 1500 - 1750 m. 2000 m. W. Farfan, et al. 1089 (CUZ, F, W. Farfan, et al. 1183 (CUZ, USM) MO, USM) Inga sp21(1081KGC) Inga sp10(1902WFR) 1750 m. 1250 m. K. Garcia, et al. 1081 (CUZ, F, W. Farfan, et al. 1902 (CUZ) USM) Inga sp11(1976WFR) Inga sp22(1052KGC) 1250 m. 1750 m. W. Farfan, et al. 1976 (CUZ, F) W. Farfan, et al. 1052 (CUZ, F, Inga sp12(2183WFR) USM) 1500 m. Inga sp23(1186KGC) W. Farfan, et al. 2183 (CUZ, F, 1750 m. USM, WFU) W. Farfan, et al. 1186 (CUZ, F) Inga sp13(2158WFR) Inga sp27(1280WFR) 1500 m. 800 m. W. Farfan, et al. 2158 (CUZ, F, W. Farfan, et al. 1280 (CUZ, USM, WFU) MO) Inga sp14(2376WFR) Inga sp28(3227WFR) 1250 m. 1800 m. W. Farfan, et al. 2376 (CUZ, F, W. Farfan, et al. 3227 (CUZ, F, USM, WFU) USM, WFU) Inga sp15(2532WFR) Inga sp29(1653WFR) 1750 m. 1250 m. W. Farfan, et al. 2532 (CUZ, F) W. Farfan, et al. 1653 (CUZ, F, Inga sp16(943KGC) USM) 1500 m. Inga sp3(1387WFR) K. Garcia, et al. (CUZ, F, USM, 800 - 1000 m. WFU) W. Farfan, et al. 1387 (CUZ) Inga sp17(2605WFR) Inga sp30(3268WFR) 1750 m. 1000 m. W. Farfan, et al. 2605 (CUZ, F, W. Farfan, et al. 3268 (CUZ, F) USM, WFU) Inga sp31(4866WFR) Inga sp18(2606WFR) 1750 m. 1500 - 1750 m.

311

W. Farfan, et al. 4866 (MOL, Lonchocarpus sp2(687KGC) WFU) 1250 m. Inga sp32(1795WFR) K. Garcia, et al. 687 (CUZ, F) 1500 m. Machaerium acutifolium Vogel W. Farfan, et al. 1795 (CUZ, F) 1250 m. ^ Inga sp4(1410WFR) M. Mamami, et al. 370 (CUZ, 800 m. MO, USM) W. Farfan, et al. 1410 (CUZ, F, CU, MD USM) Machaerium peruvianum J.F. Macbr. Inga sp5(1472WFR) 850 m. Endémico* 1000 m. W. Farfan, et al. 5688 (CUZ) W. Farfan, et al. 1472 (CUZ, F, SM USM) Machaerium pilosum Benth. Inga sp6(1478WFR) 1250 m. 1000 - 1250 m. W. Farfan, et al. 1933 (CUZ, F, W. Farfan, et al. 1478 (CUZ, F, USM) USM) CU, SM Inga sp7(1481WFR) Machaerium sp1(1114KGC) 1000 m. 1500 m. W. Farfan, et al. 1481 K. Garcia, et al. 1114 (CUZ, F, Inga sp8(1506WFR) USM) 1000 m. Ormosia sp1(2694WFR) W. Farfan, et al. 1506 (CUZ, F, 1500 m. USM) W. Farfan, et al. 2694 (CUZ) Inga sp9(1813WFR) Piptadenia pteroclada Benth. 1250 m. 850 m. * ^ W. Farfan, et al. 1813 (CUZ, F) W. Farfan, et al. 5691 (CUZ) Inga striata Benth. HU, LO, MD, PA, SM 1250 - 1500 m. * Platymiscium sp1(1812WFR) K. Garcia, et al. 750 (CUZ, F, 1250 m. USM) W. Farfan, et al. 1812 (CUZ, F, MD, PA, SM USM) Inga thibaudiana DC. Platymiscium stipulare Benth. 800 - 1500 m. * 1250 m. * ^ W. Farfan, et al. 1653 (CUZ, F, W. Farfan, et al. 5691A (MOL) USM) AM, SM, HU, LO, MD, PA, UC AM, HU, JU, LO, MD, PA, SM, sp4(3294WFR) sp4(3294WFR) UC 1000 m. Inga vismiifolia Poepp. W. Farfan, et al. 3294 (CUZ, F, 1500 m. * ^ USM) W. Farfan, et al. 5686A (MOL) sp5(1242KGC) sp5(1242KGC) LO, MD, UC 1500 m. Lonchocarpus sp1(1487WFR) K. Garcia, et al. 1242 (CUZ, F, 1000 - 1250 m. USM, WFU) W. Farfan, et al. 1487 (CUZ, F, sp6(3356WFR) sp6(3356WFR) USM) 1250 m.

312

W. Farfan, et al. 3356 (CUZ, F, CU USM, WFU) sp7(1411WFR) sp7(1411WFR) HYDRANGEACEAE Dumort. 800 m. Hydrangea jelskii Szyszył. W. Farfan, et al. 1411 (CUZ) 1500 m. * ^ sp8(2678WFR) sp8(2678WFR) W. Farfan, et al. 1243 (CUZ, F, 1500 m. USM) W. Farfan, et al. 2678 (CUZ, F, AM, PA, CA, SM USM, WFU) Hydrangea preslii Briq. Swartzia sp1(1055WFR) 1250 - 1500 m. * 1800 m. W. Farfan, et al. 1801 (CUZ, F, W. Farfan, et al. 1055 (CUZ, F) USM, WFU) Tachigali macbridei Zarucchi & Herend. AM, CA, HU, LO, PA, SM 800 - 1000 m. W. Farfan, et al. 1526 (CUZ, F, HYPERICACEAE Juss. USM, WFU) Vismia gracilis Hieron. AM, CU, HU, LO, SM, MD, PA 1500 m. ^ Tachigali setifera (Ducke) Zarucchi & W. Farfan, et al. 2673 Herend. AM, LO, CU, MD, PA (CUZ, 800 - 1500 m. * ^ F, USM, WFU) W. Farfan, et al. 3306 Vismia mandurr Hieron. HU, MD, UC, LO (CUZ, F, 1800 - 2000 m. * ^ USM, WFU) D. F. Galiano, et al. 18 (CUZ, Tachigali sp1(1365WFR) DAV, HUT, MO, USM, WFU) 800 m. AM W. Farfan, et al. 1365 (CUZ, F, Vismia sp4(1459WFR) USM, WFU) 1000 m. Tachigali sp2(1383WFR) W. Farfan, et al. 1459 (CUZ, F, 800 m. USM) W. Farfan, et al. 1383 (CUZ, F) Vismia tomentosa Ruiz & Pav. Tachigali sp3(1531WFR) 1250 - 1800 m. 1000 m. W. Farfan, et al. 1927 (CUZ, F, W. Farfan, et al. 1531 (CUZ, F, USM) USM) AM, CU, HU, JU, LO, MD, Tachigali vasquezii Pipoly PA, PU, SM 800 m. * ^ W. Farfan, et al. 1390 (CUZ, F, ICACINACEAE Miers USM, WFU) Calatola costaricensis Standl. MD, AM, PA 1500 - 1750 m. * K. Garcia, et al. 945 (CUZ, F, GENTIANACEAE Juss. USM, WFU) Macrocarpaea maguirei R.E. Weaver & AM, CA, HU, JU, LO, MD, PA, J.R. Grant SM 3450 m. Endémico ^ W. Farfan, et al. 864 (CUZ, JUGLANDACEAE DC. ex Perleb DAV, HUT, MO, USM, WFU) Juglans australis Griseb.

313

1250 - 1500 m. * ** LAURACEAE Juss. W. Farfan, et al. 1820 (CUZ, F, Aniba firmula (Nees & Mart.) Mez USM, USM) 1750 m. * ^ K. Garcia, et al. 961 (CUZ, F, LACISTEMATACEAE Mart. USM, WFU) Lacistema aggregatum (P.J. Bergius) LO Rusby Aniba panurensis (Meisn.) Mez 800 - 1500 m. 850 m. * W. Farfan, et al. 1357 (CUZ, F, W. Farfan, et al. 5717 (CUZ) USM, WFU) AM, LO, MD, PA, SM AM, CU, HU, JU, LO, MD, PA, Aniba robusta (Klotzsch & H. Karst.) SM, UC Mez Lacistema nena J.F. Macbr. 1250 m. * 800 - 1500 m. ^ W. Farfan, et al. 2290 (CUZ, F, W. Farfan, et al. 2311 (CUZ, F, USM, WFU) USM, WFU) PA, JU AM, CU, HU, LO, MD, PA, PU, Aniba taubertiana Mez UC 800 - 1000 m. * ^ Lozania mutisiana Schult. W. Farfan, et al. 1540 (CUZ, F, 1250 - 1800 m. USM, WFU) W. Farfan, et al. 2327 (CUZ, F, LO, MD, PA USM, WFU) Beilschmiedia latifolia (Nees) Sach. AM, CA, CU, JU, LO, SM Nishida Lozania sp1(1000WFR) 1750 - 2000 m. 1800 m. & W. Farfan, et al. 1135 (CUZ, W. Farfan, et al. 1000 (CUZ, MO, USM, WFU) DAV, HUT, MO, USM, WFU) AM, CA, CU, PA Beilschmiedia tovarensis (Klotzsch & H. LAMIACEAE Martinov Karst. ex Meisn.) Sach. Nishida Aegiphila integrifolia (Jacq.) B.D. Jacks. 1250 - 1750 m. 1250 m. W. Farfan, et al. 1797 (CUZ, F, W. Farfan, et al. 4085 (MOL, USM, WFU) WFU) AM, CA, CU, JU, MD, PA, SM AM, CU, CA, HU, LO, MD, PA, Cinnamomum triplinerve (Ruiz & Pav.) SM, UC Kosterm. Aegiphila saltensis Legname 1250 - 1500 m. 3250 m. * ^ W. Farfan, et al. 1874 (CUZ, F, W. Farfan, et al. 2972 (CUZ, F, USM, WFU) USM, WFU) AM, CA, CU, HU, JU, LO, MD, AM PA, SM Vitex triflora Vahl Cryptocarya aschersoniana Mez 1000 m. * ^ 1500 m. * W. Farfan, et al. 1482 (CUZ, F, W. Farfan, et al. 2131 (CUZ, F, USM, WFU) USM, WFU) LO, MD, PA PA, CA Endlicheria bracteata Mez

314

800 m. * Licaria cannella (Meisn.) Kosterm. W. Farfan, et al. 1302 (CUZ, F, 800 - 1500 m. * USM) K. Garcia, et al. 1160 (CUZ, F, HU, LO, MD, PA, SM USM, WFU) Endlicheria directonervia C.K. Allen AM, CA, HU, LO, MD, PA 1500 m. * ^ Mezilaurus campaucola van der Werff W. Farfan, et al. 2080 (CUZ, F, 1500 - 1750 m. * ^ USM, WFU) W. Farfan, et al. 2561 (CUZ, F, AM, HU, LO, PA, PU, UC USM, WFU) Endlicheria formosa A.C. Sm. AM 1250 - 1500 m. * ^ Nectandra cissiflora Nees W. Farfan, et al. 1798 (CUZ, F, 1250 - 1500 m. USM, WFU) W. Farfan, et al. 2718 (CUZ, F, AM, CU, LO, MD, SM, UC USM, WFU) Endlicheria griseo-sericea Chanderb. AM, CU, HU, LO, MD, PA, SM, 1250 - 1750 m. UC W. Farfan, et al. 2668 (CUZ, F, Nectandra cuspidata Nees & Mart. USM, WFU) 1800 - 2000 m. CA, PA, SM W. Farfan, et al. 1002 (CUZ, Endlicheria krukovii (A.C. Sm.) DAV, HUT, MO, USM, WFU) Kosterm. AM, CA, CU, HV, HU, JU, LO, 1000 - 1500 m. ^ MD, PA, SM, UC W. Farfan, et al. 2726 (CUZ, F, Nectandra lineata (Kunth) Rohwer USM) 1250 - 1750 m. * ^ AM, CU, HU, LO, MD, PA, SM, W. Farfan, et al. 4065 (MOL, UC WFU) Endlicheria macrophylla cf. (Meisn.) SM, AM, CA Mez Nectandra reticulata (Ruiz & Pav.) Mez 1500 - 1750 m. * ^ 1000 - 1800 m. ^ W. Farfan, et al. 2666 (CUZ, F, W. Farfan, et al. 3997 (CUZ, F, USM, WFU) USM, WFU) LO, PA AM, AY, CA, CU, LA, LO, MD, Endlicheria sp11(3383WFR) PA, SM 1250 - 1500 m. Nectandra sp1(1600WFR) W. Farfan, et al. 3383 (CUZ, F) 1500 m. Endlicheria sp13(1062KGC) W. Farfan, et al. 1600 (CUZ, F, 1500 - 1750 m. & USM) K. Garcia, et al. 1062 (CUZ, F, Nectandra sp10(3073WFR) USM, WFU) 2500 m. Endlicheria sp2(1007WFR) W. Farfan, et al. 3073 (CUZ, F, 1750 - 1800 m. USM) W. Farfan, et al. 1007 (CUZ, Nectandra sp11(3262WFR) MO, USM, WFU) 1000 m. Endlicheria sp3(1661KGC) W. Farfan, et al. 3262 (CUZ, F, 1800 - 2250 m. USM, WFU) K. Garcia, et al. 1661 (CUZ, F) Nectandra sp12(4057WFR)

315

1250 m. W. Farfan, et al. 3384 (MOL, F, W. Farfan, et al. 4057 (MOL, USM) WFU) Nectandra sp3(3359WFR) Nectandra sp13(555WFR) 1000 m. 3250 m. & W. Farfan, et al. 3359 (MOL, F, W. Farfan, et al. 555 (CUZ, USM) DAV, HUT, MO, USM, WFU) Nectandra sp4(626KGC) Nectandra sp14(557WFR) 1000 - 1500 m. 3000 - 3250 m. K. Garcia, et al. 626 (CUZ, F) W. Farfan, et al. 557 (CUZ, MO, Nectandra sp48(4008WFR) USM, WFU) 1250 - 1500 m. Nectandra sp15(650JESE) W. Farfan, et al. 4008 (MOL, 3000 m. & WFU) J. E. Silva, et al. 650 (CUZ, MO, Nectandra sp5(1696WFR) USM, WFU) 1500 m. Nectandra sp16(883WFR) W. Farfan, et al. 1696 (CUZ, F, 2500 - 3000 m. & USM) W. Farfan, et al. 883 (CUZ, MO, Nectandra sp6(1840WFR) USM, WFU) 1250 m. Nectandra sp17(1160KGC) W. Farfan, et al. 1840 (CUZ, F, 1500 m. USM) K. Garcia, et al. 1160 (CUZ, F) Nectandra sp60(1895WFR) Nectandra sp18(3397WFR) 1250 - 1500 m. 1500 - 1750 m. W. Farfan, et al. 1895 (CUZ, F) W. Farfan, et al. 3997 (CUZ) Nectandra sp7(2376AWFR) Nectandra sp19(972KGC) 1250 m. 1500 - 1750 m. W. Farfan, et al. 2376A (CUZ, F, K. Garcia, et al. 972 (CUZ) USM, WFU) Nectandra sp2(1080WFR) Nectandra sp76(404WFR) 1800 m. 1250 - 1500 m. W. Farfan, et al. 1080 (CUZ, W. Farfan, et al. 404 (CUZ, MO, DAV, HUT, MO, USM, WFU) USM) Nectandra sp20(4047WFR) Nectandra sp8(1643WFR) 1250 m. 1500 m. W. Farfan, et al. 4047 (MOL, W. Farfan, et al. 1643 (CUZ, F, WFU) USM, WFU) Nectandra sp21(3399WFR) Nectandra sp9(1635WFR) 1500 m. 1250 - 1500 m. W. Farfan, et al. 3399 (MOL, F) W. Farfan, et al. 1635 (CUZ, F, Nectandra sp22(3976WFR) USM, WFU) 1500 m. Ocotea aciphylla (Nees & Mart.) Mez W. Farfan, et al. 3976 (CUZ, F, 800 - 1000 m. * USM, WFU) W. Farfan, et al. 1348 (CUZ, F, Nectandra sp23(3384WFR) USM, WFU) 1250 m. AM, CA, HU, JU, LO, MD, PA, PU, SM

316

Ocotea bofo Kunth 1500 m. * 800 - 1500 m. W. Farfan, et al. 2166 (CUZ, F, W. Farfan, et al. 3307 (USM) USM, WFU) CA, CU, HU, LO, MD, PA, AM, JU, PA SM Ocotea puberula (Rich.) Nees Ocotea cernua (Nees) Mez 1000 - 1500 m. * 1500 m. W. Farfan, et al. 2205 (CUZ, F, W. Farfan, et al. 2283 (CUZ, F, USM) USM, WFU) AM, HU, LO, MD, PA AM, CA, CU, HU, JU, LO, MD, Ocotea sp1(917WFR) PA, PU, SM, UC 2500 m. Ocotea cuprea (Meisn.) Mez W. Farfan, et al. 917 (CUZ, MO, 850 m. * USM, WFU) W. Farfan, et al. 5710 (CUZ) Ocotea sp10(1193KGC) AM, LO, MD, SM 1500 - 1750 m. Ocotea glabriflora van der Werff K. Garcia, et al. 1193 (CUZ, F, 2250 - 2750 m. Endémico ^ USM, WFU) W. Farfan, et al. 884 (CUZ, MO, Ocotea sp11(1654WFR) USM, WFU) 1500 m. CU W. Farfan, et al. 1654 (CUZ, F) Ocotea insularis (Meisn.) Mez Ocotea sp12(1322WFR) 800 - 1500 m. * 800 - 1500 m. W. Farfan, et al. 1335 (CUZ, W. Farfan, et al. 1322 (CUZ, F, MO, USM, WFU) USM, WFU) AM, SM, PA, UC Ocotea sp13(1658WFR) Ocotea javitensis (Kunth) Pittier 1000 - 1500 m. 850 m. W. Farfan, et al. 1658 (CUZ, F, W. Farfan, et al. 5724 (CUZ) USM, WFU) CA, CU, JU, LO, PA, SM Ocotea sp14(1884WFR) Ocotea leucoxylon (Sw.) Laness. 1250 m. 1500 m. * ^ W. Farfan, et al. 1884 (CUZ, F) W. Farfan, et al. 1586 (CUZ, F, Ocotea sp15(1710WFR) USM, WFU) 1500 m. LO, PA, UC, SM W. Farfan, et al. 1710 (CUZ, F, Ocotea longifolia Kunth USM, WFU) 1250 - 1500 m. Ocotea sp17(1308WFR) W. Farfan, et al. 1819 (CUZ, F, 800 - 1000 m. USM, WFU) W. Farfan, et al. 1308 (CUZ, F, AM, CA, CU, HU, LO, MD, PA, USM, WFU) SM, UC Ocotea sp18(1870WFR) Ocotea oblonga (Meisn.) Mez 1250 - 1500 m. 850 m. * W. Farfan, et al. 1870 (CUZ, F) W. Farfan, et al. 5713 (CUZ) Ocotea sp19(2223WFR) AM, HU, LO, MD, PA, SM, 1250 - 1500 m. UC W. Farfan, et al. 2223 (CUZ, F, Ocotea obovata (Ruiz & Pav.) Mez USM, WFU)

