5. App B Spring 2016 Flora and Fauna Survey.PDF

Total Page:16

File Type:pdf, Size:1020Kb

5. App B Spring 2016 Flora and Fauna Survey.PDF Water Corporation Perth Desalination Plant Expansion Flora and Fauna Survey September 2017 Executive summary The Water Corporation required a biological assessment of an area adjacent to the Perth Desalination Plant at Kwinana, 29 km south of Perth. GHD Pty Ltd was commissioned to undertake the assessment of the survey area to define biological environmental values, including their location, conservation significance and management recommendations. The survey area is 15.10 ha and includes beach areas and other non-vegetated land. The field survey was undertaken in spring 2016 with reference to the Environmental Protection Authority Technical Guides for flora and fauna surveys. Key findings Vegetation and Flora Six vegetation types were identified with in the survey area, including four natural, shrubland types, one planted area, and one grass with isolated shrubs. Highly disturbed areas and beach/ocean were also present within the survey area. The vegetation present within the survey area is consistent with vegetation on dunes along the Perth coastline and is not representative of any TECs or PECs. The four natural shrubland vegetation types are broadly consistent with vegetation association 3048 (Beard 1979) and the Quindalup Complex that is mapped along much of the Perth metropolitan area coast (Heddle et al. 1980). Vegetation association 3048 has less than 30% of its pre-European extent remaining at all scales and may be considered significant; whereas the Quindalup Complex has greater that 30% of its pre-European extent remaining on the Swan Coastal Plain, but less than 25% remaining in the City of Kwinana. Forty-nine plant species were recorded in the survey area, of which only 14 are naturally occurring. The vegetation is considered to be of low diversity. No flora listed under the EPBC Act, WC Act or as a Priority by DPaW were recorded or are considered likely to occur. Fauna Nine fauna species were recorded during the field survey. The shrubland and open dune vegetation types provide limited habitat for many fauna species. No conservation significant species were recorded during the survey. No species listed under the Environmental Protection and Biodiversity Conservation Act or Wildlife Protection Act were considered likely to occur in the survey area. Three Department of Parks and Wildlife listed species (Perth Lined Skink, Black-lined Snake (Priority 3) and Quenda (Priority 5)) were considered likely to occur in the survey area, based on habitat preferences and known records. No conservation significant marine or wading species were considered likely to occur, due to the lack of suitable beach habitat, lack of known breeding records and relative disturbance on the beach by the horses and beach goers. GHD | Report for Water Corporation - Perth Desalination Plant Expansion, 61/35234 | i Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 Purpose of this assessment ................................................................................................. 1 1.3 Project location .................................................................................................................... 1 1.4 Scope ................................................................................................................................... 1 1.5 Relevant legislation, conservation codes and background information ............................... 2 2. Methodology ................................................................................................................................... 3 2.1 Desktop assessment............................................................................................................ 3 2.2 Field survey .......................................................................................................................... 3 2.3 Limitations ............................................................................................................................ 6 3. Desktop assessment .................................................................................................................... 10 3.1 Regional biogeography ...................................................................................................... 10 3.2 Landform and soils ............................................................................................................. 10 3.3 DPaW managed lands ....................................................................................................... 10 3.4 Environmentally Sensitive Areas ....................................................................................... 10 3.5 Vegetation and flora ........................................................................................................... 10 3.6 Fauna ................................................................................................................................. 12 4. Field Survey ................................................................................................................................. 14 4.1 Watercourses and wetlands .............................................................................................. 14 4.2 Vegetation .......................................................................................................................... 14 4.3 Flora ................................................................................................................................... 19 4.4 Fauna ................................................................................................................................. 20 5. Key findings .................................................................................................................................. 24 5.1 Vegetation and Flora.......................................................................................................... 24 5.2 Fauna ................................................................................................................................. 24 6. References ................................................................................................................................... 