Early Detection News U.S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Squarrose Sedge Carex Squarrosa
Natural Heritage Squarrose Sedge & Endangered Species Carex squarrosa L. Program www.mass.gov/nhesp State Status: Threatened Federal Status: None Massachusetts Division of Fisheries & Wildlife GENERAL DESCRIPTION: Squarrose Sedge is a perennial, herbaceous, grass-like plant that grows in loose clumps up to 3 feet (0.9 m) in height. This species was recently rediscovered in Massachusetts. Squarrose Sedge is typically found within riparian habitats that have alluvial soils. The uppermost spikes are pistillate (ovule-bearing) flowers borne above staminate (pollen- bearing) flowers. The large, dense, reproductive spikes of Squarrose Sedge make this species rather distinctive from other members of the genus Carex. AIDS TO IDENTIFICATION: To positively identify the Squarrose Sedge and other members of the genus Carex, a technical manual should be consulted. Species in this genus have small unisexual wind-pollinated flowers that are borne in clusters or spikes. Each flower Photo by Brett Trowbridge is unisexual, and is closely subtended by small, flat scales. The staminate flowers are subtended by a single perigynium. The morphological characteristics of these flat scale (the staminate scale); the pistillate flowers are reproductive structures are important in identifying subtended by one flat scale (the pistillate scale) and are plants of the genus Carex. enclosed by a second sac-like modified scale, the perigynium (plural: perigynia). After flowering, the Squarrose Sedge is a large sedge that grows in tufts from achene (a dry, one-seeded fruit) develops within the short rhizomes. Its stout, leafy stems range in height from 1 to 3 ft. (0.3 to 0.9 m). The elongate leaves are 3 to 6 mm (1/8 to ¼ in.) in width. -
Lecture 24: "Graminoid" Monocots IB 168, Spring 2006
Lecture 24: "Graminoid" monocots IB 168, Spring 2006 Graminoid monocots: A clade in Poales of usually wind-pollinated taxa, sister to Bromeliaceae and without showy flowers. Three families of graminoid monocots have a worldwide distribution and are prominent members of north temperate and boreal regions of the world: (1) Cyperaceae (sedges, tules, papyrus, and relatives), (2) Juncaceae (rushes and wood-rushes), and, especially, (3) Poaceae (grasses). All three families share conspicuous attributes (and appear superficially similar): Narrow, elongate leaves (parallel venation) with sheath (basal) and blade Perianth reduced or absent (not showy) Nectaries lacking (wind-pollinated) In Cyperaceae and Poaceae, seeds are only 1 per ovary (Ovaries superior, with 1--3 locules, 2--3 stigmas) (Stamens 3 or 6) Family attributes: (1) Poaceae (grasses), also called Gramineae (conserved name) - Highly diverse (ca. 10,000 species in 600--650 genera), but not quite as many species as Compositae/Asteraceae, Orchidaceae, Fabaceae, or Rubiaceae - Worldwide distribution (except Antarctica) - Ecologically of critical importance in African savannas and veldt, Asian steppes, South American paramo/puna and pampas, and North American plains/prairie - Economically the most important plant family because it includes the grain or cereal crops [rice (Oryza), wheat (Triticum), corn or maize (Zea), rye (Secale), barley (Hordeum), oats (Avena), sorghum (Sorghum), millet (Panicum)] and sugar cane (Saccharum) -- all but corn/maize from Old World - Also economically critical because of importance for livestock fodder, soil conservation, wildlife habitat, and turf (intercalary growth allows for grazing or mowing without killing the plant), in addition to building materials (bamboos) Fossil record of grasses goes back ca. -
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
A List of Grasses and Grasslike Plants of the Oak Openings, Lucas County