317

Ocotea sp2(2119WFR) Ocotea sp9(1133WFR) 1250 - 1500 m. 2000 m. W. Farfan, et al. 2119 (CUZ, F, W. Farfan, et al. 1133 (CUZ, USM, WFU) MO) Ocotea sp20(682KGC) Persea areolatocostae (C.K. Allen) van 1250 - 1500 m. der Werff K. Garcia, et al. 682 (CUZ, F, 1000 - 2250 m. * USM, WFU) W. Farfan, et al. 1879 (CUZ, F, Ocotea sp21(988KGC) USM, WFU) 1750 m. AM, LO, PA, SM K. Garcia, et al. 988 (CUZ, F) Persea brevipes Meisn. Ocotea sp22(2295AWFR) 1800 m. * ^ 1250 - 1500 m. W. Farfan, et al. 1025 (CUZ, W. Farfan, et al. 2295A (CUZ, F, MO, USM, WFU) USM, WFU) PI Ocotea sp23(3287WFR) Persea caerulea (Ruiz & Pav.) Mez 1000 - 1250 m. 1000 - 1250 m. W. Farfan, et al. 3287 (CUZ, F) W. Farfan, et al. 3289 (CUZ, F, Ocotea sp26(1626WFR) USM) 2000 m. AM, CA, CU, JU, PA, PI, SM W. Farfan, et al. 1626 (CUZ, F, Persea corymbosa Mez USM) 3000 m. Endémico* Ocotea sp28(1079WFR) W. Huaraca, et al. 152 (CUZ, 1500 - 1750 m. MO, USM, WFU) W. Farfan, et al. 1079 (CUZ, CA, PA, PI MO, USM, WFU) Persea ferruginea Kunth Ocotea sp4(1053WFR) 3250 - 3537 m. 1800 m. W. Farfan, et al. 811 (CUZ, MO, W. Farfan, et al. 1053 (CUZ, USM, WFU) MO, USM, WFU) CU, CA, AM, PI, LA Ocotea sp5(1171WFR) Persea mutisii Kunth 2000 m. & 1800 - 2890 m. * W. Farfan, et al. 1171 (CUZ, W. Farfan, et al. 1117 (CUZ, MO, USM, WFU) MO, USM, WFU) Ocotea sp6(1674KGC) CA, PA 3000 m. & Persea nudigemma van der Werff K. Garcia, et al. 1674 (CUZ, 1250 - 1800 m. * MO, USM) W. Farfan, et al. 1068 (CUZ, Ocotea sp7(1045WFR) MO, USM, WFU) 1800 m. AM, PA W. Farfan, et al. 1045 (CUZ, Persea peruviana Nees MO, USM, WFU) 1250 m. * ^ Ocotea sp8(576WFR) W. Farfan, et al. 1957 (CUZ, F, 3250 m. & USM, WFU) W. Farfan, et al. 576 (CUZ, MO, AM, LO, JU, PA, SM USM, WFU) Persea sp1(868WFR)

318

2500 - 2750 m. & AM, CU, HU, JU, LO, MD, PA, W. Farfan, et al. 868 (CUZ, MO, SM, UC USM, WFU) Pleurothyrium poeppigii Nees Persea sp10(964WFR) 1500 m. 2500 - 2750 m. & K. Garcia, et al. 542 (CUZ, F) W. Farfan, et al. 964 (CUZ, MO, AM, CU, LO, MD, PA, SM USM, WFU) Pleurothyrium sp1(2115WFR) Persea sp11(1626WFR) 1250 - 1750 m. 1500 m. W. Farfan, et al. 2115 (CUZ, F, W. Farfan, et al. 1626 (CUZ, F, USM, WFU) USM, WFU) Pleurothyrium sp2(1747WFR) Persea sp2(2176WFR) 1250 - 1750 m. 1500 m. W. Farfan, et al. 1747 (CUZ, F, W. Farfan, et al. 2176 (CUZ, F, USM, WFU) USM, WFU) Pleurothyrium trianae (Mez) Rohwer Persea sp3(3135WFR) 1500 m. * ^ 1500 - 2250 m. W. Farfan, et al. 4169 (MOL, W. Farfan, et al. 3135 (CUZ, F) WFU) Persea sp4(988WFR) AM, LO, PA 1800 - 2000 m. Rhodostemonodaphne kunthiana (Nees) W. Farfan, et al. 988 (CUZ, MO, Rohwer USM, WFU) 1500 m. Persea sp5(135WHH) W. Farfan, et al. 4029 (MOL, 3000 m. WFU) W. Huaraca, et al. 135 (CUZ, AM, CA, CU, JU, LI, LO, MD, MO, USM, WFU) PA, SM Persea sp6(2331AWFR) Rhodostemonodaphne sp1(3250WFR) 1000 - 1250 m. 1000 m. W. Farfan, et al. 2331A (CUZ, F) W. Farfan, et al. 3250 (CUZ, F, Persea sp7(3905WFR) USM, WFU) 1250 - 1500 m. sp(4857WFR) sp(4857WFR) W. Farfan, et al. 3905 (CUZ, F, 1750 m. USM) W. Farfan, et al. 4857 (MOL, Persea sp8(1001KGC) WFU) 1750 m. sp(4858WFR) sp(4858WFR) K. Garcia, et al. 1001 (CUZ, 1750 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 4858 (MOL, Persea sp9(142WHH) WFU) 3000 m. sp(4860WFR) sp(4860WFR) W. Huaraca, et al. 142 (CUZ, 1750 m. MO, USM, WFU) W. Farfan, et al. 4860 (MOL, Pleurothyrium cuneifolium Nees WFU) 1250 - 1500 m. sp102(2200WFR) sp102(2200WFR) W. Farfan, et al. 1693 (CUZ,F , 1500 - 1750 m. USM) W. Farfan, et al. 2200 (CUZ, F, USM, WFU)

319 sp103(602KGC) sp103(602KGC) sp43(3361WFR) sp43(3361WFR) 1500 m. 1000 - 1250 m. K. Garcia, et al. 602 (CUZ, F, W. Farfan, et al. 3361 (CUZ, F, USM) USM) sp109(2589WFR) sp109(2589WFR) sp46(1545WFR) sp46(1545WFR) 1750 m. 1000 m. W. Farfan, et al. 2589 (CUZ, F, W. Farfan, et al. 1545 (CUZ, USM) MO, USM) sp110(2709WFR) sp110(2709WFR) sp47(1549WFR) sp47(1549WFR) 1500 m. 1000 m. W. Farfan, et al. 2709 (CUZ, F) W. Farfan, et al. 1549 (CUZ) sp13(1674WFR) sp13(1674WFR) sp49(1520WFR) sp49(1520WFR) 2890 - 3000 m. 1000 m. W. Farfan, et al. 1674 (CUZ, F) W. Farfan, et al. 1520 (CUZ, F) sp14(4223WFR) sp14(4223WFR) sp54(3276WFR) sp54(3276WFR) 1250 m. 1000 m. W. Farfan, et al. 4223 (MOL, W. Farfan, et al. 3276 (CUZ, F) WFU) sp56(3290WFR) sp56(3290WFR) sp15(1696KGC) sp15(1696KGC) 1000 m. 3000 m. W. Farfan, et al. 3290 (CUZ, F, K. Garcia, et al. 1696 (CUZ, F, USM) USM, WFU) sp57(3362WFR) sp57(3362WFR) sp21(1086WFR) sp21(1086WFR) 1000 m. 2250 m. W. Farfan, et al. 3362 (CUZ) W. Farfan, et al. 1086 (CUZ, sp59(2585WFR) sp59(2585WFR) MO, USM, WFU) 1250 - 1750 m. sp24(936WFR) sp24(936WFR) W. Farfan, et al. 2585 (CUZ, F, 2500 - 2750 m. USM, WFU) W. Farfan, et al. 936 (CUZ, MO, sp68(2707WFR) sp68(2707WFR) USM, WFU) 1500 m. sp30(3223WFR) sp30(3223WFR) W. Farfan, et al. 2707 (CUZ) 1800 m. sp7(649JESE) sp7(649JESE) W. Farfan, et al. 3223 (CUZ, F, 2750 - 3000 m. USM, WFU) J. E. Silva, et al. 649 (CUZ, MO, sp36(1290WFR) sp36(1290WFR) USM, WFU) 800 - 1250 m. sp91(612WFR) sp91(612WFR) W. Farfan, et al. 1290 (CUZ, F, 1500 m. USM, WFU) W. Farfan, et al. 612 (CUZ, sp4(566WFR) sp4(566WFR) DAV, HUT, MO, USM, WFU) 3250 m. sp94(544WFR) sp94(544WFR) W. Farfan, et al. 566 (CUZ, MO, 1500 m. USM, WFU) W. Farfan, et al. 544 (CUZ, MO) sp41(1266WFR) sp41(1266WFR) sp97(2632WFR) sp97(2632WFR) 800 m. 1750 m. W. Farfan, et al. 1266 (CUZ, F, W. Farfan, et al. 2632 (CUZ, F, USM) USM, WFU)

320 sp99(1039WFR) sp99(1039WFR) 1750 m. LORANTHACEAE Juss. W. Farfan, et al. 1039 (CUZ, Gaiadendron punctatum (Ruiz & Pav.) MO) G. Don 2000 - 3000 m. LECYTHIDACEAE A. Rich. W. Farfan, et al. 905 (CUZ, MO, Eschweilera albiflora (DC.) Miers USM, WFU) 850 m. * ^ AM, AY, CA, CU, SM, HU, JU, W. Farfan, et al. 5613 (CUZ) PA, PI, SM AM, LO, UC Eschweilera baguensis S.A. Mori MAGNOLIACEAE Juss. 1500 m. * ^ Magnolia amazonica (Ducke) Govaerts K. Garcia, et al. 1207 (CUZ, F, 1500 - 1800 m. USM, WFU) W. Farfan, et al. 2687 (CUZ, F, AM USM, WFU) Eschweilera coriacea (DC.) S.A. Mori AM, CU, JU, LO, MD, PA, SM 800 m. Magnolia boliviana (M. Nee) Govaerts W. Farfan, et al. 1376 (CUZ, F, 1500 m. * ^ USM, WFU) W. Farfan, et al. 1606 (CUZ, F, AM, CU, HU, JU, LO, MD, PA, USM, WFU) PU, SM MD, PU Eschweilera klugii R. Knuth Magnolia gilbertoi (Lozano) Govaerts 800 m. Endémico* 1500 - 1800 m. * ** W. Farfan, et al. 1262 (CUZ, W. Farfan, et al. 1803 (CUZ, F, MO) USM, WFU) LO Eschweilera sp1(1291WFR) MALPIGHIACEAE Juss. 800 m. Bunchosia argentea (Jacq.) DC. W. Farfan, et al. 1291 (CUZ, 1250 - 1500 m. MO, USM, WFU) W. Farfan, et al. 1666 (CUZ, F, USM, WFU) LEPIDOBOTRYACEAE J. Léonard CU, LO, PA, UC Ruptiliocarpon caracolito Hammel & N. Bunchosia hookeriana cf. A. Juss. Zamora 1250 m. * 1250 m. ^ W. Farfan, et al. 1967 (CUZ, F, W. Farfan, et al. 2345 (CUZ, F, USM, WFU) USM, WFU) AM, HV, HU, LO, MD, SM AM, CU, LO, MD Bunchosia sp1(1930WFR) 1250 m. LINACEAE DC. ex Perleb W. Farfan, et al. 1930 (CUZ, F, Hebepetalum humiriifolium (Planch.) USM) Benth. Byrsonima arthropoda A. Juss. 800 m. * 800 m. W. Farfan, et al. 1281 (CUZ, W. Farfan, et al. 3304 (CUZ) MO, USM, WFU) AM, CU, LO, MD, PA, SM, UC AM, JU, LO, MD Byrsonima poeppigiana A. Juss.

321

1000 - 1500 m. * W. Farfan, et al. 1493 (CUZ, K. Garcia, et al. 1211 (CUZ, F) MO, USM, WFU) AM, HU, LO, MD, PA, SM, UC AM, LO, PA, SM Byrsonima sp1(2201WFR) Quararibea sp1(528KGC) 1500 m. 1500 m. W. Farfan, et al. 2201 (CUZ, F, K. Garcia, et al. 528 (CUZ, MO, USM, WFU) USM, WFU) Byrsonima sp3(1063KGC) Quararibea wittii K. Schum. & Ulbr. 1500 - 1750 m. 1250 - 1500 m. ^ K. Garcia, et al. 1063 (CUZ, F, K. Garcia, et al. 1283 (CUZ, USM, WFU) MO, USM, WFU) Byrsonima sp4(1281WFR) AM, CU, HU, LO, MD, SM, TU, 1500 m. UC W. Farfan, et al. 1281 (CUZ, F) Spirotheca rosea (Seem.) P.E. Gibbs & Byrsonima sp5(4862WFR) W.S. Alverson 1750 m. 1250 - 1750 m. W. Farfan, et al. 4862 (MOL, W. Farfan, et al. 2691 (CUZ, F, WFU) USM, WFU) AM, CA, JU, CU, SM MALVACEAE Juss. Sterculia peruviana (D.R. Simpson) E.L. Ceiba samauma (Mart.) K. Schum. Taylor ex Brako & Zarucchi 1500 m. 1250 m. * ^ W. Farfan, et al. 2737 (CUZ, F, K. Garcia, et al. 721 (CUZ, F, USM, WFU) USM, WFU) AM, CU, HU, LI, LO, MD, LO, MD, PA, PU, SM PA, SM, UC Eriotheca globosa (Aubl.) A. Robyns MARCGRAVIACEAE Bercht. & J. 850 m. ^ Presl W. Farfan, et al. 5745 (CUZ) Norantea guianensis Aubl. CU, LO, MD, PA, SM 850 m. ^ Heliocarpus americanus L. W. Farfan, et al. 5752 (CUZ) 1250 - 1750 m. CU, HU, LO, MD, PA K. Garcia, et al. 413 (CUZ, MO, USM, WFU) MELASTOMATACEAE Juss. AM, CA, CU, HU, JU, LO, MD, Axinaea glandulosa Ruiz & Pav. ex D. PA, PI, PU, SM, UC Don Huberodendron swietenioides (Gleason) 2890 m. Endémico ^ Ducke W. Farfan, et al. 4647 (MOL, 800 m. WFU) W. Farfan, et al. 1387 (CUZ, CU MO, USM, WFU) Axinaea pennellii Gleason CU, HU, LO, MD, PA, SM, UC 3000 - 3250 m. Endémico ^ Matisia malacocalyx (A. Robyns & S. W. Farfan, et al. 579 (CUZ, Nilsson) W.S. Alverson DAV, HUT, MO, USM, WFU) 800 - 1000 m. * ^ CU, CA Axinaea sp3(4598WFR)

322

2250 m. 1250 - 1750 m. * ^ W. Farfan, et al. 4598 (MOL, M. N. Raurau, et al. 303 (CUZ, WFU) F, USM, WFU) Axinaea sp5(2036KGC) LO, HU, MD, SM 3250 m. Miconia alpina Cogn. W. Farfan, et al. 2036 (CUZ) 3537 - 3625 m. Endémico Bellucia pentamera Naudin A. Nina, et al. 62 (CUZ) 800 - 1800 m. ^ AM, AP, CU W. Farfan, et al. 1428 (CUZ) Miconia aristata Gleason AM, CU, HU, LO, MD, PA, PU, 2750 - 3000 m. ^ SM, UC W. Farfan, et al. 903 (CUZ, Blakea sp2(349MRQ) DAV, HUT, MO, USM, WFU) 1500 m. CU M. N. Raurau, et al. 349 (CUZ, Miconia astroplocama Donn. Sm. F, USM, WFU) 1500 - 1800 m. * Graffenrieda cucullata (Triana) L.O. M. N. Raurau, et al. 225 (CUZ, Williams MO, USM, WFU) 1250 - 2000 m. AM, HU, LO, PA M. N. Raurau, et al. 254 (CUZ, Miconia aulocalyx Mart. ex Triana F, USM, WFU) 800 - 1800 m. * CU, JU, PA, PU, SM W. Farfan, et al. 1077 (CUZ, Henriettella sp1(678KGC) DAV, HUT, MO, USM, WFU) 1250 m. LO, MD, UC, SM K. Garcia, et al. 678 (CUZ, F, Miconia aurea (D. Don) Naudin USM, WFU) 800 m. Leandra sp2(318MRQ) W. Farfan, et al. 1360 (CUZ, 1750 m. MO, USM, WFU) M. N. Raurau, et al. 318 (CUZ, CU, HU, LO, MD, PU, SM F, USM, WFU) Miconia axinaeoides Gleason Leandra sp3(1073WFR) 1500 - 1750 m. * ^ 1500 - 1800 m. W. Farfan, et al. 2107 (CUZ, F, W. Farfan, et al. 1073 (CUZ, USM, WFU) MO, USM, WFU) AY Loreya sp1(639KGC) Miconia barbeyana Cogn. 1500 m. 1500 - 2750 m. K. Garcia, et al. 639 (CUZ, F) K. Garcia, et al. 1547 (CUZ, F, Meriania cuzcoana Wurdack USM, WFU) 2500 m. Endémico ^ AM, CU, HU, PA, SM W. Farfan, et al. 976 (CUZ, Miconia brachyanthera Triana DAV, HUT, MO, USM, WFU) 2500 m. Endémico* CU W. Farfan, et al. 945 (CUZ, MO, Meriania sp2(305MRQ) USM, WFU) 1750 m. PA M. N. Raurau, et al. 305 (CUZ, Miconia brevistylis Cogn. F, USM, WFU) 1750 - 3250 m. Endémico ^ Miconia affinis DC.

