Gene Expression Profile Suggesting Immunological Dysregulation in Two Brazilian Bloom's Syndrome Cases

Total Page:16

File Type:pdf, Size:1020Kb

Gene Expression Profile Suggesting Immunological Dysregulation in Two Brazilian Bloom's Syndrome Cases Received: 28 November 2018 | Revised: 4 November 2019 | Accepted: 6 January 2020 DOI: 10.1002/mgg3.1133 CLINICAL REPORT Gene expression profile suggesting immunological dysregulation in two Brazilian Bloom's syndrome cases Marilia M. Montenegro1,2 | Caio R. Quaio2 | Patricia Palmeira3 | Yanca Gasparini1 | Andreia Rangel-Santos3 | Julian Damasceno1 | Estela M. Novak4 | Thamires M. Gimenez5 | Guilherme L. Yamamoto2 | Rachel S. Ronjo2 | Gil M. Novo-Filho1,2 | Samar N. Chehimi1 | Evelin A. Zanardo1 | Alexandre T. Dias1 | Amom M. Nascimento1 | Thais V. M. M. Costa1 | Alberto J. da S. Duarte1 | Luiz L. Coutinho6 | Chong A. Kim2 | Leslie D. Kulikowski1,2 1Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Abstract Medicina FMUSP, Universidade de Sao Background: Bloom syndrome (BS) is a rare autosomal recessive chromosome insta- Paulo, Sao Paulo, SP, Brazil bility disorder. The main clinical manifestations are growth deficiency, telangiectasic 2 Unidade de Genetica, Departamento de facial erythema, immunodeficiency, and increased risk to develop neoplasias at early Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de age. Cytogenetic test for sister chromatid exchanges (SCEs) is used as a diagnostic Medicina, Universidade de Sao Paulo, Sao marker for BS. In addition, most patients also present mutations in the BLM gene, Paulo, SP, Brazil related to defects in the DNA repair mechanism. However, the molecular mechanism 3Laboratório de Pediatria Clínica, Departamento de Pediatria, Instituto da behind the pathogenicity of BS is still not completely understood. Crianca, Hospital das Clinicas HCFMUSP, Methods: We describe two patients confirmed with BS by SCE and molecular analy- Faculdade de Medicina, Universidade de sis. Also, we performed the gene expression profile by the RNA-seq methodology Sao Paulo, Sao Paulo, SP, Brazil in mRNA transcripts for differential gene expression analysis using as a biological 4Fundação Pró-Sangue, Hemocentro de São Paulo, Sao Paulo, SP, Brazil condition for comparison BS versus health controls. 5Laboratório de Pesquisa Translacional em Results: We detected 216 differentially expressed genes related to immunologi- Oncohematologia, Instituto de Tratamento cal pathways such as positive regulation and activation of B cells, immune effec- de Cancer Infantil (ITACI), Sao Paulo, SP, Brazil tor process and absence of difference of DNA repair genes expression. In addition; 6Centro de Genomica Funcional, we also observed differentially expressed genes associated with apoptosis control, Departamento de Zootecnia, Universidade such as BCL2L1, CASP7, CDKN1A, E2F2, ITPR, CD274, TNFAIP6, TNFRSF25, de São Paulo, Escola Superior de TNFRSF13C, and TNFRSF17. Agricultura Luiz de Queiroz, ESALQ-USP, Piracicaba, Brazil Conclusion: Our results suggest that the combination of altered expression of genes involved in signaling pathways of immune response and apoptosis control may Correspondence contribute directly to the main characteristics observed in BS, such as recurrent Marília Moreira Montenegro, Laboratorio de Citogenomica, Departamento de infections, growth failure, and high risk of cancer. Transcriptome studies of other Patologia, Faculdade de Medicina FMUSP, instability syndromes could allow a more accurate analysis of the relevant gene inter- Universidade de Sao Paulo, Sao Paulo, SP, BR. actions associated with the destabilization of the genome. This is a first description of Email: [email protected] This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc. Mol Genet Genomic Med. 2020;8:e1133. wileyonlinelibrary.com/journal/mgg3 | 1 of 10 https://doi.org/10.1002/mgg3.1133 2 of 10 | MONTENEGRO ET AL. Funding information This work was supported by CAPES the profile of differential gene expression related to immunological aspects detected (Coordenação de Aperfeiçoamento de in patients with BS by RNA-seq. Pessoal de Nível Superior) FINEP/ CT-INFRA-PROINFRA 01/2011 