25 ii | GHD | Report for Water Corporation - Perth Desalination Plant Expansion, 61/35234 Table index Table 1 Data collected during the flora and vegetation field survey ................................................. 4 Table 2 Field survey limitations......................................................................................................... 7 Table 3 Extents of vegetation associations mapped within the survey area .................................. 11 Table 4 Extents of Heddle et al. (1980) vegetation complexes mapped within the Swan Coastal Plain IBRA bioregion ............................................................................................ 11 Table 5 Extents of Heddle et al. (1980) vegetation complexes mapped within the City of Kwinana ............................................................................................................................. 12 Table 6 Vegetation types mapped within the survey area .............................................................. 15 Table 7 Extent of vegetation condition ratings within the survey area ........................................... 19 Table 8 Fauna Habitat Types.......................................................................................................... 21 Table 9 Summary of likelihood of occurrence for conservation significant fauna ........................... 23 Appendices Appendix A – Figures Appendix B – Relevant Legislation, conservation codes and background information Appendix C – Desktop searches Appendix D – Flora data Appendix E – Fauna data GHD | Report for Water Corporation - Perth Desalination Plant Expansion, 61/35234 | iii 1. Introduction 1.1 Background The Water Corporation requires a biological assessment of an area adjacent to the Perth Desalination Plant at Kwinana, south of Perth. GHD Pty Ltd (GHD) was commissioned to undertake the assessment of the survey area to define biological environmental values, including their location, conservation significance and management recommendations. 1.2 Purpose of this assessment The purpose of the assessment was to define the quality and extent of ecological values in the survey area. The information collected will enable the Water Corporation to consider the site’s environmental constraints and opportunities. 1.3 Project location The existing Perth Desalination Plant is approximately 29 km south of Perth, on the shore of Cockburn Sound. The survey area is 15.10 ha and is shown in Figure 1, Appendix A. For desktop searches a broader study area was applied, which includes a 5 km or 10 km buffer around the survey area. 1.4 Scope The scope of works was to undertake a single season flora, vegetation and fauna survey. The following actions were completed to fulfil the scope: Conduct a desktop assessment of relevant literature, databases and spatial datasets to determine environmental values and any potential environmental constraints Identify the Vegetation Complex mapping of the area and determine the pre-European extent remaining to assess the significance of the proposed native vegetation clearing Complete a field
Recommended publications
  • Local Biodiversity Strategy
    Local Biodiversity Strategy A strategic plan for biodiversity conservation in the City of Canning over the next 20 years FrontFront Cover: Cover: Conostylis Conostylis bracteata bracteata. .Credit: Credit: S.Mawson S.Mawson InsideInside Cover: Cover: Convict Convict Fence Fence on on the the Canning Canning River River Credit:Credit: D. D. Graham Graham Contents Executive Summary 7 1 Context 12 1.1 What is Biodiversity and its Benefits 13 1.2 What is a Local Biodiversity Strategy? 13 1.3 Definition of Conservation, Protection and Retention 13 1.4 Legislative and Policy Framework 13 1.5 Local Strategic and Planning Context 15 2 Biodiversity Assets 17 2.1 Regional Context 17 2.2 Geology, Landforms and Soils 17 2.3 Vegetation 18 2.3.1 Diversity of vegetation 19 2.3.1.1 The most common vegetation complexes in the City 19 2.3.1.2 The most threatened vegetation complexes 20 2.3.1.3 The most retained vegetation complex in the City 20 2.3.2 Protection status of vegetation 23 2.4 Threatened Species and Ecological Communities 24 2.4.1 An overview and significant flora 24 2.4.2 Fauna 27 2.4.3 Threatened ecological communities 31 2.5 Waterways and Wetlands 33 2.6 Ecological Linkages 33 2.6.1 Impact of natural area fragmentation 33 2.6.2 Regional and Local ecological linkages 33 2.7 Threats to Biodiversity 35 2.7.1 Overview 35 4 2.7.2 Feral animal control 36 2.7.3 Human activities 37 2.7.4 Climate change 38 2.7.5 Current approaches to the control of threats to biodiversity 39 3 Prioritisation of Local Natural Areas for Biodiversity Conservation 41
    [Show full text]
  • Ramsar Sites in Order of Addition to the Ramsar List of Wetlands of International Importance
    Ramsar sites in order of addition to the Ramsar List of Wetlands of International Importance RS# Country Site Name Desig’n Date 1 Australia Cobourg Peninsula 8-May-74 2 Finland Aspskär 28-May-74 3 Finland Söderskär and Långören 28-May-74 4 Finland Björkör and Lågskär 28-May-74 5 Finland Signilskär 28-May-74 6 Finland Valassaaret and Björkögrunden 28-May-74 7 Finland Krunnit 28-May-74 8 Finland Ruskis 28-May-74 9 Finland Viikki 28-May-74 10 Finland Suomujärvi - Patvinsuo 28-May-74 11 Finland Martimoaapa - Lumiaapa 28-May-74 12 Finland Koitilaiskaira 28-May-74 13 Norway Åkersvika 9-Jul-74 14 Sweden Falsterbo - Foteviken 5-Dec-74 15 Sweden Klingavälsån - Krankesjön 5-Dec-74 16 Sweden Helgeån 5-Dec-74 17 Sweden Ottenby 5-Dec-74 18 Sweden Öland, eastern coastal areas 5-Dec-74 19 Sweden Getterön 5-Dec-74 20 Sweden Store Mosse and Kävsjön 5-Dec-74 21 Sweden Gotland, east coast 5-Dec-74 22 Sweden Hornborgasjön 5-Dec-74 23 Sweden Tåkern 5-Dec-74 24 Sweden Kvismaren 5-Dec-74 25 Sweden Hjälstaviken 5-Dec-74 26 Sweden Ånnsjön 5-Dec-74 27 Sweden Gammelstadsviken 5-Dec-74 28 Sweden Persöfjärden 5-Dec-74 29 Sweden Tärnasjön 5-Dec-74 30 Sweden Tjålmejaure - Laisdalen 5-Dec-74 31 Sweden Laidaure 5-Dec-74 32 Sweden Sjaunja 5-Dec-74 33 Sweden Tavvavuoma 5-Dec-74 34 South Africa De Hoop Vlei 12-Mar-75 35 South Africa Barberspan 12-Mar-75 36 Iran, I. R.