323

W. Farfan, et al. 561 (CUZ, M. N. Raurau, et al. 325 (CUZ, DAV, HUT, MO, USM, WFU) F, USM, WFU) CU, HU SM, HU, LO, MD, PA, UC Miconia bullata (Turcz.) Triana Miconia elongata Cogn. 3000 - 3625 m. 1500 - 2890 m. ^ M. N. Raurau, et al. 1240 (CUZ, K. Garcia, et al. 1543 (CUZ, F, F, USM) USM, WFU) CU, PA, PI CU, LO, PA, PU Miconia calophylla (D. Don) Triana Miconia hygrophila Naudin 1750 - 2250 m. * ^ 1800 m. ^ M. N. Raurau, et al. 311 (CUZ, K. Garcia, et al. 1658 (CUZ, F, F, USM, WFU) USM, WFU) PA CU Miconia calvescens DC. Miconia lamprophylla Triana 1250 - 1500 m. 1750 - 1800 m. * ^ M. N. Raurau, et al. 224 (CUZ, M. N. Raurau, et al. 84 (CUZ, MO, USM, WFU) DAV, HUT, MO, USM, WFU) AM, CA, CU, HU, JU, LO, MD, AM, HU, LO, MD, PA, SM PA, PU, SM, UC Miconia madisonii Wurdack Miconia centrodesma Naudin 2500 - 3250 m. Endémico* ^ 1250 - 1500 m. K. Garcia, et al. 1519 (CUZ, F, M. N. Raurau, et al. 200 (CUZ, USM, WFU) MO, USM, WFU) AY AM, CU, HU, LO, MD, PA, SM Miconia peruviana cf. Cogn. Miconia cookii Gleason 1250 - 1500 m. ^ 2750 - 3450 m. Endémico ^ W. Farfan, et al. 1615 (CUZ, F, W. Farfan, et al. 848 (CUZ, USM, WFU) DAV, HUT, MO, USM, WFU) CU, PU CU Miconia prasina (Sw.) DC. Miconia crassipes Triana 1500 m. * ^ 1750 m. Endémico* M. N. Raurau, et al. 226 (CUZ, M. N. Raurau, et al. 334 (CUZ, MO, USM, WFU) F, USM, WFU) AM, LO, MD, PA, SM, UC AM, PA Miconia punctata (Desr.) D. Don ex DC. Miconia crassistigma Cogn. 850 m. * 2750 - 3450 m. Endémico* ^ W. Farfan, et al. 5765 (CUZ) W. Farfan, et al. 828 (CUZ, AM, LO, MD, PA, PU, SM, UC DAV, HUT, MO, USM, WFU) Miconia setulosa Cogn. CA 3450 - 3537 m. ^ Miconia cretacea Gleason W. Farfan, et al. 810 (CUZ, MO, 1500 m. ^ USM, WFU) M. N. Raurau, et al. 360 (CUZ, CU F, USM, WFU) Miconia sp1 CU 3537 m. Miconia dolichorrhyncha Naudin W. Farfan S.N. (CUZ) 1000 - 1750 m. * Miconia sp10(71ANQ)

324

3537 m. 1500 m. A. Nina, et al. 71 (CUZ) K. Garcia, et al. 680 (CUZ, F, Miconia sp12(112MRQ) USM, WFU) 2000 m. Miconia sp32(66ANQ) M. N. Raurau, et al. 112 (CUZ, 3537 m. DAV, HUT, MO, USM, WFU) A. Nina, et al. 66 (CUZ) Miconia sp13(1386WFR) Miconia sp36(313MRQ) 800 m. 1750 m. W. Farfan, et al. 1386 (CUZ, F, M. N. Raurau, et al. 313 (CUZ, USM, WFU) F, USM, WFU) Miconia sp14(1548KGC) Miconia sp37(309MRQ) 3625 m. & 1500 - 1750 m. K. Garcia, et al. 1528 (CUZ, F) M. N. Raurau, et al. 309 (CUZ, Miconia sp15(222MRQ) F, USM, WFU) 1500 m. Miconia sp38(2959WFR) M. N. Raurau, et al. 222 (CUZ, 3450 m. MO, USM, WFU) W. Farfan, et al. 2959 (CUZ, F) Miconia sp2(819WFR) Miconia sp39(2991WFR) 3250 - 3450 m. 3250 m. W. Farfan, et al. 819 (CUZ, W. Farfan, et al. 2991 (CUZ) DAV, HUT, MO, USM, WFU) Miconia sp4(1513WFR) Miconia sp20(307MRQ) 1000 m. 1750 m. W. Farfan, et al. 1513 (CUZ, F) M. N. Raurau, et al. 819 (MOL, Miconia sp40(1517KGC) WFU) 3000 m. Miconia sp23(359MRQ) K. Garcia, et al. 1517 (MOL, 1500 m. WFU) M. N. Raurau, et al. 359 (CUZ, Miconia sp42(1519KGC) F, USM, WFU) 3000 m. Miconia sp26(344MRQ) K. Garcia, et al. 1519 (MOL, 1500 m. WFU) M. N. Raurau, et al. 344 (CUZ, Miconia sp46(1365WFR) F, USM, WFU) 800 - 1000 m. Miconia sp28(339MRQ) W. Farfan, et al. 1365 (CUZ, F, 1500 m. USM, WFU) M. N. Raurau, et al. 339 (CUZ, Miconia sp47(3369WFR) F, USM, WFU) 800 m. Miconia sp3(561WFR) W. Farfan, et al. 3369 (CUZ) 1500 - 3000 m. Miconia sp48(3358WFR) W. Farfan, et al. 561 (CUZ, 1750 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 3358 (CUZ, F) Miconia sp30(333MRQ) Miconia sp49(MRQ235) 1750 - 1800 m. 800 - 1500 m. M. N. Raurau, et al. 333 (CUZ, M. N. Raurau, et al. 235 (CUZ, F, USM, WFU) F, USM, WFU) Miconia sp31(680KGC) Miconia sp5(696KGC)

325

1250 m. AM, CA, CU, HU, LO, MD, PA, K. Garcia, et al. 696 (CUZ, F, SM, UC USM, WFU) Miconia tetragona Cogn. Miconia sp50(855WFR) 850 m. * ^ 3450 m. & W. Farfan, et al. 5753 (CUZ) W. Farfan, et al. 855 (CUZ, MO, LO USM, WFU) Miconia theizans (Bonpl.) Cogn. Miconia sp6(2217WFR) 1500 - 2750 m. 1500 m. M. N. Raurau, et al. 307 (CUZ, W. Farfan, et al. 2217 (CUZ, F, F) USM, WFU) AM, CA, CU, HU, PA, PU, SM Miconia sp9(2319WFR) Miconia tomentosa (Rich.) D. Don ex 1250 - 1500 m. DC. W. Farfan, et al. 2319 (CUZ, F, 800 m. USM, WFU) W. Farfan, et al. 1329 (CUZ, F, Miconia spennerostachya Naudin USM) 1250 - 1800 m. * AM, CU, HU, LO, MD, PA, PU, W. Farfan, et al. 1063 (CUZ, SM DAV, HUT, MO, USM, WFU) Mouriri sp1(659KGC) AY, SM, JU, LO, MD 1250 m. Miconia splendens cf. (Sw.) Griseb. K. Garcia, et al. 659 (CUZ, F, 800 - 1500 m. * USM, WFU) W. Farfan, et al. 2212 (CUZ, F, sp1(347MRQ) sp1(347MRQ) USM, WFU) 1500 m. AM, HU, JU, LO, MD, PA, PU, M. N. Raurau, et al. 347 (CUZ, SM, UC F, USM) Miconia stelligera Cogn. sp2(101MRQ) sp2(101MRQ) 1800 m. * ^ 2250 m. M. N. Raurau, et al. 83 (CUZ, M. N. Raurau, et al. 101 (CUZ, MO, USM, WFU) DAV, HUT, MO, USM, WFU) CA, HU, LO, PU, SM, UC Tibouchina dimorphophylla Gleason Miconia terborghii Wurdack 3250 m. 2750 m. Endémico ^ W. Farfan, et al. 616 (CUZ, W. Farfan, et al. 4597 (MOL, DAV, HUT, MO, USM, WFU) WFU) CU, PU CU Miconia terera Naudin MELIACEAE Juss. 1500 - 1750 m. * Cabralea canjerana (Vell.) Mart. W. Farfan, et al. 3950 (CUZ, F, 1500 - 1750 m. USM) W. Farfan, et al. 2667 (CUZ, F, JU, PA, PU USM, WFU) Miconia ternatifolia Triana AM, CU, LO, MD, PA, SM, UC 1250 - 1750 m. * Cedrela odorata L. M. N. Raurau, et al. 237 (CUZ, 1250 - 1500 m. F, USM, WFU) W. Farfan, et al. 2184 (CUZ, F, USM, WFU)

326

AM, CA, CU, HU, LO, MD, PA, W. Farfan, et al. 1032 (CUZ, SM, UC MO) Guarea guidonia (L.) Sleumer Ruagea glabra Triana & Planch. 1250 - 1500 m. 1250 - 2000 m. M. Mamami, et al. 409 (CUZ, F, W. Farfan, et al. 1261 (CUZ, USM) MO, USM, WFU) AM, CU, HU, LO, MD, PA, SM, AM, CA, CU, LO, PA, PI, SM UC Ruagea sp2(1164WFR) Guarea kunthiana A. Juss. 2000 m. 1250 - 1750 m. W. Farfan, et al. 1164 (CUZ, W. Farfan, et al. 1743 (CUZ, F, MO, USM, WFU) USM, WFU) Ruagea subviridiflora (C. DC. ex AM, CA, CU, HU, LO, JU, MD, Harms) Harms PU, PI, PA, SM, UC 2500 - 2750 m. Endémico Guarea macrophylla cf. Vahl W. Farfan, et al. 894 (CUZ, 850 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 5785 (CUZ) CU AM, CA, CU, HU, LO, MD, Trichilia elegans A. Juss. PA, PU, SM, UC 1250 - 1500 m. Guarea silvatica C. DC. W. Farfan, et al. 2316 (CUZ, F, 800 - 1000 m. * ^ USM, WFU) W. Farfan, et al. 3305 (CUZ, F, AM, CU, HU, LO, MD, PA, SM, USM) TU, UC AM, LO, PA Trichilia havanensis Jacq. Guarea sp1(5774WFR) 850 m. ^ 850 m. W. Farfan, et al. 5782 (CUZ) W. Farfan, et al. 5774 (CUZ) CU Guarea sp2(669KGC) Trichilia micrantha Benth. 1250 - 1500 m. 1500 m. ^ K. Garcia, et al. 669 (CUZ, F, K. Garcia, et al. 1127 (CUZ, F, USM, WFU) USM, WFU) Guarea sp3(1591WFR) AM, CU, HU, LO, MD, PA, SM 1500 m. Trichilia pleeana (A. Juss.) C. DC. W. Farfan, et al. 1591 (CUZ, F, 1250 - 1500 m. USM, WFU) K. Garcia, et al. 686 (CUZ, F, Guarea sp4(709KGC) USM, WFU) 1250 m. CU, HU, JU, LO, MD, PA, SM, K. Garcia, et al. 709 (CUZ, F, UC USM, WFU) Trichilia rubra C. DC. Guarea sp5(2179WFR) 1500 m. * ^ 1500 m. W. Farfan, et al. 2276 (CUZ, F, W. Farfan, et al. 2179 (CUZ, F, USM, WFU) USM, WFU) AM, HU, LO, MD, PU, SM, UC Guarea sp6(1032WFR) Trichilia schomburgkii C. DC. 1750 m. 1250 - 1500 m. * ^

327

M. Mamami, et al. 414 (CUZ, F, Mollinedia sp1(1519WFR) USM, WFU) 1000 m. PA, UC W. Farfan, et al. 1519 (CUZ, F, Trichilia septentrionalis C. DC. USM) 800 m. Mollinedia sp2 W. Farfan, et al. 1287 (CUZ, F, 1500 m. USM, WFU) W. Farfan S.N. (CUZ) AM, CU, HU, LO, MD, PA, SM, Mollinedia tomentosa (Benth.) Tul. UC 800 m. ^ Trichilia sp11(4864WFR) W. Farfan, et al. 1382 (CUZ, 1750 m. MO, USM, WFU) W. Farfan, et al. 4864 (MOL, AM, AN, CA, CU, HU, JU, LL, WFU) PA, PI, PU, SM Trichilia sp3(2234WFR) 1500 m. MORACEAE Gaudich. W. Farfan, et al. 2234 (CUZ, F, Brosimum lactescens (S. Moore) C.C. USM, WFU) Berg 800 - 1500 m. MONIMIACEAE Juss. K. Garcia, et al. 1201 (CUZ, F, Mollinedia killipii J.F. Macbr. USM, WFU) 1250 - 1500 m. AM, CU, LO, MD, PA, PU W. Farfan, et al. 1733 (CUZ, F, Brosimum rubescens Taub. USM, WFU) 850 m. ^ AM, CA, CU, JU, LO, MD, PU, W. Farfan, et al. 5805 (CUZ) UC AM, CU, HU, JU, LA, LO, Mollinedia lanceolata Ruiz & Pav. MD, PA, SM, UC 1500 - 2500 m. Brosimum utile (Kunth) Oken W. Farfan, et al. 952 (CUZ, 800 - 1000 m. ^ DAV, HUT, MO, USM, WFU) W. Farfan, et al. 1538 (CUZ, F, AM, CU, HU, JU, MD, PA, PU USM, WFU) Mollinedia ovata Ruiz & Pav. AM, CU, JU, LO, MD, PA, PU 1250 - 2890 m. ^ Clarisia biflora Ruiz & Pav. W. Farfan, et al. 871 (CUZ, 1000 - 1500 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 1729 () AM, CA, CU, HU, LO, MD, PA, AM, CA, CU, JU, LO, MD, PA, SM, UC SM Mollinedia repanda Ruiz & Pav. Clarisia racemosa Ruiz & Pav. 1500 - 1800 m. 1250 - 1500 m. ^ K. Garcia, et al. 928 (CUZ, F, W. Farfan, et al. 1682 (CUZ, F, USM, WFU) USM, WFU) PA, CU, HU, CA AM, CU, JU, LO, MD, PA, SM, Mollinedia simulans J.F. Macbr. UC 1750 - 1800 m. Endémico* ^ Clarisia sp1 W. Farfan, et al. 2546 (CUZ, F, 1750 m. USM, WFU) W. Farfan S.N. (CUZ) SM Ficus americana Aubl.

328

1250 - 1800 m. W. Farfan, et al. 1770 (CUZ, F, W. Farfan, et al. 1004 (CUZ, USM, WFU) MO, USM, WFU) AM, CU, MD, PA, PU, SM, UC AM, CA, CU, JU, HU, LO, MD, Ficus maxima Mill. PA, PI, PU, SM 1250 - 2250 m. Ficus apollinaris Dugand W. Farfan, et al. 1832 (CUZ, F, 1250 - 1500 m. ^ USM, WFU) W. Farfan, et al. 2367 (CUZ, F, AM, CA, CU, JU, HU, LO, MD, USM, WFU) PA, PI, PU, SM CU, PA Ficus obtusifolia Kunth Ficus boliviana C.C. Berg 1250 m. 1250 - 1500 m. * ^ W. Farfan, et al. 1958 (CUZ, F, W. Farfan, et al. 2269 (CUZ, F, USM, WFU) USM, WFU) CA, CU, JU, LL, LO, MD, PA, MD SM, TU Ficus casapiensis (Miq.) Miq. Ficus pallida Vahl 1250 m. 1750 m. * ^ W. Farfan, et al. 4046 (MOL, W. Farfan, et al. 2635 (CUZ, F, WFU) USM, WFU) MD, CU, AM, PA MD, LO Ficus cervantesiana Standl. & L.O. Ficus pertusa L. f. Williams 1250 - 1500 m. 1250 m. * W. Farfan, et al. 1959 (CUZ, F, W. Farfan, et al. 1981 (CUZ, F, USM, WFU) USM) AM, CA.CU, HU, JU, LO, MD, PA, CA, LO PA, SM, UC Ficus crocata (Miq.) Miq. Ficus schippii Standl. 1000 m. 1250 - 1500 m. W. Farfan, et al. 1548 (CUZ, F) W. Farfan, et al. 2207 (CUZ, F, HU, MD, LO, PA, CU USM, WFU) Ficus cuatrecasana Dugand AM, CU, HU, LO, PA, SM 1250 - 1800 m. Ficus sp1(1973WFR) W. Farfan, et al. 1811 (CUZ, F, 1250 m. & USM, WFU) W. Farfan, et al. 1973 (CUZ, F) AM, AP, CA, CU, LL, LO, PA, Ficus sp2(2203WFR) SM 1500 m. Ficus donnell-smithii Standl. W. Farfan, et al. 2203 (CUZ, F, 1250 m. * ^ USM, WFU) K. Garcia, et al. 746 (CUZ, F, Ficus sp3(1970WFR) USM, WFU) 1250 - 1500 m. LO, PA, MD, HU, CU W. Farfan, et al. 1970 (CUZ, F) Ficus ecuadorensis C.C. Berg Ficus sp4(793AKGC) 1250 m. * ** 1250 m. W. Farfan, et al. 1883 (CUZ, F) K. Garcia, et al. 793A (CUZ, F) Ficus macbridei Standl. Ficus sp5(5013WFR) 1250 - 1500 m. 1750 m.