and KEYWORDS Fundação de Amparo a Pesquisa do BLM gene, Transcriptome, Bloom's syndrome, Immunology, RNA-Seq Estado de São Paulo (FAPESP process 2017/08981-1) 1 | INTRODUCTION on RNA-Seq, which allows transcriptome studies, analysis of previously unidentified genes and splice variants, genomic Bloom's syndrome (BS; Online Mendelian Inheritance in variations, and a comprehensive expression profile. Indeed, Man database #21900) is a rare autosomal recessive chromo- the characterization of gene expression in cells via measure- somal instability disorder characterized by severe growth de- ment of mRNA levels is a useful tool in determining how the ficiency (pre- and postnatal), sun-sensitive facial erythema, transcriptional machinery of the cell is affected by external immunological deficiency, and a remarkably increased risk signals, genetic diseases or how cells differ between a healthy of developing neoplasias of various types at a younger age state and a disease state (Huang, Sherman, & Lempicki, than expected in the general population. The neoplasias are 2009). The definition of an accurate map of all genes, with the main cause of death among affected individuals (Bloom, its alternative isoforms, could be critical for biological under- 1954; Chakraverty & Hickson, 1999; Brosh et al., 2001; standing of the disease. In this sense, we used RNA-Seq to Beamish et al., 2002; Bhisitkul & Rizen, 2004; Flanagan and genomic instability in two patients affected by a BS. Cunniff, 2006; Moreira et al., 2013). The cells from patients display genomic instability char- acterized by increased frequency of chromosomal and chro- 2 | PATIENTS AND METHODS matid gaps, breaks, and several chromosomal aberrations, especially quadriradial configurations and increased sister 2.1 | Patients chromatid exchanges (SCEs) which constitute the hall- mark of BS (Cunniff, Bassetti, & Ellis, 2017; Ellis, 1995). We compared gene expression patterns using an assay Chromosomal alterations observed in BS cells may generate based on RNA-Seq of mRNA transcriptome between repositioning of tumor suppressor genes that are important two groups: BS patients versus healthy controls. BS pa- for regulation of development and function of T and B cells, tients group included two patients with definite diagnosis thus predisposing to immunodeficiency and cancer devel- of BS previously confirmed by cytogenetic and molecu- opment (Derks, Hoeijmakers, & Pothof, 2014; Ellis et al., lar study of BLM gene, while healthy controls comprised 1998). Indeed, a recent immunological study of BS patients three individuals (two males and one female) from general demonstrated clinically relevant increased number of infec- population. A summary of main findings of all samples is tions, relatively low serum immunoglobulin, normal range described in Table 1. of T, B, and NK cells and high percentage of CD4+ and The study was approved by ethics committee of the CD8+ effector memory T cells (Schoenaker et al., 2018). University of São Paulo HCFMUSP-CAPPesq 63954/12 and BS is associated with biallelic pathogenic mutations in all patients or their legal guardians signed a consent form. the BLM gene, located in 15q26.1 region. In normal conditions, Patient K1 is a 28-year-old Brazilian woman, fifth child of BLM encodes a 1,417 amino acids protein. It is member of the consanguineous parents of non-Jewish family that was born at RecQ family with DNA helicase activity called BLM helicase 35 weeks of gestation with low birth weight (1800 g) and small or RECQL3 (Elmore, 2007; German, 1969a, 1993). BLM he- licase is a nucleolar protein essential for the integrity and sta- bility of DNA (German, 1997; German & Passarge, 1989). It TABLE 1 Description of samples that compounded this work is considerate anti-recombinant key, because it is a DNA repair Samples DH Gender Age (years) protein able to resolve DNA structures, like a Holliday junction, K1 BS F 28 D-loops, and G-quadruplex generated during HRR caused by a M1 BS F 13 DSB (Ellis et al., 1998; Hickson et al., 2001). Cytogenetic study, previously considered the gold stan- C1 H M 29 dard diagnostic tool for BS (Ellis et al., 1998), has been C2 H F 29 