    [Show full text]
  • How Does Phloem Physiology Affect Plant Ecology?
    Plant, Cell & Environment (2016) 39,709–725 doi: 10.1111/pce.12602 Review Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? Jessica A. Savage1, Michael J. Clearwater2, Dustin F. Haines3, Tamir Klein4, Maurizio Mencuccini5,6, Sanna Sevanto7, Robert Turgeon8 &CankuiZhang9 1Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA, 2School of Science, University of Waikato, Hamilton 3240, New Zealand, 3Department of Environmental Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA 01003, USA, 4Institute of Botany, University of Basel, Schoenbeinstrasse 6, 4056 Basel, Switzerland, 5School of GeoSciences, University of Edinburgh, Crew Building, West Mains RoadEH9 3JN Edinburgh, UK, 6ICREA at CREAF, Campus de UAB, Cerdanyola del Valles, Barcelona 08023, Spain, 7Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, 8Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA and 9Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA ABSTRACT potentially influencing everything from growth and allocation to defense and reproduction (Fig. 1). The phloem’srolein Despite the crucial role of carbon transport in whole plant shaping many ecological processes has intrigued scientists for physiology and its impact on plant–environment interactions decades, but proving a direct connection between phloem and ecosystem function, relatively little research has tried to ex- physiology and plant ecology remains challenging. amine how phloem physiology impacts plant ecology. In this re- Carbon transport occurs in a series of stacked cells, sieve el- view, we highlight several areas of active research where ements, which in angiosperms form long continuous conduits inquiry into phloem physiology has increased our understand- called sieve tubes (for details on cell ultrastructure, see Froelich ing of whole plant function and ecological processes.
    [Show full text]
  • Intelligence of Bearded Dragons Sydney Herndon
    Murray State's Digital Commons Honors College Theses Honors College Spring 4-26-2021 Intelligence of Bearded Dragons sydney herndon Follow this and additional works at: https://digitalcommons.murraystate.edu/honorstheses Part of the Behavior and Behavior Mechanisms Commons Recommended Citation herndon, sydney, "Intelligence of Bearded Dragons" (2021). Honors College Theses. 67. https://digitalcommons.murraystate.edu/honorstheses/67 This Thesis is brought to you for free and open access by the Honors College at Murray State's Digital Commons. It has been accepted for inclusion in Honors College Theses by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. Intelligence of Bearded Dragons Submitted in partial fulfillment of the requirements for the Murray State University Honors Diploma Sydney Herndon 04/2021 i Abstract The purpose of this thesis is to study and explain the intelligence of bearded dragons. Bearded dragons (Pogona spp.) are a species of reptile that have been popular in recent years as pets. Until recently, not much was known about their intelligence levels due to lack of appropriate research and studies on the species. Scientists have been studying the physical and social characteristics of bearded dragons to determine if they possess a higher intelligence than previously thought. One adaptation that makes bearded dragons unique is how they respond to heat. Bearded dragons optimize their metabolic functions through a narrow range of body temperatures that are maintained through thermoregulation. Many of their behaviors are temperature dependent, such as their speed when moving and their food response. When they are cold, these behaviors decrease due to their lower body temperature.