329

W. Farfan, et al. 5013 (MOL, Helicostylis tomentosa (Poepp. & Endl.) WFU) Rusby Ficus sp6(2358WFR) 850 m. 1250 m. W. Farfan, et al. 5817 (CUZ) W. Farfan, et al. 2358 (CUZ, F) AM, CU, HU, LO, MD, PA, Ficus sp7(2655WFR) PU, SM, UC 1750 m. Maclura tinctoria (L.) D. Don ex Steud. W. Farfan, et al. 2655 (CUZ, F, 1250 m. USM, WFU) W. Farfan, et al. 1841 (CUZ, F, Ficus sphenophylla cf. Standl. USM, WFU) 1250 m. AM, CA, CU, HU, JU, LO, MD, W. Farfan, et al. 2377 (CUZ, F, PA, SM, TU, UC USM, WFU) Morus insignis Bureau CU, HU, JU, LO, MD, PA 1500 - 2500 m. Ficus tonduzii Standl. W. Farfan, et al. 1670 (CUZ, 1250 - 1500 m. MO, USM, WFU) W. Farfan, et al. 1926 (CUZ, F, AM, CA, CU, JU, PA, PI, SM USM, WFU) Naucleopsis sp1 AM, CA, CU, JU, PA, PI, SM 800 m. Ficus tovarensis Pittier W. Farfan S.N. (CUZ) 1250 m. * ** Perebea guianensis Aubl. W. Farfan, et al. 4059 (MOL, 1000 - 1500 m. WFU) W. Farfan, et al. 1476 (CUZ, Nuevo registro MO, USM, WFU) Ficus trapezicola Dugand AM, CU, LO, MD, PA, PU, SM, 1500 m. * UC W. Farfan, et al. 1793 (CUZ, F, Poulsenia armata (Miq.) Standl. USM) 1250 - 1500 m. CA, AM W. Farfan, et al. 4094 (MOL, Ficus trigona L. f. WFU) 1500 m. AM, CU, HU, JU, LO, MD, PA, W. Farfan, et al. 1751 (CUZ, F, SM, UC USM, WFU) Pseudolmedia laevigata Trécul AM, CA, CU, HU, JU, LA, LO, 1500 m. MD, PA, SM, UC W. Farfan, et al. 1689 (CUZ, F, Helicostylis elegans (J.F. Macbr.) C.C. USM, WFU) Berg AM, CU, HU, JU, LO, MD, PA, 800 - 1250 m. * ^ PU, SM, UC W. Farfan, et al. 3274 (CUZ, F, Pseudolmedia laevis (Ruiz & Pav.) J.F. USM, WFU) Macbr. AM, LO, MD, PA 1000 - 1500 m. ^ Helicostylis sp2(2379WFR) W. Farfan, et al. 2310 (CUZ, F, 1250 m. USM, WFU) W. Farfan, et al. 2379 (CUZ, F, CU, LO, MD, PA, SM USM, WFU) Pseudolmedia macrophylla Trécul 1500 m.

330

W. Farfan, et al. 1631 (CUZ, F, USM, WFU) MYRISTICACEAE R. Br. AM, CU, LO, MD, PA, PU Iryanthera juruensis Warb. Pseudolmedia rigida (Klotzsch & H. 800 m. Karst.) Cuatrec. W. Farfan, et al. 1394 (CUZ, 1500 - 2000 m. MO, USM, WFU) W. Farfan, et al. 2557 (CUZ, F, AM, CU, HU, LO, MD, PA, PU, USM, WFU) SM, UC CU, LO, MD, PA Iryanthera laevis Markgr. Pseudolmedia sp1(2133WFR) 800 m. ^ 1500 m. W. Farfan, et al. 1307 (CUZ, W. Farfan, et al. 2133 (CUZ, F, MO, USM, WFU) USM, WFU) CU, HU, LI, LO, MD, PU, SM, Pseudolmedia sp2(5010WFR) UC 1750 m. Otoba parvifolia (Markgr.) A.H. Gentry W. Farfan, et al. 5010 (MOL, 1250 m. WFU) W. Farfan, et al. 2297 (CUZ, F, Sorocea briquetii J.F. Macbr. USM, WFU) 1250 m. * ^ AM, CU, HU, LO, MD, PA, SM, K. Garcia, et al. 727 (CUZ, F, UC USM, WFU) Virola calophylla (Spruce) Warb. LO, HU, MD, SM 850 m. ^ Sorocea steinbachii C.C. Berg W. Farfan, et al. 5842 (CUZ) 1000 - 1250 m. AM, CU, LO, MD, PA, SM W. Farfan, et al. 2380 (CUZ, F, Virola duckei A.C. Sm. USM) 1500 - 1750 m. CU, HU, LO, MD, PA, SM, UC W. Farfan, et al. 2559 (CUZ, F, sp1(4860WFR) sp1(4860WFR) USM, WFU) 1750 m. PA, AM, MD, CU W. Farfan, et al. 4860 (MOL, Virola elongata (Benth.) Warb. WFU) 850 m. Trophis caucana (Pittier) C.C. Berg W. Farfan, et al. 5841 (CUZ) 1250 m. CU, LO, MD, PA K. Garcia, et al. 748 (CUZ, F, Virola flexuosa cf. A.C. Sm. USM, WFU) 1500 m. ^ AM, CA, CU, HU, JU, LO, MD, W. Farfan, et al. 1740 (CUZ, F, PA, SM, UC USM) MD, PA, CU, LO MYRICACEAE Rich. ex Kunth Virola mollissima (Poepp. ex A. DC.) Morella pubescens (Humb. & Bonpl. ex Warb. Willd.) Wilbur 1500 m. ^ 2890 - 3000 m. W. Farfan, et al. 3981 (MOL, J. S. Espejo, et al. 653 (CUZ, WFU) DAV, HUT, MO, USM, WFU) LO, MD, SM, CU AM, AN, CA, CU, HU, JU, Virola peruviana (A. DC.) Warb. LL, PA, PI, PU, SM 1000 - 1250 m. *

331

W. Farfan, et al. 1529 (CUZ, F, W. Farfan, et al. 1969 (CUZ, F, USM) USM, WFU) AM, HU, MD, SM PU Virola sebifera Aubl. Myrcia egensis (O. Berg) McVaugh 1000 - 1750 m. ^ 1250 - 1750 m. * ^ W. Farfan, et al. 1508 (CUZ, F, W. Farfan, et al. 4102 (MOL, USM, WFU) WFU) CU, LO, MD, PA, SM SM, AM Myrcia fallax (Rich.) DC. MYRTACEAE Juss. 800 - 2250 m. Eugenia biflora (L.) DC. W. Farfan, et al. 1171 (CUZ, 850 m. MO, USM, WFU) W. Farfan, et al. 5848 (CUZ) AM, CA, CU, HU, JU, LL, LO, AM, CA, CU, HU, LO, PA, MD, PA, PI, PU, SM, TU, UC PU, SM, TU, UC Myrcia magnifolia (O. Berg) Kiaersk. Eugenia feijoi O. Berg 1500 m. * ** ^ 850 m. * W. Farfan, et al. 2076 (CUZ, F, W. Farfan, et al. 5850 (CUZ) USM, WFU) AM., CA, CP, CU, LO, MD, Myrcia mollis (Kunth) DC. PA, SM, UC 1750 - 2250 m. Eugenia florida DC. K. Garcia, et al. 1034 (CUZ, F, 1000 - 1800 m. ^ USM, WFU) W. Farfan, et al. 1044 (CUZ, AM, CA, CU, LO, MD, PA, SM MO, USM, WFU) Myrcia paivae O. Berg AM, CA, CU, HU, JU, LO, MD, 800 - 1750 m. ^ PA, PU, SM, UC W. Farfan, et al. 1446 (CUZ, F, Eugenia sp1(5851WFR) USM) 850 m. AM, CA, CU, HU, LO, MD, PA, W. Farfan, et al. 5851 (CUZ) PU, SM, UC Eugenia sp2(2156WFR) Myrcia rostrata DC. 1500 m. 1800 - 2250 m. * ^ W. Farfan, et al. 2156 (CUZ, F, W. Farfan, et al. 990 (CUZ, MO, USM, WFU) USM, WFU) Eugenia sp3(4803WFR) PU 1500 m. Myrcia sp15(3387WFR) W. Farfan, et al. 4803 (MOL, 1500 m. WFU) W. Farfan, et al. 3387 (CUZ) Myrcia aliena McVaugh Myrcia sp3(2058WFR) 1750 m. ^ 1500 m. K. Garcia, et al. 1088 (CUZ, F, W. Farfan, et al. 2058 (CUZ, F) USM) Myrcia sp9(2732WFR) AM, CU, JU, LO, MD, PA, PU, 1500 m. & SM W. Farfan, et al. 2732 (CUZ, F, Myrcia atrorufa McVaugh USM) 1250 - 2250 m. Endémico* ^ Myrcia splendens (Sw.) DC. 1000 - 1750 m.

332

W. Farfan, et al. 3267 (CUZ, F, AM, CU, HU, LO, MD, PA, PU, USM, WFU) SM AM, CA, CU, HU, JU, LL, LA, Neea oppositifolia Ruiz & Pav. LO, MD, PA, PI, PU, SM, TU, UC 800 - 1000 m. ^ Plinia sp1(933WFR) W. Farfan, et al. 1434 (CUZ, 1500 - 2750 m. MO, USM, WFU) W. Farfan, et al. 933 (CUZ) MD, CU Plinia sp2(971WFR) Neea parviflora Poepp. & Endl. 1750 - 2500 m. 1000 - 1500 m. * ^ W. Farfan, et al. 971 (CUZ, MO, W. Farfan, et al. 1486 (CUZ, USM, WFU) MO, USM, WFU) Plinia sp3(2535WFR) AM, HU, LO, MD, PA, SM, UC 1750 m. Neea sp1(5984WFR) W. Farfan, et al. 2535 (CUZ, F, 850 m. USM, WFU) W. Farfan, et al. 5984 (MOL) Siphoneugena densiflora O. Berg Neea spruceana Heimerl 1800 m. * ** 800 - 1500 m. * W. Farfan, et al. 1011 (CUZ, W. Farfan, et al. 1338 (CUZ, F, DAV, HUT, MO, USM, WFU) USM, WFU) Siphoneugena sp1(5847WFR) AM, SM, HU, LO, MD, PA, PU, 850 m. SM, TU, UC W. Farfan, et al. 5847 (CUZ) Neea virens Poepp. ex Heimerl 850 m. * NYCTAGINACEAE Juss. W. Farfan, et al. 5975 (MOL) Guapira noxia (Netto) Lundell AM, HU, LO, MD, SM, UC 850 m. * ^ W. Farfan, et al. 5973 (MOL) OCHNACEAE DC. LO Quiina amazonica A.C. Sm. Neea dimorphophylla Standl. 1000 - 1750 m. * ^ 1000 m. * ^ K. Garcia, et al. 1130 (CUZ, F, W. Farfan, et al. 1458A (CUZ, F) USM, WFU) MD LO, MD, PA, PU, SM, UC Neea divaricata Poepp. & Endl. 1000 - 1500 m. * OLACACEAE R. Br. K. Garcia, et al. 1240 (MOL, Heisteria acuminata (Bonpl.) Engl. WFU) 1250 - 1500 m. AM, HU, LO, MD, PA, SM, UC W. Farfan, et al. 2130 (CUZ, F, Neea floribunda cf. Poepp. & Endl. USM, WFU) 850 m. AM, CA, CU, HU, LA, LO, MD, W. Farfan, et al. 5990 (MOL) PA, SM, UC AM, CU, HU, LO, MD, PA, Heisteria duckei Sleumer SM 800 m. * ^ Neea laxa Poepp. & Endl. W. Farfan, et al. 1289 (CUZ, 1000 m. ^ MO, USM, WFU) K. Garcia, et al. 318 (CUZ, F, LO, MD, PA USM) Heisteria ovata Benth.

333

1250 - 1500 m. * ^ W. Farfan, et al. 931 (CUZ, W. Farfan, et al. 2135 (CUZ, F, DAV, HUT, MO, USM, WFU) USM, WFU) Freziera sp5(1136WFR) AM, LO 2000 m. Heisteria sp1(2325WFR) W. Farfan, et al. 1136 (CUZ, 1250 m. MO, USM, WFU) W. Farfan, et al. 2325 (CUZ, F, Ternstroemia globiflora Ruiz & Pav. USM, WFU) 1750 m. Endémico* Minquartia guianensis Aubl. W. Farfan, et al. 2586 (CUZ, F, 800 m. USM, WFU) W. Farfan, et al. 1393 (CUZ, LL, AY, PA MO, USM, WFU) AM, CU, HU, LO, MD, PA, SM, PHYLLANTHACEAE Martinov UC Hieronyma alchorneoides Allemão 1000 - 1500 m. OPILIACEAE Valeton K. Garcia, et al. 740 (CUZ, F, Agonandra peruviana Hiepko USM, WFU) 1250 - 1500 m. * ^ AM, CA, CU, HU, JU, LO, MD, W. Farfan, et al. 1777 (CUZ, F, PA, SM, UC USM, WFU) Hieronyma andina Pax & K. Hoffm. AM, CA, HU, LO, MD, PA 1500 - 1750 m. * K. Garcia, et al. 1102 (CUZ, F, PENTAPHYLACACEAE Engl. USM, WFU) Freziera angulosa Tul. PA, LO 2000 m. * ^ Hieronyma duquei Cuatrec. W. Farfan, et al. 1165 (CUZ, 1750 - 1800 m. * MO, USM, WFU) K. Garcia, et al. 1095 (CUZ, F, PU USM, WFU) Freziera dudleyi A.H. Gentry CA, PA, AM, SM 1800 - 2500 m. ^ Hieronyma fendleri Briq. W. Farfan, et al. 3217 (CUZ, F, 1250 - 2250 m. * USM, WFU) K. Garcia, et al. 1082 (CUZ, F, CU USM, WFU) Freziera karsteniana (Szyszył.) Kobuski CA, PA, AM, SM 2000 - 3000 m. Hieronyma macrocarpa Müll. Arg. W. Farfan, et al. 1190 (CUZ, 1500 m. * DAV, HUT, MO, USM, WFU) K. Garcia, et al. 1251 (CUZ, F, SM, CU, HU USM, WFU) Freziera lanata (Ruiz & Pav.) Tul. PA 3250 m. ^ Hieronyma oblonga (Tul.) Müll. Arg. W. Farfan, et al. 618 (CUZ, 1000 - 2250 m. DAV, HUT, MO, USM, WFU) K. Garcia, et al. 324 (CUZ, F, CU, AM, CA, AY, JU, HU, PA USM) Freziera sp3(931WFR) AM, CA, CU, LO, MD, PA, PU, 2000 - 2500 m. SM Hieronyma sp1(980KGC)

334

1500 - 1750 m. AM, CA, CU, HU, JU, LO, MD, K. Garcia, et al. 980 (CUZ, F, PA, SM, UC USM) Hieronyma sp2(1124WFR) POLYGALACEAE Hoffmanns. & 1800 - 2750 m. Link W. Farfan, et al. 1124 (CUZ, Monnina connectisepala Chodat MO, USM, WFU) 2890 - 3000 m. Hieronyma sp3(435KGC) W. Huaraca, et al. 149 (CUZ, 1500 m. MO, USM) K. Garcia, et al. 435 (CUZ, F, AM, CA, CU, JU, PA, PI, SM USM) Monnina sp1 Hieronyma sp4(1561WFR) 3537 m. 1000 - 1250 m. W. Farfan S.N. (CUZ) W. Farfan, et al. 1561 (CUZ, F, USM) POLYGONACEAE Juss. Hieronyma sp6(2570WFR) Coccoloba peruviana Lindau 1250 - 1750 m. 1250 m. * W. Farfan, et al. 2570 (CUZ, F, W. Farfan, et al. 2355 (CUZ, F, USM, WFU) USM, WFU) Hieronyma sp9(4752WFR) AM, HU, LO, MD, SM 1250 m. Triplaris weigeltiana (Rchb.) Kuntze W. Farfan, et al. 4752 (MOL, 1500 m. * ^ WFU) W. Farfan, et al. 1744 (CUZ, F, Margaritaria nobilis L. f. USM, WFU) 1500 m. ^ AM, LO, SM W. Farfan, et al. 2087 (CUZ, F, USM, WFU) PRIMULACEAE Batsch ex Borkh. AM, CU, HU, LO, MD, PA, PU, Ardisia sp1(396MMS) SM, TU, UC 1500 m. Phyllanthus attenuatus Miq. M. Mamani, et al. 396 (CUZ, 1500 - 1750 m. * ^ MO, USM, WFU) K. Garcia, et al. 1076 (CUZ, F, Cybianthus sp1(941WFR) USM, WFU) 1250 - 2500 m. LO, AM W. Farfan, et al. 941 (CUZ, MO, USM, WFU) PIPERACEAE Giseke Cybianthus sp3(2370WFR) Piper coruscans Kunth 1250 - 1500 m. 2250 m. ^ W. Farfan, et al. 2370 (CUZ, F, W. Farfan, et al. 1142 (CUZ, USM) DAV, HUT, MO, USM, WFU) Cybianthus sp4(720KGC) AM, CU, JU, LO, MD, PA, SM, 1250 - 1500 m. UC K. Garcia, et al. 720 (CUZ, F, Piper obliquum Ruiz & Pav. USM, WFU) 1250 - 1750 m. ^ Cybianthus sp5(1402WFR) W. Farfan, et al. 1871 (CUZ, F, 800 m. USM, WFU)