substituted for more accurate molecular analysis of BML C3 H M 31 gene. Recent technological advances with next-generation Abbreviations BS, Bloom´s syndrome; C, Controls; DH, Diagnostic hypothesis; sequencing made possible the rise of methodologies based F: Female; H, Healthy; M: Male MONTENEGRO ET AL. | 3 of 10 length (40 cm) after intrauterine growth retardation. She had alterations. Cytogenetic analysis of peripheral blood revealed normal cognitive development, remarkable failure to thrive and increased frequency of SCE (61,3 SCE per metaphase) and a recurrent infections (otitis, diarrhea, respiratory tract). Physical very rare quadriarradial chromosome configuration (Figure 3). examination revealed microcephaly, facial dimorphisms (prom- Molecular analysis showed two missense heterozygous vari- inent nose, prominent ears, and malar hypoplasia), disseminated ants already described in dbSNP: c.3164G>C:p.Cys1055Ser hyper and hypochromic macules, and decreased anthropomet- and c.3625T>A:p.Ser1209Thr (Figure 4a,b), respectively). ric measurements. Her immunological evaluation (Data S1: The first variant was described as pathogenic, according to the Supplementary
Recommended publications
  • A Review and Appraisal of the DNA Damage Theory of Ageing
    Mutation Research 728 (2011) 12–22 Contents lists available at ScienceDirect Mutation Research/Reviews in Mutation Research jo urnal homepage: www.elsevier.com/locate/reviewsmr Co mmunity address: www.elsevier.com/locate/mutres Review A review and appraisal of the DNA damage theory of ageing a,b a, Alex A. Freitas , Joa˜o Pedro de Magalha˜es * a Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK b School of Computing and Centre for BioMedical Informatics, University of Kent, Canterbury, CT2 7NF, UK A R T I C L E I N F O A B S T R A C T Article history: Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible Received 10 February 2011 breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a Received in revised form 2 May 2011 powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian Accepted 3 May 2011 tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been Available online 10 May 2011 linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Keywords: Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster Ageing depletion of stem cells, which in turn contributes to accelerated ageing.
    [Show full text]
  • A Second DNA Methyltransferase Repair Enzyme in Escherichia Coli (Ada-Alb Operon Deletion/O'-Methylguanine/04-Methylthyne/Suicide Enzyme) G
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 3039-3043, May 1988 Genetics A second DNA methyltransferase repair enzyme in Escherichia coli (ada-alB operon deletion/O'-methylguanine/04-methylthyne/suicide enzyme) G. WILLIAM REBECK, SUSAN COONS, PATRICK CARROLL, AND LEONA SAMSON* Charles A. Dana Laboratory of Toxicology, Harvard School of Public Health, Boston, MA 02115 Communicated by Elkan R. Blout, December 28, 1987 (receivedfor review November 9, 1987) ABSTRACT The Escherichia coli ada-akB operon en- ada gene encodes a 39-kDa DNA methyltransferase with two codes a 39-kDa protein (Ada) that is a DNA-repair methyl- active sites, one that removes methyl groups from O6- transferase and a 27-kDa protein (AlkB) of unknown function. methylguanine (06-MeGua) or 04-methylthymine (04- By DNA blot hybridization analysis we show that the alkyla- MeThy) and one that removes methyl groups from methyl tion-sensitive E. cofi mutant BS23 [Sedgwick, B. & Lindahl, T. phosphotriester lesions (7, 12-15). The Ada protein is one of (1982) J. Mol. Biol. 154, 169-1751 is a deletion mutant lacking several gene products to be induced as E. coli adapt to the entire ada-aik operon. Despite the absence ofthe ada gene become alkylation-resistant upon exposure to low doses of and its product, the cells contain detectable levels of a DNA- alkylating agents (3, 12, 13). The repair of methyl phospho- repair methyltransferase activity. We conclude that the meth- triester lesions converts the Ada protein into a positive yltransferase in BS23 cells is the product of a gene other than regulator ofthe ada gene, and this adaptive response (16) and ada.