    [Show full text]
  • Niche Modeling for the Genus Pogona (Squamata: Agamidae) in Australia: Predicting Past (Late Quaternary) and Future (2070) Areas of Suitable Habitat
    Niche modeling for the genus Pogona (Squamata: Agamidae) in Australia: predicting past (late Quaternary) and future (2070) areas of suitable habitat Julie E. Rej1,2 and T. Andrew Joyner2 1 Department of Wildlife Ecology, The Wilds, Cumberland, OH, USA 2 Department of Geosciences, East Tennessee State University, Johnson City, TN, USA ABSTRACT Background: As the climate warms, many species of reptiles are at risk of habitat loss and ultimately extinction. Locations of suitable habitat in the past, present, and future were modeled for several lizard species using MaxEnt, incorporating climatic variables related to temperature and precipitation. In this study, we predict where there is currently suitable habitat for the genus Pogona and potential shifts in habitat suitability in the past and future. Methods: Georeferenced occurrence records were obtained from the Global Biodiversity Information Facility, climate variables (describing temperature and precipitation) were obtained from WorldClim, and a vegetation index was obtained from AVHRR satellite data. Matching climate variables were downloaded for three different past time periods (mid-Holocene, Last Glacial Maximum, and Last Interglacial) and two different future projections representative concentration pathways (RCPs 2.6 and 8.5). MaxEnt produced accuracy metrics, response curves, and probability surfaces. For each species, parameters were adjusted for the best possible output that was biologically informative. Results: Model results predicted that in the past, there was little suitable habitat for P. henrylawsoni and P. microlepidota within the areas of their current range. Past areas of suitable habitat for P. barbata were predicted to be similar to the current 16 March 2018 Submitted prediction. Pogona minor and P.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Romano's Investment Holdings Flora and Vegetation Assessment Lot 54
    Romano’s Investment Holdings Flora and Vegetation Assessment Lot 54 and Lot 9001 Holden Close, Bertram January 2014 Romano’s Investment Holdings Flora and Vegetation Assessment Lot 54 and Lot 9001 Holden Close, Bertram January 2014 Report Reference No. ENAUPERT04366A_01_v2 Disclaimer This document is published in accordance with and subject to an agreement between Coffey and the client for whom it has been prepared, Romano’s Investment Holdings (‘Client’), and is restricted to those issues that have been raised by the client in its engagement of Coffey and prepared using the standard of skill and care ordinarily exercised by environmental scientists in the preparation of such documents. Any person or organisation that relies on or uses the document for purposes or reasons other than those agreed by Coffey and the Client without first obtaining the prior written consent of Coffey, does so entirely at their own risk and Coffey denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be suffered as a consequence of relying on this document for any purpose other than that agreed with the Client. © Coffey Environments Australia Pty Ltd ABN 65140765902. 21 January 2014. Suite 2, 53 Burswood Road Burswood WA 6100 Australia PO Box 4223 Victoria Park WA 6979 Australia t +61 8 9355 7100 f +61 8 9355 7111 coffey.com Library Reference No.: EP2013/211 Report Reference No.: ENAUPERT04366AA_01_V2 Project Director M. Scheltema Project Manager M. Johnston Record of Distribution Report Status: No. of Format Distributed to Date Authorised by copies V1 (draft) 1 PDF RPS 10/12/2013 M.
    [Show full text]
  • Appendix 3 Vertebrate Fauna Assessment
    A VERTEBRATE FAUNA ASSESSMENT OF THE CLOVERDALE MINERAL SANDS SURVEY AREA Prepared for Iluka Resources Ltd By Ninox Wildlife Consulting February 2006 i Executive Summary The Cloverdale Mineral Sands Project Area is situated approximately 8 km south of Capel, Western Australia. For this fauna assessment, a wider area was surveyed in order to encompass all of the fauna habitats that could be impacted directly or indirectly by the Project. The area assessed for fauna has been called the Survey Area throughout this report. Much of the Survey Area is located on private property on the Southern Swan Coastal Plain (SSCP), although there is a small area of Vacant Crown Land on the Ludlow River. Much of the area is cleared for agriculture with vegetated road reserves, isolated trees in paddocks and small areas of remnant vegetation, some of which has been fenced from stock grazing. A field assessment of the Project Area and surrounds (Survey Area) was carried out over two days in March 2005 by GHD with additional field work conducted by Ninox Wildlife Consulting in mid October 2005. This assessment incorporated a detailed literature review which included a search of State and Commonwealth vertebrate fauna databases, a review of published literature on the vertebrate fauna of the general area and a review of unpublished records from the general area held by Ninox Wildlife Consulting. A total of 46 species of bird has been recorded within the Survey Area. The results of the literature review showed that a further 78 species could be expected to occur as resident, nomadic, migratory or occasional visitors to the general area.