335

W. Farfan, et al. 1402 (CUZ, F, 1800 - 3450 m. USM) W. Farfan, et al. 2961 (CUZ, F, Cybianthus sp6(5860WFR) USM, WFU) 850 m. Myrsine sp12(4457WFR) W. Farfan, et al. 5860 (CUZ) 3625 m. Geissanthus ambigua (Mart.) G. W. Farfan, et al. 4457 (MOL, Agostini WFU) 1500 m. Myrsine sp2(3060WFR) K. Garcia, et al. 627 (CUZ, F) 2500 - 2750 m. AM, CA, CU, HU, JU, LO, W. Farfan, et al. 3060 (CUZ, F) MD, PA, PU, UC Myrsine sp3(5014WFR) Myrsine andina (Mez) Pipoly 1750 m. 2750 - 3537 m. ^ W. Farfan, et al. 5014 (MOL, W. Farfan, et al. 607 (CUZ, WFU) DAV, HUT, MO, USM, WFU) Myrsine sp4(1196WFR) CU, JU, LA, PI, PA, SM, 3000 m. Myrsine coriacea (Sw.) R. Br. ex Roem. W. Farfan, et al. 1196 (CUZ, & Schult. DAV, HUT, MO, USM, WFU) 2250 - 3250 m. Myrsine sp6(1083WFR) W. Farfan, et al. 617 (CUZ, 1750 - 3000 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 1083 (CUZ, AM, CA, CU, HU, JU, LA, PA, DAV, HUT, MO, USM, WFU) PU, SM Myrsine sp9(1695KGC) Myrsine dependens (Ruiz & Pav.) 3000 m. Spreng. K. Garcia, et al. 1695 (CUZ, F, 3450 - 3537 m. USM, WFU) W. Farfan, et al. 854 (CUZ, Myrsine youngii Pipoly DAV, HUT, MO, USM, WFU) 1750 - 3000 m. Endémico* ^ AM, AN, CA, CU, HU, JU, PA, W. Farfan, et al. 2055 (CUZ, F) PI, SM SM Myrsine manglilla (Dombey ex Lam.) R. sp2(628WFR) sp2(628WFR) Br. 2500 m. 1250 m. ^ W. Farfan, et al. 628 (CUZ, W. Farfan, et al. 4087 (MOL, DAV, HUT, MO, USM, WFU) WFU) LI, LL, CU PROTEACEAE Juss. Myrsine pellucida (Ruiz & Pav.) Spreng. Panopsis pearcei Rusby 800 - 2250 m. ^ 800 - 2000 m. * ^ M. Mamani, et al. 359 (CUZ, W. Farfan, et al. 1176 (CUZ, MO, USM) DAV, HUT, MO, USM, WFU) CU, MD, AM, PI, PA, JU CA Myrsine sp1(840WFR) Roupala monosperma (Ruiz & Pav.) 3450 m. I.M. Johnst. W. Farfan, et al. 840 (CUZ, MO, 1750 - 2250 m. USM) W. Farfan, et al. 3351 (CUZ, F, Myrsine sp10(2961WFR) USM, WFU)

336

AM, CA, CU, HU, PA W. Farfan, et al. 1838 (CUZ, F, Roupala montana Aubl. USM, WFU) 1250 - 1750 m. LO, MD K. Garcia, et al. 715 (CUZ, F, Prunus herthae Diels USM, WFU) 1750 - 2000 m. * ^ AM, CU, HU, JU, LO, MD, PU, K. Garcia, et al. 1000 (CUZ, F, SM USM, WFU) AM RHAMNACEAE L. Prunus huantensis Pilg. Rhamnus sphaerosperma Sw. 3000 - 3537 m. ^ 1250 m. W. Farfan, et al. 615 (CUZ, W. Farfan, et al. 1939 (CUZ, F, DAV, HUT, MO, USM, WFU) USM, WFU) AY, CA, CU, LL, PU AM, CA, CU, HU, JU, LO, Prunus integrifolia (C. Presl) Walp. PI, SM 1750 - 3000 m. ^ W. Farfan, et al. 1191 (CUZ, ROSACEAE Juss. MO, USM, WFU) Hesperomeles ferruginea (Pers.) Benth. AM, CU, LI, CA, PA, HU 2890 - 3000 m. Prunus pleiantha Pilg. W. Huaraca, et al. 131 (CUZ, 2500 m. * ^ MO, USM, WFU) W. Farfan, et al. 973 (CUZ, AM, CA, CU, HU, JU, LO, MD, DAV, HUT, MO, USM, WFU) PA, SM, UC HU, JU Hesperomeles sp1(1248WFR) Prunus sp6(2739WFR) 3000 m. 1500 m. W. Farfan, et al. 1248 (CUZ, W. Farfan, et al. 2739 (CUZ, F, MO, USM) USM, WFU) Polylepis pauta Hieron. Prunus stipulata J.F. Macbr. 3537 m. 2000 m. W. Farfan, et al. 4388 (MOL, W. Farfan, et al. 1178 (CUZ, WFU) DAV, HUT, MO, USM, WFU) AM, CU, HU, JU, SM AM, CU Polylepis sericea Wedd. 3625 m. RUBIACEAE Juss. W. Farfan, et al. 4455 (MOL, Alibertia bertierifolia K. Schum. WFU) 1250 - 1500 m. * ^ AN, CU, LL W. Farfan, et al. 2060 (CUZ, F) Prunus debilis Koehne AM, LO, MD 1250 - 2890 m. * ^ Alibertia sp1(5886WFR) W. Farfan, et al. 3070 (CUZ, F, 850 m. USM) W. Farfan, et al. 5886 (CUZ) AM, HU, LO, MD, PA, PU, SM, Amaioua corymbosa Kunth UC 850 m. * ^ Prunus detrita J.F. Macbr. W. Farfan, et al. 5874 (CUZ) 1000 - 1750 m. Endémico* ^ AM, LO, MD, PA

337

Bathysa australis (A. St.-Hil.) Hook. f. CA, CU, HU, JU, LO, PA, PU ex K. Schum. Cinchona macrocalyx Pav. ex DC. 1250 - 1500 m. 2750 - 3000 m. ^ W. Farfan, et al. 1246 (CUZ, W. Farfan, et al. 4464 (MOL, DAV, HUT, MO, USM, WFU) WFU) AM, CU, SM, PU CA, CU, PA, PI Bathysa peruviana K. Krause Cinchona micrantha Ruiz & Pav. 1750 m. ^ 1250 - 1750 m. Endémico W. Farfan, et al. 2623 (CUZ, F, W. Farfan, et al. 1989 (CUZ, F, USM, WFU) USM, WFU) AM, CU, HU, LO, MD, PA, SM, AM, CU, HU, JU, MD, PA, PU, UC SM Bathysa sp1(1295WFR) Cinchona pubescens Vahl 800 - 1000 m. 1800 m. W. Farfan, et al. 1295 (CUZ, W. Farfan, et al. 1022 (CUZ, MO, USM) MO, USM, WFU) Bathysa sp2(1744AWFR) AM, AR, CA, CU, HU, JU, PA, 1500 m. PU, SM W. Farfan, et al. 1744A (CUZ, F, Condaminea corymbosa (Ruiz & Pav.) USM) DC. Chimarrhis glabriflora Ducke 1250 m. 1250 m. W. Farfan, et al. 1847 (CUZ, F, W. Farfan, et al. 2296 (CUZ, F, USM, WFU) USM) AM, CA, CU, JU, SM, HU, LO, AM, CU, HU, JU, LO, MD, MD, PA, UC PA.SM Coussarea brevicaulis K. Krause Chimarrhis hookeri K. Schum. 1000 - 1250 m. * ^ 800 m. * W. Farfan, et al. 1458 (CUZ, W. Farfan, et al. 3301 (CUZ, F, MO, USM) USM) AM, LO, PA, SM AM, SM, HU, JU, LI, LO, MD, Coussarea ecuadorensis C.M. Taylor PA, UC 1250 - 1500 m. * Chomelia apodantha (Standl.) Steyerm. W. Farfan, et al. 1623 (CUZ, F, 1250 m. * ^ USM, WFU) K. Garcia, et al. 735 (CUZ, F, AM, CA, LO USM, WFU) Coussarea hirticalyx Standl. MD, SM 850 m. * Chomelia tenuiflora Benth. W. Farfan, et al. 5873 (CUZ) 1250 - 1500 m. AM, LO, MD, PA, SM W. Farfan, et al. 2236 (CUZ, F, Coussarea klugii Steyerm. USM, WFU) 1250 - 1500 m. * ^ AM, CU, HU, LO, MD, PA, SM W. Farfan, et al. 2121 (CUZ, F, Cinchona calisaya Wedd. USM) 2000 - 2890 m. ^ AM, LO W. Farfan, et al. 879 (CUZ, MO, Coussarea paniculata (Willd.) Standl. USM) 1500 m. *

338

W. Farfan, et al. 2740 (CUZ, F, AM, CU, LO, MD, PA, SM USM) Faramea torquata Müll. Arg. AM, HU, JU, LO, PA, SM, TU 850 m. * Dioicodendron dioicum (K. Schum. & W. Farfan, et al. 5891 (CUZ) Krause) Steyerm. AM, LO, MD, PA, PU, SM 1750 - 2000 m. Ferdinandusa chlorantha (Wedd.) W. Farfan, et al. 1175 (CUZ, Standl. MO, USM, WFU) 850 m. * ^ AM, CA, CU, HU, PA, SM W. Farfan, et al. 5877 (CUZ) Elaeagia mariae Wedd. AM, LO, MD, PA, PU, SM 800 - 2000 m. Ferdinandusa guainiae Spruce ex K. W. Farfan, et al. 1182 (CUZ, Schum. MO, USM) 850 m. * ^ CA, CU, PA, SM W. Farfan, et al. 5893 (CUZ) Elaeagia myriantha (Standl.) C.M. MD Taylor & Hammel Ferdinandusa sp1(1347WFR) 1500 m. 800 m. K. Garcia, et al. 2136 (MOL, W. Farfan, et al. 1347 (CUZ, F, WFU) USM) CA, CU, PA Guettarda crispiflora Vahl Elaeagia sp1(1058KGC) 1250 - 1750 m. 800 - 1750 m. W. Farfan, et al. 1877 (CUZ, F, K. Garcia, et al. 1058 (USM) USM, WFU) Elaeagia sp2(1033KGC) AM, CA, CU, JU, LO, MD, PA, 1500 - 1750 m. SM K. Garcia, et al. 1033 (CUZ, F, Guettarda tournefortiopsis Standl. USM, WFU) 2250 m. * ^ Elaeagia utilis (Goudot) Wedd. W. Farfan, et al. 4524 (MOL, 800 - 1000 m. * ^ WFU) W. Farfan, et al. 1298 (CUZ, PA, SM, AM, CA MO, USM) Hillia parasitica Jacq. AM, CA, JU, PA, SM 1250 - 1500 m. Faramea bangii Rusby K. Garcia, et al. 1285 (CUZ, F, 1500 - 1750 m. ^ USM) K. Garcia, et al. 1065 (CUZ, F, CA, CU, HU, JU, LO, PA, PU, USM) SM PA, CA, CU Isertia laevis (Triana) B.M. Boom Faramea candelabrum Standl. 1750 m. 2500 m. ^ W. Farfan S.N. (CUZ) W. Farfan, et al. 921 (CUZ, AM, CA, CU, JU, LL, LO, MD, DAV, HUT, MO, USM, WFU) PA, SM, UC CA, CU, PA Joosia umbellifera H. Karst. Faramea tamberlikiana Müll. Arg. 1500 m. 1250 m. W. Farfan, et al. 2735 (CUZ, F, K. Garcia, et al. 783 (CUZ, F, USM, WFU) USM) AM, CU, HU, LO, MD, SM

339

Ladenbergia oblongifolia (Humb. ex Palicourea sp9(3184WFR) Mutis) L. Andersson 3000 m. 1000 - 1750 m. W. Farfan, et al. 3184 (CUZ, F, W. Farfan, et al. 1465 (CUZ, USM, WFU) MO, USM) Palicourea stipularis Benth. AM, CA, CU, HU, JU, LO, MD, 2000 - 2500 m. PA, PU, SM, UC W. Farfan, et al. 3324 (CUZ, F, Ladenbergia sp1(1167WFR) USM, WFU) 2000 m. AM, CA, CU, HU, PA, SM W. Farfan, et al. 1167 (CUZ, Palicourea sulphurea (Ruiz & Pav.) DC. DAV, HUT, MO, USM, WFU) 2000 - 2250 m. * Ladenbergia sp2(3396WFR) W. Farfan, et al. 1160 (CUZ, 1750 m. MO, USM, WFU) W. Farfan, et al. 3396 (CUZ, F) AM, CA, HU, PA Ladenbergia sp4(1364WFR) Posoqueria coriacea M. Martens & 800 m. Galeotti W. Farfan, et al. 1364 (CUZ, 1250 - 1750 m. MO, USM, WFU) K. Garcia, et al. 1044 (CUZ, F, Macrocnemum roseum (Ruiz & Pav.) USM, WFU) Wedd. PA, LO, UC, JU, AM, CA, CU 1250 m. Psychotria allenii Standl. W. Farfan, et al. 4130 (MOL, 1000 - 1250 m. ^ WFU) W. Farfan, et al. 1457 (CUZ, AM, CU, HU, JU, LO, MD, PA, MO, USM) UC CU, AM, PA, LO Palicourea amethystina (Ruiz & Pav.) Psychotria conephoroides (Rusby) C.M. DC. Taylor 2250 m. 1750 - 1800 m. W. Farfan, et al. 3114 (CUZ, F, W. Farfan, et al. 5883A (MOL) USM, WFU) AM, CA, CU, HU, MD, PA, PU, AM, AY, CA, CU, HU, PA, PI, SM PU, SM Psychotria ernestii K. Krause Palicourea guianensis Aubl. 1500 m. * 850 m. W. Farfan, et al. 3916 (MOL, W. Farfan, et al. 5883 (CUZ) WFU) AM, CA, CU, HU, JU, LO, SM, LO, HU, JU, MD, PA, UC MD, PA, PU, SM, UC Psychotria pichisensis Standl. Palicourea lineata Benth. 1250 - 1500 m. * 3450 m. ^ K. Garcia, et al. 749 (CUZ, F, W. Farfan, et al. 947 (CUZ, MO, USM, WFU) USM, WFU) AM, CA, LO, HU, JU, MD, PA, CA, CU, AM, PA SM, UC Palicourea sp7(1182KGC) Psychotria sp1(2715WFR) 1500 m. 1500 m. K. Garcia, et al. 1182 (CUZ, F, W. Farfan, et al. 2715 (CUZ, F, USM) USM)

340

Psychotria sp10(4561WFR) AM, HU, LO, MD, PA, SM, UC 1800 m. sp12(2157WFR) sp12(2157WFR) W. Farfan, et al. 4561 (MOL, 1500 m. WFU) W. Farfan, et al. 2157 (CUZ, F, Psychotria sp2(1094WFR) USM, WFU) 2250 m. & W. Farfan, et al. 1094 (CUZ, RUTACEAE Juss. MO, USM, WFU) Zanthoxylum rhoifolium Lam. Psychotria sp3(1687WFR) 1500 m. ^ 1500 m. W. Farfan, et al. 1718 (CUZ, F, W. Farfan, et al. 1687 (CUZ, F, USM, WFU) USM) CA, CU Psychotria sp4(1769WFR) Zanthoxylum sprucei Engl. 1500 - 1750 m. & 1250 - 1500 m. ^ W. Farfan, et al. 1769 (CUZ, F, W. Farfan, et al. 1825 (CUZ, F, USM, WFU) USM, WFU) Psychotria sp7(1562WFR) AM, CU, SM, LO, MD, SM, UC 1000 m. W. Farfan, et al. 1562 (CUZ, F, SABIACEAE Blume USM) Meliosma boliviensis Cuatrec. Psychotria sp8(877WFR) 1250 - 1750 m. 2750 - 3000 m. K. Garcia, et al. 931 (CUZ, F, W. Farfan, et al. 877 (CUZ, MO, USM, WFU) USM, WFU) CA, CU, JU, PA, SM Psychotria sp9(3273WFR) Meliosma frondosa Cuatrec. & Idrobo 1000 m. 1800 - 3250 m. ^ W. Farfan, et al. 3272 (CUZ, F, W. Farfan, et al. 2986 (CUZ, F, USM, WFU) USM, WFU) Rudgea verticillata (Ruiz & Pav.) CA, CU, PA, PI, SM Spreng. Meliosma glabrata (Liebm.) Urb. 1500 - 1750 m. ^ 1250 - 2890 m. * W. Farfan, et al. 2237 (CUZ, F, W. Farfan, et al. 1951 (CUZ, F, USM) USM) AM, CU, HU, LO, MD, PA, SM, MD, PA UC Meliosma herbertii Rolfe Schizocalyx obovatus (K. Schum. ex 800 - 1250 m. ^ Standl.) Kainul. & B. Bremer W. Farfan, et al. 1315 (CUZ, 850 m. * MO, USM, WFU) W. Farfan, et al. 5878 (CUZ) AM, CU, HU, LO, MD, PA, PU, HU, JU, LI, LO, MD, PA, SM, UC SM, UC Meliosma pumila A.H. Gentry Simira rubescens (Benth.) Bremek. ex 2500 m. Endémico* Steyerm. W. Farfan, et al. 3062 (CUZ, F, 1500 m. * ^ USM, WFU) W. Farfan, et al. 1792 (CUZ, F, AM, CA, PU, SM USM, WFU) Meliosma sp11(1106WFR)

341

1750 - 3000 m. Casearia fasciculata (Ruiz & Pav.) W. Farfan, et al. 1106 (CUZ, Sleumer DAV, HUT, MO, USM, WFU) 1500 m. Meliosma sp13(3075WFR) W. Farfan, et al. 1616 (CUZ, F, 2500 m. & USM, WFU) W. Farfan, et al. 3075 (USM) AM, CU, HU, LO, MD, PA, SM, Meliosma sp14(4703WFR) UC 2890 m. Casearia javitensis Kunth W. Farfan, et al. 4703 (MOL, 800 - 1000 m. * ^ WFU) W. Farfan, et al. 1564 (CUZ, Meliosma sp2(1215WFR) MO, USM, WFU) 3000 m. AM, LO, MD, PA, SM W. Farfan, et al. 1215 (CUZ, Casearia sp2(1307WFR) DAV, HUT, MO, USM, WFU) 800 m. Meliosma sp4(5899WFR) W. Farfan, et al. 1307 (CUZ, 850 m. MO, USM) W. Farfan, et al. 5899 (MOL) Casearia sp3(1176KGC) Meliosma sp5(955WFR) 1500 m. 2500 m. K. Garcia, et al. 1176 (CUZ, F, W. Farfan, et al. 955 (CUZ, MO, USM, WFU) USM, WFU) Casearia sp4(2182WFR) Meliosma sp7(1123KGC) 1500 m. 1500 - 2500 m. W. Farfan, et al. 2182 (CUZ, F, K. Garcia, et al. 1123 (CUZ, F, USM, WFU) USM, WFU) Casearia sylvestris Sw. Meliosma vasquezii A.H. Gentry 1000 - 1250 m. 1800 m. K. Garcia, et al. 789 (CUZ, MO, W. Farfan, et al. 1072 (CUZ, USM) MO, USM, WFU) AM, CA, CU, HU, JU, LO, MD, LO, CU, SM, PU PA, SM, UC Casearia tachirensis Steyerm. SALICACEAE Mirb. 1250 - 1750 m. ^ Banara sp1(1985WFR) W. Farfan, et al. 1956 (CUZ, F, 1250 m. USM) W. Farfan, et al. 1985 (CUZ, F) CA, PA Casearia arborea (Rich.) Urb. Casearia ulmifolia Vahl ex Vent. 1000 m. 1500 m. * ^ W. Farfan, et al. 1464 (CUZ, W. Farfan, et al. 1785 (CUZ, F, MOL) USM, WFU) AM, CU, HU, LO, MD, PA, SM, AM, LO, MD, PA, PU, SM, UC UC Casearia corymbosa Kunth Casearia zahlbruckneri Szyszył. 800 - 1500 m. * ^ 1750 - 2250 m. ^ K. Garcia, et al. 729 (CUZ, MO, K. Garcia, et al. 1021 (CUZ, USM) MO, USM, WFU) LO AM, CA, CU, SM