A LIST OF THE GRASSES AND GRASSLIKE PLANTS OF THE OAK OPENINGS, LUCAS COUNTY, OHIO1 NATHAN WILLIAM EASTERLY Department of Biology, Bowling Green State University, Bowling Green, Ohio 4-3403 ABSTRACT This report is the second of a series of articles to be prepared as a second "Flora of the Oak Openings." The study represents a comprehensive survey of members of the Cyperaceae, Gramineae, Juncaceae, Sparganiaceae, and Xyridaceae in the Oak Openings region. Of the 202 species listed in this study, 34 species reported by Moseley in 1928 were not found during the present investigation. Fifty-seven species found by the present investi- gator were not observed or reported by Moseley. Many of these species or varieties are rare and do not represent a stable part of the flora. Changes in species present or in fre- quency of occurrence of species collected by both Moseley and Easterly may be explained mainly by the alteration of habitats as the Oak Openings region becomes increasingly urbanized or suburbanized. Some species have increased in frequency on the floodplain of Swan Creek, in wet ditches and on the banks of the Norfolk and Western Railroad right-of-way, along newly constructed roadsides, or on dry sandy sites. INTRODUCTION The grass family ranks third among the large plant families of the world. The family ranks number one as far as total numbers of plants that cover fields, mead- ows, or roadsides are concerned. No other family is used as extensively to pro- vide food or shelter or to create a beautiful landscape. The sedge family does not fare as well in terms of commercial importance, but the sedges do make avail- able forage and food for wild fowl and they do contribute plant cover in wet areas where other plants would not be as well adapted. -
Buzzing Bees and the Evolution of Sexual Floral Dimorphism in Australian Spiny Solanum
BUZZING BEES AND THE EVOLUTION OF SEXUAL FLORAL DIMORPHISM IN AUSTRALIAN SPINY SOLANUM ARTHUR SELWYN MARK School of Agriculture Food & Wine The University of Adelaide This thesis is submitted in fulfillment of the degree of Doctor of Philosophy June2014 1 2 Table of Contents List of Tables........................................................................................................... 6 List of Figures ......................................................................................................... 7 List of Boxes ......................................................................................................... 10 Abstract ................................................................................................................. 11 Declaration ............................................................................................................ 14 Acknowledgements ............................................................................................... 15 Chapter One - Introduction ................................................................................... 18 Floral structures for animal pollination .......................................................... 18 Specialisation in pollination .................................................................... 19 Specialisation in unisexual species ......................................................... 19 Australian Solanum species and their floral structures .................................. 21 Floral dimorphisms ................................................................................ -
Site Synopsis
SITE SYNOPSIS SITE NAME: LOUGH FAD BOG NHA SITE CODE: 001159 Lough Fad Bog NHA is a relatively large and primarily upland blanket bog, situated approximately 7 km from Pettigo, north of the Donegal to Pettigo road. It lies at altitudes between 130 m and 280 m on acidic gneiss bedrock. The site is situated in the townlands of Meensheefin, Belalt North, Lough Fad and Lough Ultan. Plantation forestry largely surrounds the site on its western, eastern and northern sides, while to the south it is bounded by the road between Donegal and Pettigo. The site contains upland and lowland blanket bog developed as relatively shallow peat. The bog lies on a series of gently sloping plateaux, separated by rocky knolls and east-west trending ridges, situated on a catchment divide (watershed) between the Waterfoot and Ballintra Rivers. A number of lakes occur in the northern part of the site, including Lough Nageage, Lough Natragh, Lough Nacraghan, Lough Fad, Lough Atarriff and Lough Nabrackmore. The vegetation of the site is characterised