    [Show full text]
  • The Response of Escherichia Coli to the Alkylating Agents Chloroacetaldehyde and Styrene Oxide T
    Mutat Res Gen Tox En 840 (2019) 1–10 Contents lists available at ScienceDirect Mutat Res Gen Tox En journal homepage: www.elsevier.com/locate/gentox The response of Escherichia coli to the alkylating agents chloroacetaldehyde and styrene oxide T Mark M. Muentera, Ariel Aikena, Jadesola O. Akanjia, Samir Baiga, Sirine Belloua, Alyssa Carlsona, Charles Conwaya, Courtney M. Cowella, Nicholas A. DeLateura, Alexis Hestera, Christopher Joshia, Caitlin Kramera, Becky S. Leifera, Emma Nasha, Macee H. Qia, Meghan Traversa, Kelly C. Wonga, Man Hub, Na Goub,d, Roger W. Giesec, April Z. Gub,d, ⁎ Penny J. Beuninga, a Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA b Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA c Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115 USA d School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA ARTICLE INFO ABSTRACT Keywords: DNA damage is ubiquitous and can arise from endogenous or exogenous sources. DNA-damaging alkylating Transcriptional reporters agents are present in environmental toxicants as well as in cancer chemotherapy drugs and are a constant threat, DNA repair which can lead to mutations or cell death. All organisms have multiple DNA repair and DNA damage tolerance DNA damage pathways to resist the potentially negative effects of exposure to alkylating agents. In bacteria, many of the genes SOS response in these pathways are regulated as part of the SOS reponse or the adaptive response. In this work, we probed the cellular responses to the alkylating agents chloroacetaldehyde (CAA), which is a metabolite of 1,2-di- chloroethane used to produce polyvinyl chloride, and styrene oxide (SO), a major metabolite of styrene used in the production of polystyrene and other polymers.
    [Show full text]
  • Real-Time Dynamics of Mutagenesis Reveal the Chronology of DNA Repair and Damage Tolerance Responses in Single Cells
    Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells Stephan Uphoffa,1 aDepartment of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved May 23, 2018 (received for review January 21, 2018) Evolutionary processes are driven by diverse molecular mecha- expression of direct repair (DR) and base excision repair (BER) nisms that act in the creation and prevention of mutations. It pathways to remove alkylation lesions (12, 13). Constitutively remains unclear how these mechanisms are regulated because expressed DR and BER genes complement the inducible genes of limitations of existing mutation assays have precluded measuring the adaptive response. In contrast, DNA damage tolerance via how mutation rates vary over time in single cells. Toward this goal, I translesion synthesis (TLS) or homologous recombination (HR) detected nascent DNA mismatches as a proxy for mutagenesis and enables replication forks to bypass alkylation lesions without re- – simultaneously followed gene expression dynamics in single Escher- pair (14 16). Bacteria control DNA damage tolerance pathways ichia coli through the SOS response, a large gene network that is induced by cells using microfluidics. This general microscopy-based – approach revealed the real-time dynamics of mutagenesis in re- DNA breaks or stalled replication forks (17 19). Whereas Ada- sponse to DNA alkylation damage and antibiotic treatments. It also regulated DR and BER pathways accurately restore the original enabled relating the creation of DNA mismatches to the chronology DNA sequence, SOS-regulated TLS polymerases are intrinsically error prone (16), but error-free lesion bypass and replication re- of the underlying molecular processes.
    [Show full text]
  • Insights Into the Conserved Regulatory Mechanisms of Human and Yeast Aging
    biomolecules Review Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging Rashmi Dahiya 1,*, Taj Mohammad 1 , Mohamed F. Alajmi 2, Md. Tabish Rehman 2 , Gulam Mustafa Hasan 3, Afzal Hussain 2 and Md. Imtaiyaz Hassan 1,* 1 Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; [email protected] 2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (M.F.A.); [email protected] (M.T.R.); [email protected] (A.H.) 3 Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.D.); [email protected] (M.I.H.) Received: 3 May 2020; Accepted: 27 May 2020; Published: 9 June 2020 Abstract: Aging represents a significant biological process having strong associations with cancer, diabetes, and neurodegenerative and cardiovascular disorders, which leads to progressive loss of cellular functions and viability. Astonishingly, age-related disorders share several genetic and molecular mechanisms with the normal aging process. Over the last three decades, budding yeast Saccharomyces cerevisiae has emerged as a powerful yet simple model organism for aging research. Genetic approaches using yeast RLS have led to the identification of hundreds of genes impacting lifespan in higher eukaryotes. Numerous interventions to extend yeast lifespan showed an analogous outcome in multi-cellular eukaryotes like fruit flies, nematodes, rodents, and humans. We collected and analyzed a multitude of observations from published literature and provide the contribution of yeast in the understanding of aging hallmarks most applicable to humans.