342

Hasseltia floribunda Kunth W. Farfan, et al. 5902A (MOL) 1500 m. AM, CA, JU, LO, PA, SM, TU K. Garcia, et al. 577 (CUZ, F, Cupania rubiginosa (Poir.) Radlk. USM, WFU) 1500 - 2000 m. * ^ AM, AY, CA, CU, HU, JU, W. Farfan, et al. 1152 (CUZ, LO, MD, PA, SM, UC MO, USM, WFU) Laetia procera (Poepp.) Eichler LO 1250 - 1500 m. * ^ Matayba guianensis Aubl. K. Garcia, et al. 738 (CUZ, MO, 1500 - 1800 m. * ^ USM) W. Farfan, et al. 2553 (CUZ, F, AM, LO, MD, PA, SM, UC USM, WFU) sp1(2671WFR) sp1(2671WFR) LO, MD, PU, SM 1500 - 2250 m. Matayba scrobiculata Radlk. W. Farfan, et al. 2671 (CUZ, F, 1500 m. ^ USM, WFU) W. Farfan, et al. 1780 (CUZ, Tetrathylacium macrophyllum Poepp. MO, USM) 1250 m. ^ CU, MD W. Farfan, et al. 1911 (CUZ, F, Talisia cerasina (Benth.) Radlk. USM, WFU) 850 m. ^ AM, CU, HU, LO, MD, PA, PU, W. Farfan, et al. 5902 (MOL) SM, UC AM, CU, LO, MD, SM, UC Talisia sp1(5901WFR) SAPINDACEAE Juss. 850 m. Allophylus divaricatus Radlk. W. Farfan, et al. 5901 (MOL) 1250 - 1500 m. * W. Farfan, et al. 1835 (CUZ, F, SAPOTACEAE Juss. USM, WFU) Chrysophyllum acreanum A.C. Sm. AM, AN, HU, LO, MD, SM, UC 1000 - 1250 m. * ^ Allophylus floribundus (Poepp.) Radlk. W. Farfan, et al. 2337 (CUZ, F, 1250 - 1500 m. * USM, WFU) W. Farfan, et al. 2378 (CUZ, F, CA, LO USM, WFU) Chrysophyllum lucentifolium Cronquist AM, CA, HU, JU, LO, MD, PA, 850 m. * ^ PI, PU, SM, TU, UC W. Farfan, et al. 5917 (MOL) Allophylus punctatus (Poepp.) Radlk. LO, PA, TU 1500 m. Chrysophyllum manaosense (Aubrév.) K. Garcia, et al. 1292 (CUZ, F, T.D. Penn. USM, WFU) 1000 m. * ^ AY, CA, CU, LO, MD, PA, PU, W. Farfan, et al. 1565 (CUZ, F, SM, TU USM) Allophylus sp3(617KGC) AM, LO, MD 1250 - 1500 m. Chrysophyllum sanguinolentum (Pierre) K. Garcia, et al. 617 (CUZ, F, Baehni USM) 850 m. Cupania latifolia Kunth W. Farfan, et al. 5916 (MOL) 1750 m. *

343

AM, CU, LO, HU, MD, PA, W. Farfan, et al. 1385A (CUZ, SM MO, USM, WFU) Chrysophyllum sp1(5913WFR) AM, CA, CU, LO, MD, PA, SM, 850 m. UC W. Farfan, et al. 5913 (MOL) Pouteria durlandii (Standl.) Baehni Chrysophyllum sp2(2628WFR) 800 - 1000 m. ^ 1500 - 1750 m. & W. Farfan, et al. 1488 (CUZ, W. Farfan, et al. 2628 (CUZ, F, MO, USM, WFU) USM, WFU) AM, CU, HU, LO, MD, PA Chrysophyllum venezuelanense (Pierre) Pouteria franciscana Baehni T.D. Penn. 800 m. * ^ 1500 m. ^ W. Farfan, et al. 1399 (CUZ, K. Garcia, et al. 601 (CUZ, F, MO, USM, WFU) USM, WFU) LO, MD AM, CA, CU, HV, HU, JU, LO, Pouteria guianensis Aubl. MD, PA, PU, UC 1000 - 1750 m. * ^ Elaeoluma nuda (Baehni) Aubrév. W. Farfan, et al. 1816 (CUZ, F, 850 m. * ^ USM) W. Farfan, et al. 5914 (MOL) AM, LO, MD, PA, SM LO Pouteria juruana K. Krause Micropholis egensis (A. DC.) Pierre 800 m. * 1000 m. ^ W. Farfan, et al. 5930 (MOL) W. Farfan, et al. 1495 (CUZ, LO, MD, PA MO, USM, WFU) Pouteria plicata T.D. Penn. AM, CU, HU, LO, MD, PA, SM 800 m. * ^ Micropholis guyanensis (A. DC.) Pierre W. Farfan, et al. 1425 (CUZ, 800 m. * MO, USM, WFU) W. Farfan, et al. 1378 (CUZ, LO MO, USM, WFU) Pouteria simulans cf. Monach. AM, LI, LO, MD, PA, PU, SM, 850 m. * UC W. Farfan, et al. 5915 (MOL) Micropholis venulosa (Mart. & Eichler) LO, MD, PA Pierre Pouteria sp1(3254WFR) 800 - 1000 m. 1000 m. W. Farfan, et al. 3264 (CUZ, F, W. Farfan, et al. 3254 (CUZ, F, USM, WFU) USM, WFU) AM, CU, LO, MD, PA, SM, UC Pouteria sp2(1066WFR) Pouteria bilocularis (H.J.P. Winkl.) 1000 - 1800 m. Baehni . Farfan, et al. 1066 (CUZ, MO, 1000 - 1500 m. USM, WFU) K. Garcia, et al. 1276 (CUZ, Pouteria sp6(637AKGC) MO, USM, WFU) 1250 m. AM, CA, CU, LO, MD, PA, SM, K. Garcia, et al. 637A (CUZ, F) UC Pouteria sp7(1609WFR) Pouteria cuspidata (A. DC.) Baehni 1250 - 1500 m. 800 m.

344

W. Farfan, et al. 1609 (CUZ, F, AM, CA, CU, HV, HU, JU, MD, USM, WFU) PA, PI, PU, SM Pouteria torta (Mart.) Radlk. 800 - 1750 m. ^ SOLANACEAE Juss. W. Farfan, et al. 1908 (CUZ, F, Cestrum conglomeratum Ruiz & Pav. USM, WFU) 2500 m. AM, CU, HU, LO, MD, PA, SM, W. Farfan, et al. 3071 (CUZ, F, UC USM, WFU) Pouteria trilocularis Cronquist AM, AP, AY, CA, CU, HU, JU, 1250 - 2000 m. ^ PA, PU K. Garcia, et al. 779 (CUZ, F, Cestrum sp3(1409MRQ) USM, WFU) 1500 m. AM, CU, LO, MD, PA, UC M. N. Raurau, et al. 1409 (CUZ, Sarcaulus brasiliensis (A. DC.) Eyma F) 1250 - 1500 m. ^ Larnax sp1(559WFR) W. Farfan, et al. 2335 (CUZ, F, 3250 - 3450 m. USM, WFU) W. Farfan, et al. 559 (CUZ, AM, CU, HU, LO, MD, PA, SM, DAV, HUT, MO, USM, WFU) UC Markea ulei (Dammer) Cuatrec. Sarcaulus sp2(2343WFR) 1250 m. ^ 1250 m. & K. Garcia, et al. 724 (CUZ, F, W. Farfan, et al. 2343 (CUZ, F) USM, WFU) Sarcaulus sp3(4747WFR) AM, CU, HU, LO, MD, PA, SM, 1500 m. UC W. Farfan, et al. 4747 (MOL, Saracha punctata Ruiz & Pav. WFU) 3250 - 3625 m. W. Farfan, et al. 849 (CUZ, MO, SCROPHULARIACEAE Juss. USM) Buddleja montana Britton ex Rusby AN, CA, CU, HU, JU, PA, PI, 3625 m. PU, SM A. Nina, et al. 150 (CUZ) Sessea dependens Ruiz & Pav. CU, PU 3537 - 3625 m. A. Nina, et al. 21 (CUZ) SIMAROUBACEAE DC. CU Simarouba amara Aubl. Solanum aphyodendron S. Knapp 1000 - 1500 m. 1500 m. W. Farfan, et al. 1559 (CUZ, F, W. Farfan, et al. 1778 (CUZ, F, USM, WFU) USM, WFU) AM, CA, CU, HU, JU, LO, MD, AM, AP, AY, CA, CU, HU, LI, PA, SM, TU LO, PA, PI, PU, SM Solanum grandiflorum Ruiz & Pav. SIPARUNACEAE (A. DC.) Schodde 1250 m. Siparuna aspera (Ruiz & Pav.) A. DC. W. Farfan, et al. 1912 (CUZ, F, 1250 - 1500 m. USM, WFU) K. Garcia, et al. 690 (CUZ, F, CU, HU, JU, LO, MD, PA, SM, USM, WFU) UC

345

Solanum lanceolatum Cav. 800 m. 1500 m. * ^ W. Farfan, et al. 3403 (CUZ, F) K. Garcia, et al. 603 (CUZ, F, sp4(1880WFR) sp4(1880WFR) USM, WFU) 1250 m. HU W. Farfan, et al. 1880 (CUZ, F, Solanum maturecalvans Bitter USM) 2250 - 3250 m. sp40(3404WFR) sp40(3404WFR) W. Farfan, et al. 575 (CUZ, 800 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 3404 (CUZ, F, AM, AN, AP, AY, CA, CU, JU, USM) LL, PA, PI, PU, SM sp41(3405WFR) sp41(3405WFR) Solanum nutans Ruiz & Pav. 800 m. 2250 - 2750 m. W. Farfan, et al. 3405 (CUZ) W. Farfan, et al. 881 (CUZ, sp42(3406WFR) sp42(3406WFR) DAV, HUT, MO, USM, WFU) 800 m. AM, AN, AY, CA, CU, HU, JU, W. Farfan, et al. 3406 (CUZ) LL, LA, PA, PI, PU, SM sp43(3407WFR) sp43(3407WFR) Solanum sp11(1290KGC) 800 m. 1500 m. W. Farfan, et al. 3407 (CUZ) K. Garcia, et al. 1290 (CUZ, F, sp47(3409WFR) sp47(3409WFR) USM, WFU) 1500 m. sp14(733KGC) sp14(733KGC) W. Farfan, et al. 3409 (CUZ, F) 1250 m. sp6(3312WFR) sp6(3312WFR) K. Garcia, et al. 733 (CUZ) 800 m. sp15(3390WFR) sp15(3390WFR) W. Farfan, et al. 3312 (CUZ, F, 1250 m. USM) W. Farfan, et al. 3390 (CUZ, F) sp8(3266WFR) sp8(3266WFR) sp19(1042KGC) sp19(1042KGC) 1000 m. 1750 m. W. Farfan, et al. 3266 (CUZ, F, K. Garcia, et al. 1042 (CUZ, F, USM) USM, WFU) sp22(1029KGC) sp22(1029KGC) STAPHYLEACEAE Martinov 1750 m. Staphylea occidentalis Sw. K. Garcia, et al. 1029 (CUZ, F) 1250 - 2250 m. sp28(2753WFR) sp28(2753WFR) W. Farfan, et al. 1150 (CUZ, 1500 m. DAV, HUT, MO, USM, WFU) W. Farfan, et al. 2753 (CUZ, F) AM, CA, CU, HU, LO, MD, PA, sp37(3401WFR) sp37(3401WFR) SM, UC 800 m. W. Farfan, et al. 3401 (CUZ, F, STYRACACEAE DC. & Spreng. USM) Styrax foveolaria Perkins sp38(3402WFR) 3000 m. * sp38(3402WFR) sp38(3402WFR) W. Farfan, et al. 1188 (CUZ, 800 m. MO, USM, WFU) W. Farfan, et al. 3402 (CUZ) CA, JU, PA, SM sp39(3403WFR) sp39(3403WFR) Styrax pentlandianus J. Rémy

346

3000 m. ^ 2000 - 2250 m. & K. Garcia, et al. 1682 (CUZ, F, W. Farfan, et al. 3138 (CUZ, F, USM, WFU) USM) CU, PI Symplocos sp5(4165WFR) Styrax sieberi Perkins 1250 m. 1000 m. * ^ W. Farfan, et al. 4165 (MOL, W. Farfan, et al. 3251 (CUZ, F, WFU) USM, WFU) Symplocos spruceana Gürke CA, MD 2000 - 2890 m. ^ W. Farfan, et al. 3107 (CUZ, F, SYMPLOCACEAE Desf. USM, WFU) Symplocos arechea L'Hér. CU, SM 1500 - 1750 m. W. Farfan, et al. 4165 (MOL, THEACEAE Mirb. WFU) Gordonia fruticosa (Schrad.) H. Keng AM, CU, HU, LO, SM 800 - 2750 m. Symplocos baehnii J.F. Macbr. W. Farfan, et al. 880 (CUZ, MO, 3250 - 3625 m. Endémico USM, WFU) W. Farfan, et al. 609 (CUZ, MO, CA, CU, HU, JU, LO, PA USM, WFU) Gordonia pubescens L'Hér. CU 1000 m. * ** Symplocos fuliginosa B. Ståhl W. Farfan, et al. 1453 (CUZ, 1500 m. * ^ MO, USM, WFU) W. Farfan, et al. 2111 (CUZ, F, Ternstroemia brachypoda (Wawra) USM, WFU) Kobuski AM, CA, PA, SM 2750 m. ^ Symplocos mezii Szyszył. K. Garcia, et al. 1544 (CUZ, F, 1750 - 2750 m. Endémico * ^ USM, WFU) W. Farfan, et al. 1118 (CUZ, CU MO, USM, WFU) CA ULMACEAE Mirb. Symplocos psiloclada B. Ståhl Ampelocera edentula Kuhlm. 2890 - 3537 m. Endémico* ^ 1500 m. W. Farfan, et al. 815 (CUZ, W. Farfan, et al. 2271 (CUZ, F, DAV, HUT, MO, USM, WFU) USM, WFU) CU, JU CU, LO, MD, PA, SM, UC Symplocos quitensis Brand Ampelocera ruizii Klotzsch 3250 - 3625 m. ^ 1500 m. W. Farfan, et al. 851 (CUZ, MO) W. Farfan, et al. 2253 (CUZ, F, AY, CA, CU, JU, PA USM, WFU) Symplocos reflexa A. DC. CU, HU, LO, MD, PA, SM 2750 - 3000 m. W. Farfan, et al. 1194 (CUZ, URTICACEAE Juss. DAV, HUT, MO, USM, WFU) Cecropia angustifolia Trécul AM, CU, PA 1250 - 1800 m. Symplocos sp4(3138WFR)

347

W. Farfan, et al. 1021 (CUZ, Cecropia sp8(2575WFR) MO, USM, WFU) 1750 m. AM, CA, CU, PA, SM W. Farfan, et al. 2575 (CUZ) Cecropia membranacea Trécul Cecropia sp9(624JESE) 1500 - 1750 m. * ^ 2000 - 2500 m. & W. Farfan, et al. 3993 (CUZ, F, J. E. Silva, et al. 624 (CUZ, MO, USM, WFU) USM, WFU) AM, HU, LI, LO, MD, PA, SM, Coussapoa sp1(1356WFR) TU 800 m. Cecropia polystachya Trécul W. Farfan, et al. 1356 (CUZ, 850 m. MO, USM, WFU) W. Farfan, et al. 5970 (MOL) Coussapoa sp2(2244WFR) CU, HU, JU, LI, MD, PA, 1500 m. SM W. Farfan, et al. 2244 (CUZ, F, Cecropia sp10(1839AWFR) USM) 1500 m. Coussapoa sp3(713KGC) W. Farfan, et al. 1839 (CUZ, F) 1250 m. Cecropia sp11(1650AWFR) K. Garcia, et al. 713 (CUZ, F, 800 m. USM, WFU) W. Farfan, et al. 1650A (CUZ, F) Coussapoa villosa Poepp. & Endl. Cecropia sp12(555MRQ) 1500 m. * 1750 m. K. Garcia, et al. 1280 (CUZ, F, M. N. Raurau, et al. 555 (CUZ, USM, WFU) F, USM) AM, HU, JU, LI, LO, MD, PA, Cecropia sp13(2652WFR) SM, UC 1750 m. Myriocarpa stipitata Benth. W. Farfan, et al. 2652 (CUZ, F, 1250 m. USM, WFU) K. Garcia, et al. 489 (CUZ, MO) Cecropia sp3(1855WFR) AM, CA, CU, HU, JU, LO, MD, 1250 m. PA, SM, UC W. Farfan, et al. 1855 (CUZ, F, Pourouma bicolor Mart. USM) 1500 - 1750 m. * Cecropia sp4(1855AWFR) K. Garcia, et al. 1140 (CUZ, F, 1250 m. USM) W. Farfan, et al. 1855A (CUZ, F) AM, LO, MD, HU, PA, SM Cecropia sp5(160AVHQ) Pourouma cecropiifolia Mart. 1000 m. 800 m. V. Huaman, et al. 160A (CUZ, F, W. Farfan, et al. 3310 (CUZ, F, USM) USM) Cecropia sp6(691KGC) AM, CU, LO, MD, PA, PU, SM, 1250 m. UC K. Garcia, et al. 691 (CUZ, F, Pourouma cuspidata Mildbr. USM, WFU) 1000 - 1250 m. * ^ Cecropia sp7(1839WFR) W. Farfan, et al. 2368 (CUZ, F, 1250 m. USM, WFU) W. Farfan, et al. 1839 (CUZ, F) MD, LO, PA