by blanket bog species. The most dominant include Ling Heather (Calluna vulgaris), Purple Moor-grass (Molinia caerulea), Common Cottongrass (Eriophorum angustifolium), the locally occurring species Oblong-leaved Sundew (Drosera intermedia), Bog-myrtle (Myrica gale), Cross- leaved Heath (Erica tetralix), White Beak-sedge (Rhynchospora alba), Bog Asphodel (Narthecium ossifragum), Deergrass (Scirpus cespitosus), Carnation Sedge (Carex panicea) and lichens (Cladonia portentosa and C. uncialis). Bog moss lawns and hummocks are locally frequent, consisting of Sphagnum capillifolium, S. subnitens, S. imbricatum, S. auriculatum, S. papillosum and S. compactum. Large cushions of Racomitrium lanuginosum and Leucobryum glaucum also occur. -
Evolution in Sedges (Carex, Cyperaceae)
Evolution in sedges (Carex, Cyperaceae) A. A. REZNICEK University of Michigan Herbarium, North University Building, Ann Arbor, MI 48/09, U.S.A. Received January 2, 1990 REZNICEK,A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68: 1409-1432. Carex is the largest and most widespread genus of Cyperaceae, but evolutionary relationships within it are poorly under- stood. Subgenus Primocarex was generally thought to be artificial and derived from diverse multispicate species. Relation- ships of rachilla-bearing species of subgenus Primocarex, however, were disputed, with some authors suggesting derivation from other genera, and others believing them to be primitive. Subgenus Indocarex, with compounded inflorescence units, was thought to be primitive, with subgenera Carex and Vignea reduced and derived. However, occurrence of rachillas is not confined to a few unispicate species, as previously thought, but is widespread. The often suggested connection between Uncinia and unispicate Carex is shown, based on rachilla morphology, to be founded on incorrect interpretation OF homology. Uncinia kingii, the alleged connecting link, is, in fact, a Carex. Unispicate Carex without close multispicate relatives probably originated from independent, ancient reductions of primitive, rachilla-bearing, multispicate Carex. The highly compounded inflorescences occumng in subgenus Vignea are hypothesized to represent a primitive state in Carex, and the more specialized inflorescences in subgenus Carex derived from inflorescences of this type. The relationships of subgenus Indocurex, with its unique perigynium-like inflorescence prophylls, remain unclear. REZNICEK,A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68 : 1409-1432. Le Carex est le genre le plus irilportant et le plus rCpandu des Cyperaceae, mais les affinites Cvolutives a I'intCrieur de ce genre sont ma1 connues. -
Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear. -
Landscape Plants Rated by Deer Resistance
E271 Bulletin For a comprehensive list of our publications visit www.rce.rutgers.edu Landscape Plants Rated by Deer Resistance Pedro Perdomo, Morris County Agricultural Agent Peter Nitzsche, Morris County Agricultural Agent David Drake, Ph.D., Extension Specialist in Wildlife Management The following is a list of landscape plants rated according to their resistance to deer damage. The list was compiled with input from nursery and landscape professionals, Cooperative Extension personnel, and Master Gardeners in Northern N.J. Realizing that no plant is deer proof, plants in the Rarely Damaged, and Seldom Rarely Damaged categories would be best for landscapes prone to deer damage. Plants Occasionally Severely Damaged and Frequently Severely Damaged are often preferred by deer and should only be planted with additional protection such as the use of fencing, repellents, etc. Success of any of these plants in the landscape will depend on local deer populations and weather conditions. Latin Name Common Name Latin Name Common Name ANNUALS Petroselinum crispum Parsley Salvia Salvia Rarely Damaged Tagetes patula French Marigold Ageratum houstonianum Ageratum Tropaeolum majus Nasturtium Antirrhinum majus Snapdragon Verbena x hybrida Verbena Brugmansia sp. (Datura) Angel’s Trumpet Zinnia sp. Zinnia Calendula sp. Pot Marigold Catharanthus rosea Annual Vinca Occasionally Severely Damaged Centaurea cineraria Dusty Miller Begonia semperflorens Wax Begonia Cleome sp. Spider Flower Coleus sp. Coleus Consolida ambigua Larkspur Cosmos sp. Cosmos Euphorbia marginata Snow-on-the-Mountain Dahlia sp. Dahlia Helichrysum Strawflower Gerbera jamesonii Gerbera Daisy Heliotropium arborescens Heliotrope Helianthus sp. Sunflower Lobularia maritima Sweet Alyssum Impatiens balsamina Balsam, Touch-Me-Not Matricaria sp. False Camomile Impatiens walleriana Impatiens Myosotis sylvatica Forget-Me-Not Ipomea sp. -