    [Show full text]
  • Branch Circus Flora and Fauna Survey PDF Document
    FLORA AND VEGETATION SURVEY Branch Circus and Hammond Road, Success Prepared by: Prepared for: RPS MUNTOC PTY LTD AND 290 Churchill Avenue, SUBIACO WA 6008 SILVERSTONE ASSET PTY LTD PO Box 465, SUBIACO WA 6904 C/O Koltasz Smith T: 618 9382 4744 PO Box 127 F: 618 9382 1177 E: [email protected] BURSWOOD WA 6100 W: www.rpsgroup.com.au Report No: L07263 Version/Date: Rev 0, June 2008 RPS Environment Pty Ltd (ABN 45 108 680 977) Document Set ID: 5546761 Version: 1, Version Date: 31/01/2017 Flora and Vegetation Survey Branch Circus and Hammond Road, Success Document Status Review Format RPS Release Issue Version Purpose of Document Orig Review Date Review Approval Date Draft A Draft For Internal Review KelMcC VanYeo 30.04.08 Draft B Draft For Client Review VanYeo KarGod 14.05.08 SN 30.05.08 Rev 0 Final for Issue VanYeo 10.06.08 DC 12.06.08 B. Hollyock 13.06.08 Disclaimer This document is and shall remain the property of RPS. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised copying or use of this document in any form whatsoever is prohibited. L07263, Rev 0, June 2008 DOCUMENT STATUS / DISCLAIMER Document Set ID: 5546761 Version: 1, Version Date: 31/01/2017 Flora and Vegetation Survey Branch Circus and Hammond Road, Success EXECUTIVE SUMMARY Flora A total of 229 taxa were recorded from the survey area, of which 155 or 68% were native.
    [Show full text]
  • Australian Orchidaceae: Genera and Species (12/1/2004)
    AUSTRALIAN ORCHID NAME INDEX (21/1/2008) by Mark A. Clements Centre for Plant Biodiversity Research/Australian National Herbarium GPO Box 1600 Canberra ACT 2601 Australia Corresponding author: [email protected] INTRODUCTION The Australian Orchid Name Index (AONI) provides the currently accepted scientific names, together with their synonyms, of all Australian orchids including those in external territories. The appropriate scientific name for each orchid taxon is based on data published in the scientific or historical literature, and/or from study of the relevant type specimens or illustrations and study of taxa as herbarium specimens, in the field or in the living state. Structure of the index: Genera and species are listed alphabetically. Accepted names for taxa are in bold, followed by the author(s), place and date of publication, details of the type(s), including where it is held and assessment of its status. The institution(s) where type specimen(s) are housed are recorded using the international codes for Herbaria (Appendix 1) as listed in Holmgren et al’s Index Herbariorum (1981) continuously updated, see [http://sciweb.nybg.org/science2/IndexHerbariorum.asp]. Citation of authors follows Brummit & Powell (1992) Authors of Plant Names; for book abbreviations, the standard is Taxonomic Literature, 2nd edn. (Stafleu & Cowan 1976-88; supplements, 1992-2000); and periodicals are abbreviated according to B-P- H/S (Bridson, 1992) [http://www.ipni.org/index.html]. Synonyms are provided with relevant information on place of publication and details of the type(s). They are indented and listed in chronological order under the accepted taxon name. Synonyms are also cross-referenced under genus.
    [Show full text]
  • (Reptilia: Squamata: Scincidae) Species Group and a New Species of Immediate Conservation Concern in the Southwestern Australian Biodiversity Hotspot
    Zootaxa 3390: 1–18 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Molecular phylogeny and morphological revision of the Ctenotus labillardieri (Reptilia: Squamata: Scincidae) species group and a new species of immediate conservation concern in the southwestern Australian biodiversity hotspot GEOFFREY M. KAY & J. SCOTT KEOGH 1 Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia 1 Corresponding author. E-mail: [email protected] Abstract Ctenotus is the largest and most diverse genus of skinks in Australia with at least 97 described species. We generated large mitochondrial and nuclear DNA data sets for 70 individuals representing all available species in the C. labillardieri species- group to produce the first comprehensive phylogeny for this clade. The widespread C. labillardieri was sampled extensively to provide the first detailed phylogeographic data set for a reptile in the southwestern Australian biodiversity hotspot. We supplemented our molecular data with a comprehensive morphological dataset for the entire group, and together these data are used to revise the group and describe a new species. The morphologically highly variable species C. labillardieri comprises seven well-supported genetic clades that each occupy distinct geographic regions. The phylogeographic patterns observed in this taxon are consistent with studies of frogs, plants and invertebrates, adding strength to emerging biogeographic hypotheses in this iconic region. The species C. catenifer, C. youngsoni, and C. gemmula are well supported, and despite limited sampling both C. catenifer and C. gemmula show substantial genetic structure.
    [Show full text]