348

Pourouma guianensis Aubl. K. Garcia, et al. 469 (CUZ, F, 850 m. USM) W. Farfan, et al. 5954 (MOL) AM, MD, CU, HU, LO, PA, SM AM, CA, CU, HU, LO, MD, Urera sp1(2048WFR) PA, SM, UC 1500 m. Pourouma herrerensis C.C. Berg W. Farfan, et al. 2048 (CUZ, F) 1250 - 1500 m. Endémico* ^ W. Farfan, et al. 2308 (CUZ, F, VIOLACEAE Batsch USM, WFU) Leonia glycycarpa Ruiz & Pav. LO 800 - 1000 m. ^ Pourouma minor Benoist W. Farfan, et al. 1501 (CUZ, F, 800 - 1500 m. USM) W. Farfan, et al. 3309 (CUZ, F, AM, CU, HU, JU, LO, MD, PA, USM) PU, SM, UC CU, HU, LO, MD, PA, SM, UC Rinorea apiculata Hekking Pourouma mollis Trécul 1250 m. ^ 800 - 1750 m. * W. Farfan, et al. 4007 (MOL, V. Huaman, et al. 68 (CUZ, F, WFU) USM) AM, HU, CU, LO, MD HU, JU, LO, MD, PA, SM, UC Rinorea sp1(1454WFR) Pourouma sp2(1413WFR) 1000 m. 800 m. W. Farfan, et al. 1454 (CUZ, F, W. Farfan, et al. 1413 (CUZ, F) USM) Pourouma sp3(160VHQ) 1000 m. VITACEAE Juss. V. Huaman, et al. 160 (CUZ, F, Cissus trianae Planch. USM) 1750 m. Pourouma sp7(174VHQ) W. Farfan, et al. 1440 (CUZ, F, 800 - 1000 m. USM, WFU) V. Huaman, et al. 174 (CUZ, F, AM, CA, CU, PA, SM USM, WFU) Urera baccifera (L.) Gaudich. ex Wedd. VOCHYSIACEAE A. St.-Hil. 1500 m. Qualea paraensis Ducke K. Garcia, et al. 1282 (CUZ, 850 m. ^ MO, USM) W. Farfan S.N. (CUZ) AM, CA, CU, HU, JU, LO, MD, AM, CU, LO, MD, SM PA, SM, TU, UC Vochysia biloba Ducke Urera caracasana (Jacq.) Gaudich. ex 800 - 1000 m. Griseb. W. Farfan, et al. 1532 (CUZ, F, 1250 - 2250 m. ^ USM) W. Farfan, et al. 1657 (CUZ, F, AM, CU, LO USM, WFU) Vochysia kosnipatae Huamantupa CA, MD, LO, PA, HU, UC, JU, 1250 m. Endémico CU, SM W. Farfan, et al. 2339 (CUZ, F, Urera simplex Wedd. USM, WFU) 1250 m. CU, PA

349

Vochysia leguiana J.F. Macbr. 1000 m. * ^ W. Farfan, et al. 3298 (CUZ, F, USM, WFU) JU, SM Vochysia sp1(1356WFR) 800 m. W. Farfan, et al. 1356 (CUZ, F) Vochysia sp2(3255WFR) 1000 m. & W. Farfan, et al. 3255 (USM, WFU) Vochysia sp3(3314WFR) 800 m. W. Farfan, et al. 3314 (USM) Vochysia sp4(2743WFR) 1500 m. W. Farfan, et al. 2743 (CUZ, F, USM, WFU) Vochysia sp5(1384WFR) 800 m. W. Farfan, et al. 1384 (CUZ, MO, USM, WFU)

350

Figure legends

Figure II - 1. Panoramic view of the altitudinal transect of Trocha Union in the Kosñipata

Valley, eight permanent plots are installed on the crest of this mountain that goes from

1800 m to 3600 m. Photo credit: W. Farfan Rios.

Appendix V – Figure 1. Guatteria terminalis [W. Farfan, et al. 1112] (a), (b), (c). Schefflera sp1(158WHH) sp. Nova [W. Huaraca, et al. 158] (d) fruits (e). Photo credit: W. Farfan Rios.

Appendix V - Figure 2. Cyathea multisegmenta [K. Garcia, et al. 208] (a), scales (b), sorus (c). Ocotea glabriflora [W. Farfan, et al. 884] (d), flower (e), fruit (f). Photo credit:

W. Farfan Rios.

Appendix V - Figure 3. Prunus integrifolia [W. Farfan, et al. 1191] (a), flower (b).

Symplocos psiloclada [W. Farfan, et al. 815] (c) flower (d). Retrophyllum rospigliosii [K.

Garcia, et al. 932] (e), fruits (f). Photo credit: W. Farfan Rios.

351

FIGURE V - 1

352

Supporting Information

Article title:

An annotated checklist of trees and relatives in tropical montane forests of southeast

Peru: the importance of continue collecting

Authors:

William Farfan-Rios1,2*, Karina Garcia-Cabrera1,2, Norma Salinas2,3,4, Mireya N. Raurau-

Quisiyupanqui2, Miles R. Silman1,5

353

APPENDIX V – FIGURE S1

(a)a (b) a

(c)

(d) (e)a a

354

APPENDIX V – FIGURE S2

(b) a

(a) (b)

(c)

(c)

(d) a

(d) (e) (f)

355

APPENDIX V – FIGURE S3

(a) (b)

(c) (d)

(f) (e)

356

WILLIAM, FARFAN RIOS Doctoral Candidate in Biology Wake Forest University, Department of Biology [email protected], [email protected]

Professional Preparation Ph.D. candidate, Biology, Wake Forest University M.S. Biology, Wake Forest University B.S. Biology, Universidad Nacional de San Antonio Abad del Cusco-Peru

Languages Spanish: Mother tongue English: Writing and spoken (fluent) Quechua: Writing (basic) and spoken (fluent)

Research experience 2009- Scientific Coordinator and Researcher: Andes Biodiversity and Ecosystem Research Group (ABERG). Project: Long term forest and climate monitoring from the Andes to the Amazon: forest responses to climate change. Location: Cusco, Madre de Dios (Peru). 2016-17 Researcher: The Center for Energy, Environment and Sustainability (CEES), Wake Forest University. Project: Monitoring protected areas in Peru to increase forest resilience to climate change. Location: Peruvian National Protected Areas. 2015-17 Researcher: Amazon Andes Geo – Genomics project. Project: Integrating geology and genetics to investigate the evolution of biodiversity in the Amazon and Andean forests. Location: Cusco, Madre de Bios (Peru). 2015-17 Co-Principal Investigator: U.S. Agency for International Development –USAID. Project: Tropical montane forests and climate change in the Peruvian Andes: micro-environmental, biotic and human impacts at tree line. Location: Cusco (Peru). 2013-16 Researcher: Global Ecosystem Monitoring Network (GEM), University of Oxford. Project: Functional traits from the Andes to the Amazon. Location: Cusco, Madre de Dios (Peru). 2012-15 Researcher: Terrestrial Ecology – NASA. Project: Quantifying variations of tropical forest structure and biomass along elevational gradient. Location: Cusco, Madre de Dios (Peru). 2012-13 Co-Principal Investigator: National Geographic Society Committee for Research and Exploration. Project: Horizontal refugia and the effects of climate change on plant species distributions in the Peruvian Andes. Location: Manu National Park, Cusco (Peru).

Teaching and mentoring 2018 Lab Instructor, Wake Forest University. BIO 113 – Ecology. 2005-18 Mentor for Undergraduate Research: Jack Sypek (Wake Forest University); Jonathan Sallo Bravo, Alex Nina Quispe, Carlos A. Salas Yupayccana, Rudi S. Cruz Chino, Judit Huaman Ovalle, Alexsander Quispe Naupa, Jose Sanchez

357

Tintaya, Juan A. Lopez Gibaja, Israel Cuba Torres, Albino Quispe Pelaez, Jonyer H. Zapata Callañaupa, Guisela J. Zans Romani, Vicky Human Quellon, Cintia E. Arenas Gutierrez, Nelson Cahuana, Milenka X. Montoya Pillco, Paul E. Santos Andrade, Jhoel Delgado Salazar, Janet Mamani Condori (Universidad Nacional de San Antonio Abad del Cusco - Peru). 2016 Lab Instructor, Wake Forest University. BIO 114 – Comparative Physiology. 2015 Teaching Assistant, Wake Forest University: Summer study abroad in Peru – Tropical Biodiversity.

Publications (peer reviewed) Bruelheide, and 100+ coauthors including Farfan-Rios, W. 2018. Global trait– environment relationships of plant communities. Nature Ecology & Evolution. Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfan-Rios, W., Malhi, Y., Young, K.R., Cuesta C., F., Homeier, J., Peralvo, M., Pinto, E., Jadan, O., Aguirre, N., Aguirre, Z. & Feeley, K.J. 2018. Widespread but heterogeneous responses of Andean forests to climate change. Nature. Enquist, B.J., Bentley, L.P., Shenkin, A., Maitner, B., Savage, V., Michaletz, S., Blonder, B., Buzzard, V., Espinoza, T.E.B., Farfan-Rios, W., Doughty, C.E., Goldsmith, G.R., Martin, R.E., Salinas, N., Silman, M., Díaz, S., Asner, G.P. & Malhi, Y. 2017. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecology and Biogeography, 26, 1357–1373 Wurdack, K. J.& Farfan-Rios, W. 2017. Incadendron: a new genus of Euphorbiaceae tribe Hippomaneae from the sub-Andean cordilleras of Ecuador and Peru. PhytoKeys. 85, 69–86. Fyllas, N. M., L. P. Bentley, A. Shenkin, G. P. Asner, O. K. Atkin, S. Díaz, B. J. Enquist, W. Farfan-Rios, E. Gloor, R. Guerrieri, W. H. Huasco, Y. Ishida, R. E. Martin, P. Meir, O. Phillips, N. Salinas, M. Silman, L. K. Weerasinghe, J. Zaragoza- Castells, and Y. Malhi. 2017. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters. 20:730–740. McMichael, C. N. H., Matthews-Bird, F., Farfan-Rios, W., & Feeley, K. J. 2017. Ancient human disturbances may be skewing our understanding of Amazonian forests. Proceedings of the National Academy of Sciences. 114(3):522-527. Levis, C., Costa, and 100+ coauthors including Farfan-Rios, W. (2017). Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 355(6328), 925–931. Malhi, Y., Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B., Huaraca Huasco, W., Silva-Espejo, J. E., del Aguilla-Pasquell, J., Farfan Amezquita, F., O. C. Aragao, E. L., Guerrieri R., Yoko Ishida F., A. Bahar N., H. M., Farfan-Rios, W., Phillips, O. L., Meir, P., Silman, M. 2016. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist. Clark, K. E., A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S. Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y. Malhi. 2016. Storm-triggered landslides in the Peruvian Andes and

358

implications for topography, carbon cycles, and biodiversity. Earth Surface Dynamics Discussions, 3(3), 631–688. Steege, H. ter, and 100+ coauthors including Farfan-Rios, W. (2015). Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 1(10). Farfan-Rios, W., Garcia-Cabrera, K., Salinas, N., Raurau-Quisiyupanqui, M.N., and Silman, M.R. 2015. An annotated checklist of trees and relatives in tropical montane forests from southeast Peru: the importance of continue collecting. Revista Peruana de Biologia. 22(2):145–74. Honorio Coronado, E. N., and 100+ coauthors including Farfan-Rios, W. 2015. Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21(11), 1295–1307. Báez, S., and 20+ coauthors including Farfán-Rios, W. 2015. Large-scale patterns of turnover and Basal area change in Andean forests. PloS One, 10(5). Asner, G. P., D. E. Knapp, R. E. Martin, R. Tupayachi, C. B. Anderson, J. Mascaro, F. Sinca, K. D. Chadwick, M. Higgins, Farfan, W., W. Llactayo, and M. R. Silman. 2014. Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences. 111(47), E5016– E5022. Girardin, C. A. J., Y. Malhi, K. J. Feeley, J. M. Rapp, M. R. Silman, P. Meir, W. Huaraca Huasco, N. Salinas, M. Mamani, J. E. Silva-Espejo, K. García Cabrera, W. Farfan Rios, D. B. Metcalfe, C. E. Doughty, and L. E. O. C. Aragão. 2014. Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru. Journal of Tropical Ecology. 30(06), 503–519. Girardin, C. A. J., W. Farfan-Rios, K. Garcia, K. J. Feeley, P. M. Jørgensen, A. A. Murakami, L. Cayola Pérez, R. Seidel, N. Paniagua, A. F. Fuentes Claros, C. Maldonado, M. Silman, N. Salinas, C. Reynel, D. A. Neill, M. Serrano, C. J. Caballero, M. de los A. La Torre Cuadros, M. J. Macía, T. J. Killeen, and Y. Malhi. 2013. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology & Diversity. 7(1-2), 161–171. Gurdak, D. J., L. E. O. C. Aragão, A. Rozas-Dávila, W. H. Huasco, K. G. Cabrera, C. E. Doughty, W. Farfan-Rios, J. E. Silva-Espejo, D. B. Metcalfe, M. R. Silman, and Y. Malhi. 2013. Assessing above-ground woody debris dynamics along a gradient of elevation in Amazonian cloud forests in Peru: balancing above-ground inputs and respiration outputs. Plant Ecology & Diversity. 7, 143–160. Girardin, C. A. J., J. E. S. Espejob, C. E. Doughty, W. H. Huasco, D. B. Metcalfe, L. Durand-Baca, T. R. Marthews, L. E. O. C. Aragao, W. Farfan-Rios, K. García- Cabrera, K. Halladay, J. B. Fisher, D. F. Galiano-Cabrera, L. P. Huaraca-Quispe, I. Alzamora-Taype, L. Eguiluz-Mora, N. Salinas-Revilla, M. R. Silman, P. Meir, and Y. Malhi. 2013. Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology & Diversity. 7, 1–17. Huaraca, W. H., C. A. J. Girardin, C. E. Doughty, D. Metcalfe, L. D. Baca, J. E. Silva- Espejo, D. G. Cabrera, L. E. Aragão, A. R. Davila, T. R. Marthews, L. P. Huaraca-Quispe, I. Alzamora-Taype, L. E. Mora, W. Farfan-Rios, K. G. Cabrera, K. Halladay, N. Salinas-Revilla, M. Silman, P. Meir, and Y. Malhi.

359

2013. Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology & Diversity. 7, 125–142. Jankowski, J. E., C. L. Merkord, W. Farfan Rios, K. G. Cabrera, N. S. Revilla, and M. R. Silman. 2013. The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. Journal of Biogeography. 40(5), 950–962. Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. G. Cabrera, Y. Malhi, P. Meir, N. S. Revilla, M. N. R. Quisiyupanqui, and S. Saatchi. 2011. Upslope migration of Andean tres. Journal of Biogeography. 38(4), 783–791. Gibbon, A., M. R. Silman, Y. Malhi, J. B. Fisher, P. Meir, M. Zimmermann, G. C. Dargie, W. R. Farfan, and K. C. Garcia. 2010. Ecosystem Carbon Storage across the -Forest Transition in the High Andes of Manu National Park, Peru. Ecosystems. 13(7), 1097–1111. Zimmermann, M., P. Meir, M. R. Silman, A. Fedders, A. Gibbon, Y. Malhi, D. H. Urrego, M. B. Bush, K. J. Feeley, K. C. Garcia, G. C. Dargie, W. R. Farfan, B. P. Goetz, W. T. Johnson, K. M. Kline, A. T. Modi, N. M. Q. Rurau, B. T. Staudt, and F. Zamora. 2010. No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes. Ecosystems. 13(1), 62–74. Farfan, W., K. Feeley. 2009. Deforestación y el mercado de carbono en los bosques tropicales. Xilema 26:11-16.

Publications (non-peer reviewed) Farfan-Rios, W. 2017. Big trees have big effects on tropical forest ecosystems. Cocha Cashu notes. García K., W. Farfan, N. Salinas, B. León. 2005. Helechos Arbóreos de Trocha Unión. Environmental & Conservation Programs, The Field Museum, Chicago, USA. Rapid color guide Nº 182 version 1, 2. Collaboration in the field work for the elaboration of the book “Diagnostico de Recursos Naturales del Valle de Cusco”. Centro Huaman Poma de Ayala, Cusco 2004.

Technical reports Farfan-Rios, W. Silman, M. 2017. Monitoring the responses of the Andean-Amazonian forests to climate change along an elevation gradient. SERNANP, Manu National Park. Farfan-Rios, W. 2016. Tropical Andean cloud forest dieback in response to climate change. Technical report. Richter Program. Wake Forest University. Asner P. G., David E. Knapp, Roberta E. Martin, Raul Tupayachi, Christopher B. Anderson, Joseph Mascaro, Felipe Sinca, K. Dana Chadwick, Sinan Sousan, Mark Higgins, William Farfan, Miles R. Silman, William Augusto Llactayo León, Adrian Fernando Neyra Palomino. 2014. The High-Resolution Carbon Geography of Perú. A Collaborative Report of the Carnegie Airborne Observatory and the Ministry of Environment of Peru. Girardin C.A.J., W. Farfan, K. Garcia, Y. Malhi, T. Killeen, K.J. Feeley, M.R. Silman, C. Reinel, D. Niell, P. Jorgensen, M. Serrano, J. Caballero, M.A. De la Torre Cuadrada, M. Macía. 2009. RAINFOR-Andes Expanding the Amazon Forest

360

Inventory Network to the montane forests of the Andes. Technical Report, Conservation International.