List of Plants for Great Sand Dunes National Park and Preserve
Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present -
Hanging Sedge (Carex Pendula)
Hanging Sedge (Carex pendula) Hanging sedge (Carex pendula), also called drooping or pendulous sedge, is a large, evergreen perennial sedge introduced to North America from Europe as an ornamental species. It is adapted to forested areas with damp, rich soil such as along creeks, wetlands and drainages. It grows in large clumps and spreads primarily by seed. It has a tendency to self-sow and spread outside of where it is planted. It can produce more than 20,000 seeds per plant and in ideal conditions, more than 90 percent of the seeds germinate. Seeds spread by water as well as other mechanisms of disturbance and by being planted. Local Distribution (excerpted from notes provided by Tom Erler) There are a number of infestations around the UW Seattle campus, where it was originally planted in a few landscaped areas. It is weedy in beds, medians, and cracks in sidewalks among central campus. Originally planted in 1988 near Fluke Hall, since then it has established a dense seedbank and has spread to the opposite side of the building where it is in the median on both sides of Mason Road and under big leaf maple trees. It is also dense near previous plantings around the Fisheries building on campus and is also growing along Portage Bay’s north shoreline behind UW Hospital. Staff at the UW Arboretum reported trying to control it on the Arboretum Creek and Tom has seen it growing around the wetlands in the vicinity of the Arboretum. Burke Herbarium collections from this infestation date back to Peter Zika’s observations in 1999, 2001, and Barbara Wilson in 2004. -
Native and Invasive Plants
Native Trees Nuisance / Invasive Shrubs Native or Abies grandis Grand Fir Cytisus scoparius Scotch Broom Arbutus menziesii Madrone Ilex aquifolium English Holly Nuisance? Acer macrophyllum Bigleaf Maple Prunus laurocerasus English / Portuguese Laurel why we care Alnus rubra Red Alder Rhus diversiloba Poison Oak Native Cornus nutallii Pacific Dogwood Nuisance / Invasive Herbaceous Native plants Fraxinus latifolia Oregon Ash Alliaria petiolata Garlic Mustard Native plants are best adapted for long-term and Pinus contorta Shore Pine Buddleia davidii Butterfly Bush success in local soils and growing conditions. Pinus ponderosa* Ponderosa Pine Carduus alanthoides Plumless Thistle Planted in the right location, they thrive with little or no maintenance, generally do not require Invasive Populus trichocarpa Black Cottonwood Carduus baeticus Smooth Distaff Thistle fertilizers or pesticides, and do not require long- Prunus emarginatus Bitter Cherry Carduus lanatus Woolly Distaff Thistle term irrigation. Plants Pseudotsuga menziesii Douglas-Fir Cirsium arvense Canadian Thistle Quercus garryana Oregon White Oak Cirsiumvulgare Bull Thistle Only native or locally-adapted plants should be planted in Sensitive Lands, including wetlands Rhamnus purshiana Cascara Geranium lucidum Shining Crane's-Bill and stream corridors (RP Districts) and tree Salix fluviatilis Columbia River Willow Geranium robertianum Herb Robert groves (RC Districts). Native plants may not be Salix lasiandra Pacific Willow Hypericum perforatum St. John’s Wort removed from these protected resource areas. Salix scouleriana Scouler's Willow Lythrum salicaria Purple Loosestrife Salix sitchensis Sitka Willow Vinca major and v. minor Periwinkle / Vinca Every effort has been made to develop a complete list of native plants, but other native or Taxus brevifolius Western Yew Nuisance / Invasive Vines & Grasses naturalized plants may also be acceptable.