Press articles: In the news Fleeing warming temperatures, tropical trees in the Andes move upslope – toward extinction. November 2018. Wake Forest News. https://news.wfu.edu/2018/11/14/fleeing-warming-temperatures-tropical-trees-in- the-andes-move-upslope-toward-extinction/ Where Do You Hide a 100-Foot-Tall Tree? March 2018. Boston University News Service. https://bunewsservice.com/where-do-you-hide-a-100-foot-tall-tree/ Remarkable new tree species was “hidden in plain sight” in the Andes. September 2017. SMITHSONIAN INSIDER. http://insider.si.edu/2017/09/remarkable-new-tree- species-hidden-plain-sight-andes/ ¡Gran hallazgo! Científicos descubren el Incadendron, el árbol de los incas. September 2017. Peru21 news. https://peru21.pe/fotogalerias/gran-descubrimineto- incadendron-arbol-incas-376590 How does a tree hide? Incadendron was concealed in the Andes forest. Setiembre 2017. BOTANY ONE. https://www.botany.one/2017/09/tree-hide-incadendron- concealed-andes-forest/ Suddenly a 100-foot Tall Tree Is Noticed in Andes, Turns Out to Be New Genus. September 2017. HAARETZ news. http://www.haaretz.com/science-and- health/1.812174 Hidden Inca treasure: Remarkable new tree discovered in the Andes. September 2017. WAKE FOREST news. http://news.wfu.edu/2017/09/07/hidden-inca-treasure- remarkable-new-tree-discovered-andes/ Researchers discover new tree genus in the Andes. September 2017. UNITED PRESS INTERNATIONAL. https://www.upi.com/Science_News/2017/09/07/Researchers-discover-new-tree- genus-in-the- Andes/6201504793575/?utm_source=sec&utm_campaign=sl&utm_medium=15 Manu National Park contributes to research on adaptation of forests to climate change. December 2016. SERNANP news. http://www.sernanp.gob.pe/noticias-leer-mas/- /publicaciones/c/parque-nacional-del-manu-contribuye-en-investigacion-sobre- 253544 Announcement of the Gentry Awards winners for outstanding presentations at the annual ATBC-2016 meeting. September 2016. BIOTROPICA: The editor’s blog. http://biotropica.org/atbc16-bacardi-gentry-award-winners/ Feature: How the Amazon became a crucible of life. October 2015. NEWS.SCIENCEMAG.ORG. http://www.sciencemag.org/news/2015/10/feature- how-amazon-became-crucible-life https://www.youtube.com/watch?v=U47imdWAG0g New species of wild flora for science are recorded in Manu National Park. October 2015. SERNANP news. http://www.sernanp.gob.pe/noticias-leer-mas/- /publicaciones/c/nuevas-especies-de-flora-silvestre-para-la-ciencia-son-132226

361

30 new species of wild flora identified in Manu National Park, Peru. October 2015. ANDINA news. http://www.andina.com.pe/ingles/noticia-30-new-species-of- wild-flora-identified-in-manu-national-park-peru-582013.aspx New forest species are registered in the Manu National Park. October 2015. RPP NOTICIAS. http://rpp.pe/peru/cusco/registran-nuevas-especies-forestales-en-el- parque-nacional-del-manu-noticia-908825 30 new species of flora found in Manu National Park. October 2015. EL COMERCIO. http://elcomercio.pe/tecnologia/ciencias/hallan-30-nuevas-especies-flora-parque- nacional-manu-236300 Peru: Scientists Fear Climate Change Will Cause Species Loss in Amazon Rainforest. September 2013. PULITZER CENTER. http://pulitzercenter.org/reporting/south- america-peru-tropical-scientists-climate-change-species-amazon-rainforest- global-warming At Edge of Peruvian Andes. Tracking Impacts of Warming. September 2012. ENVIRONMENT 360. http://e360.yale.edu/feature/at_edge_of_peruvian_andes_tracking_impacts_of_wa rming/2570/ Uphill Battle. As the climate warms in the cloud forests of the Andes, plants and animals must climb to higher, cooler elevations or die. August 2006. SMITHSONIAN MAGAZINE. http://www.smithsonianmag.com/science-nature/uphill-battle-125690884/?all

Oral presentations 2018 Invited talk. Workshop. A synthesis of patterns and mechanisms of diversity and forest change in the Andes A global biodiversity hotspot. Stasis and change in tree communities across a 3.5 km Andes-to-Amazon gradient. October. Quito (Ecuador). 2018 XII Latin American Congress of Botany (RLB). Upslope Andean-Amazonian tree migration. October. Quito (Ecuador). 2018 XVI National Congress of Botanica. Andean-Amazonian tree migration in response to climate change. June. Ayacucho (Peru). 2018 Invited talk: Plant Functional Traits Training Course 3. Ecology and conservation on and Andes‐to-Amazon elevational Gradient. March. Cusco (Peru). 2017 Invited talk in symposium: Advancing Bamboo Ecology, Systematics, and Conservation in the Neotropics. Association for Tropical Biology and Conversation (ATBC). Exceptional dynamism in bamboo-dominated forests in the western Amazon. July. Merida (). 2017 Association for Tropical Biology and Conversation (ATBC). Drought effects in Amazon-to-Andean forest. July. Merida (Mexico). 2016 Invited talk: Leeds University. Workshop: Monitoring protected areas in Peru to increase forest resilience to climate change. Monitoring of permanent plots in altitudinal transects: Manu biosphere reserve. November. Iquitos (Peru). 2016 The Ecological Society of America (ESA). Community patterns of wood density along an Andes-to-Amazon gradient. August. Fort Lauderdale – FL (United States of America).

362

2016 Association for Tropical Biology and Conversation (ATBC). Upslope Andean tree migration is due to pervasive range contraction. June. Montpellier (France). 2016 Invited talk: Oxford University. The Pyrenees workshop: Traits and ecosystem function along tropical environmental gradients. Wood density and forest structure along the Peruvian elevation gradient. June. Pyrenees (Spain). 2015 Invited talk: Pontifical Catholic University of Peru (PUCP). Workshop: KAWSAYPACHA IV. Forests and Climate Change in Peru: Towards COP21 (PUCP). Large-scale variations in forest dynamics from the Andes to the Amazon. October. Lima (Peru). 2015 International meeting: Andes Amazon Biodiversity Conservation – BIOCON. Large scale variation in Andes-Amazon forest dynamics: Results from 3.5 km elevational gradient. October. Lima (Peru). 2015 Invited talk: Peruvian National Forest and Wildlife Service (SERFOR) and Ministry of Agriculture and Irrigation (MINAGRI). Using natural laboratories to monitor biodiversity and the response of forests to climate change. October. Cusco (Peru). 2015 Invited talk: DIRCETUR Cusco and Manu National Park. Workshop: Research progress in the Manu National Park. Comprehensive study of montane forests and their responses to climate change – Manu National Park. May. Cusco (Peru). 2014 Invited talk: Ecosystems laboratory at the Environmental Change Institute, University of Oxford. Trees. November. Oxford (England). 2014 Invited talk: University of San Antonio Abad del Cusco – Faculty of Biology. Seminar. Ecology in the Mountain Forests. July. Cusco (Peru). 2013 Invited talk. University of San Antonio Abad Del Cusco – Faculty of Biology. Seminar. What do we know about montane forests? December. Cusco (Peru). 2013 Invited talk: Regional Management of Natural Resources and Environmental Management of the Regional Government of Cusco (Peru). Conference: InterCLIMA-2013. Response of montane forests to climate change. November. Cusco (Peru). 2013 Invited talk: National Service of Natural Areas Protected by the State (SERNANP) Manu National Park. Ecology in Neotropical forests. November 2013. Cusco (Peru). 2013 Andes Biodiversity and Ecosystem Research Group (ABERG). Another year with trees. August. Pisac (Peru). 2013 Invited talk: National Service of Natural Areas Protected by the State (SERNANP). Response of montane forests to climate change. March. Lima (Peru). 2012 Invited talk: Oxford University, Environmental Change Institute. Patterns in tree communities from the Andes to the Amazon. November. Oxford (England). 2012 Invited talk: General Secretariat of the Andean Community. Ecology in Neotropical forests. October. Lima (Peru). 2012 Andes Biodiversity and Ecosystem Research Group (ABERG). Patterns in tree communities from the Andes to the Amazon. October. California (United States of America).

363

Fellowships and grants 2013-18 Vecellio Grant. Research and travel grant. Founding organization: Department of Biology, Wake Forest University. Award Amount: $9,500. 2016-18 Elton C. Cocke Travel Award. Founding organization: Department of Biology, Wake Forest University. Award Amount: $2,000 2014-18 Alumni Student Travel Award. Founding organization: Graduate School, Wake Forest University. Award Amount: $1000. 2015-17 Collaborative Research: Tropical montane forests and climate change in the Peruvian Andes: Micro-environmental, biotic and human impacts at tree line. Founding organization: U.S. Agency for International Development – USAID. Award Amount: $177,920. Role on grant: Co-PI. 2016 Richter Scholarship Award. Travel and research award. Founding organization: Graduate School, Wake Forest University. Award Amount: $4,395. 2016 National and International Mobilization in Science, Technology and Innovation (CTI) call 2015-VI. Travel award. Founding organization: National Fund for Scientific, Technological and Technological Innovation (FONDECYT). Award Amount: $4,449 2012-16 Andes Biodiversity and Ecosystem Research Group (ABERG) – Wake Forest University. Doctoral Fellowship – USA. 2014 Oxford University, Environmental Change Institute. Travel grant. Award Amount: $3,000 2014 University of California, Los Angeles (UCLA) and Jet Propulsion Laboratory (JPL)–NASA. California (USA). Travel award. Award Amount: $2,500. 2012-13 Collaborative Research: Horizontal refugia and the effects of climate change on plant species distributions in the Peruvian Andes. Funding organization: National Geographic Society Committee for Research and Exploration Award Amount: $22,400, Role on grant: Co-PI.

Workshops and additional training 2018 Workshop. Living Earth Collaborative Center for Biodiversity (LEC). A synthesis of patterns and mechanisms of diversity and forest change in the Andes A global biodiversity hotspot. October. Quito (Ecuador). 2016 Workshop. Leeds University. Monitoring protected areas in Peru to increase forest resilience to climate change. November. Iquitos (Peru). 2016 Academic visitor. Oxford University (OUCE). June – August. Oxford (England). 2016 Workshop. Oxford University (OUCE). The Pyrenees workshop: Traits and ecosystem function along tropical environmental gradients. June. Pyrenees (Spain). 2015 Workshop. Pontifical Catholic University of Peru (PUCP). KAWSAYPACHA IV. Forests and climate change in Peru: Towards COP21. October. Lima (Peru). 2015 Workshop. Peruvian National Forest and Wildlife Service (SERFOR) and Ministry of agriculture and irrigation (MINAGRI). Advances and identification of forest research and innovation in wildlife issues in the Cusco region. October. Cusco (Peru).

364

2015 Workshop. Amazon Andes Geo-genomics. Integrating geology and genetics to investigate the evolution of biodiversity in the Amazon and Andean forests. July. Cusco, Madre de Dios (Peru). 2014 Academic visitor. Oxford University (OUCE) and Leeds University. November. Oxford, Leeds (England). 2014 Visiting researcher. University of California, Los Angeles (UCLA) and Jet Propulsion Laboratory (JPL) – NASA. October. California (United States of America). 2013 Workshop. Peruvian National Service of Protected Areas by the State (SERNANP). Monitoring the effects of climate change on the biodiversity of protected natural areas in Peru. March. Lima (Peru). 2013 Workshop. Andes Biodiversity and Ecosystem Research Group (ABERG). August. Pisac (Peru). 2012 Workshop. Oxford University, Environmental Change Institute. Andes Amazon extravaganza. November. Oxford (England). 2012 Visiting researcher. Oxford University and Leeds University. November – December. Oxford and Leeds (England). 2012 Workshop. Secretary General of the Andean Community. Construction of an extended protocol for the long-term monitoring of Andean forests. October. Lima (Peru). 2012 Workshop. Andes Biodiversity and Ecosystem Research Group (ABERG). October. California (United States of America). 2011 Workshop. Peruvian National Service of Protected Areas by the State (SERNANP). Workshop for the development of guidelines for biodiversity inventories in protected natural areas. November. Lima (Peru).

Collaborative research Andes Biodiversity and Ecosystem Research Group-ABERG (http://www.andesconservation.org/) Global Ecosystem monitoring network-GEM (http://gem.tropicalforests.ox.ac.uk/). Amazon Forest Network Inventory-RAINFOR (http://www.rainfor.org/) Amazon Andes Geo – Genomics (http://eas2.unl.edu/~sfritz/amazon/?page_id=18) Red de Bosques (http://www.condesan.org/redbosques/index) Amazon Tree Diversity Network – ATDN (http://atdn.myspecies.info/)

Honors and distinctions Miconia farfanii Jan.M.Burke & Michelang. 2018. A new tree species named in honor to William Farfan Rios. Alwyn Gentry Award for the outstanding presentation in the 53rd annual meeting of the Association for Tropical Biology and Conversation – ATBC. June 2016. Montpellier (France). Medal of Honor from “Universidad Nacional de San Antonio Abad del Cusco (UNSAAC)” in recognition to the scientific research and for make visible the UNSAAC in the SIR-IBER Latin American Scimago Institutions Ranking. September 2014. Cusco (Peru).

365

Telipogon farfanii Nauray & A. Galán. 2008. A new orchid species named in honor to William Farfan Rios Prosthechea farfanii Christenson. 2002. A new orchid species named in honor to William Farfan Rios.

New tree genus and plant species discovered to science Miconia farfanii Jan.M.Burke & Michelang. 2018. Six new species of Miconia (Miconieae, Melastomataceae) from the Andes. Phytotaxa 361 (2): 131–150 Incadendron K.Wurdack & Farfan, gen. nov. and Incadendron esseri K.Wurdack & Farfan, sp. nov. Incadendron: A new genus of Euphorbiaceae tribe Hippomaneae from the sub-Andean cordilleras of Ecuador and Peru. PhytoKeys. 85, 69–86 (2017). Guatteria cuscoensis Maas & Westra. P.J.M. Maas, L.Y.T. Westra, S. Arias Guerrero, A.Q. Lobão, U. Scharf, N.A. Zamora, R.H.J. Erkens. 2015. Confronting a morphological nightmare: Revision of the Neotropical genus Guatteria (Annonaceae). Blumea 60, 2015: 1–219. Telipogon farfanii Nauray & A. Galán. Nauray Huari W., Galan de Mera A. 2008. Ten new species of Telipogon (Orchidaceae, Oncidiinae) from southern Peru. Anales del Jardín Botánico de Madrid, vol. 65, núm. 1, pp. 73-95, España. Telipogon kosnipatensis Farfán, Nauray & A. Galán. Nauray Huari W., Galan de Mera A. 2008. Ten new species of Telipogon (Orchidaceae, Oncidiinae) from southern Peru. Anales del Jardín Botánico de Madrid, vol. 65, núm. 1, pp. 73-95, España. Telipogon paucartambensis Farfán, Nauray & A. Galán. Nauray Huari W., Galan de Mera A. 2008. Ten new species of Telipogon (Orchidaceae, Oncidiinae) from southern Peru. Anales del Jardín Botánico de Madrid, vol. 65, núm. 1, pp. 73-95, España. Aspidogyne sumacoensis Ormerod. Ormerod, Paul A. 2008. Studies of Neotropical Goodyerinae (Orchidaceae). Harvard Papers in Botany, Vol. 13, No. 1, pp. 55-87. Telipogon salinasiae Farfán & Moretz. Moretz C.C., W. Farfán. 2003. A new Telipogon from Southern Peru. The Orchid Review, Volume 111, Number 1252, pp. 239-241. Prosthechea farfanii Christenson. EA Christenson, 2002. Three orchids from the sacred city: new species from the historical sanctuary of Machu. Orchids, Volume 71, Number 8, pp. 714-719.

Scientific illustrations Holotype of Polylepis canoi W. Mend. Mendoza W. 2005. New species of Polylepis (Rosaceae) from Vilcabamba mountain range (Cusco, Peru). Rev. peru biol. v.12 n.1 Lima. Holotype of Telipogon salinasiae Farfán & Moretz. Moretz C.C., W. Farfán. 2003. A new Telipogon from Southern Peru. The Orchid Review, Volume 111, Number 1252, pp. 239-241. Lankesterella orthantha (Kraenzl.) Garay. Farfan W., E.A. Christenson. 2003. Lankesterella, a genus new to Cusco, Peru. The Orchid Review, Volume 111, Number 1251, pp. 150-151.

366

Holotype of Prosthechea farfanii (Christenson) Withner & P.A. Harding. EA Christenson, 2002. Three orchids from the sacred city: new species from the historical sanctuary of Machu. Orchids, Volume 71, Number 8, pp. 714-719.

Service 2016-19 External grant referee. National Fund for Scientific, Technological and Innovation Development (FONDECYT). Peru. 2018 Co-organizer. ECR Workshop. Amazon-Andes geo-genomics early career researchers. December, Winston Salem (USA). 2018 Co-organizer. Plant Functional Traits Training Course 3. Ecology and conservation on and Andes‐to-Amazon elevational Gradient. March. Cusco (Peru). 2017- Member of the scientific advisory committee for Manu National Park management. SERNANP MANU. 2016- Member of the Tree Care Advisory committee – Wake Forest University. March. Winston Salem (USA). 2017 External grant referee. Program of research projects. Universidad Nacional Mayor de San Marcos. April. Peru 2016 Collaboration in carbon estimates based on preliminary results of the Peruvian National Forest Inventory by the National Forest and Wildlife Service (SERFOR). May. Peru. 2015 Member of the working group: National Commission to Update the Categorization of Wild Flora Species. May - August. Peru. 2013 Panelist in the workshop: The progress of science or the biological-cultural harmony of processes. Latin American Congress of Biology Students. October. Cusco (Peru). 2010 Member of the scholarship selection committee for the Association for the Conservation of the Amazon Basin (ACCA). June – July. Peru. 2003 Collaboration in the database systematization of the Herbarium Vargas – CUZ. January – March. Cusco (Peru).

367