    [Show full text]
  • Adaptive and Innate Immune Responses to Gene Transfer Vectors: Role of Cytokines and Chemokines in Vector Function
    Gene Therapy (2003) 10, 991–998 & 2003 Nature Publishing Group All rights reserved 0969-7128/03 $25.00 www.nature.com/gt REVIEW Adaptive and innate immune responses to gene transfer vectors: role of cytokines and chemokines in vector function D Chen1, B Murphy2,3, R Sung2 and JS Bromberg1,2 1Carl C Ichan Center for Gene Therapy and Molecular Medicine, New York, NY, USA; 2Recanati/Miller Transplantation Institute, New York, NY, USA; and 3Division of Nephrology, Mount Sinai School of Medicine, New York, NY, USA Gene Therapy (2003) 10, 991–998. doi:10.1038/sj.gt.3302031 Keywords: chemokine; cytokine; innate immunity; gene therapy Introduction motifs. The character of the immune response depends on the type of vector, the route of administration, the The infection, transfection, or transduction of cells, parenchymal cell types involved, and the concurrent tissues, and organs by necessity involves an interaction disease state of the host. Thus, microbial pathogenesis, of gene transfer vectors or gene medicines with the when viewed from this perspective, is not simply the immune system of the recipient. In the simplest terms, immune response to foreign viral protein antigens. this immune interaction is often viewed as a variant of The section on Innate immunity of this review will viral or bacterial pathogenesis. Foreign microbial protein examine chemokines and innate immunity. Recent antigens, the components of the vectors, are taken up by evidence demonstrates powerful stereotyped responses professional or nonprofessional antigen-presenting cells of leukocytes and tissue parenchymal cells to viruses and (APCs), and the antigens presented in the context of host nucleic acids.
    [Show full text]
  • Alkylating Agents Induce UVM, a Red-Independent Inducible Mutagenic Phenomenon in Escherichia Coli
    Copyright 0 1995 by the Genetics Society of America Alkylating Agents Induce UVM, a red-Independent Inducible Mutagenic Phenomenon in Escherichia coli Ge Wang, Vaseem A. Palejwala, Paul M. Dunman, Daniel H. Aviv, Holly S. Murphy, M. Sayeedur Rahman and M. Zafri Humayun Department of Microbiology and Molecular Genetics, UMD-New Jersey Medical School, Newark, New Jersey 07103-2714 Manuscript received May 22, 1995 Accepted for publication July 21, 1995 ABSTRACT Noninstructive DNA damage in Escherichia coli induces SOS functions hypothesizedto be required for mutagenesis and translesion DNA synthesis at noncoding DNA lesions. We have recently demonstrated that in E. coli cells incapable of SOS induction, prior UV-irradiation nevertheless strongly enhances mutagenesis at a noninstructive lesion borne on M13 DNA. Here, we address the question whether this effect, namedUVM for W modulation of mutagenesis, can be inducedby other DNA damaging agents. Exponentially growing ArecA cells were pretreated with alkylating agents before transfection with M13 single-stranded DNA bearing a site-specific ethenocytosine residue.Effect of cellpretreatment on survival of the transfected DNA was determined as transfection efficiency. Mutagenesis at the ethenocytosinesite in pretreated or untreated cells was analyzed by multiplex DNA sequencing, a phenotype-independent technology. Our data show that l-methyl-3-nitr~l-nitrosoguanidine,N-nitroso-N-methylurea and dimeth- ylsulfate, but not methyl iodide, are potent inducers of UVM. Because alkylating agents induce the adaptive response to defend against DNA alkylation, we asked if the genes constituting the adaptive response are required for UVM. Our data show that MNNG induction of UVM is independent of ada, alkA and alkB genes and define UVM as an inducible mutagenic phenomenon distinct from the E.
    [Show full text]
  • Recent Progress on the Ada Response for Inducible Repair of DNA Alkylation Damage
    Oncogene (2002) 21, 8886 – 8894 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Recent progress on the Ada response for inducible repair of DNA alkylation damage Barbara Sedgwick1 and Tomas Lindahl*,1 1Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK Oncogene (2002) 21, 8886 – 8894. doi:10.1038/sj.onc. Methylating agents 1205998 Methylating agents can alkylate DNA at many sites producing a wide variety of base lesions (Figure 1) and Keywords: DNA repair; O6-methylguanine; DNA phosphotriesters. The relative proportions of the glycosylases different base lesions depend on the nature of the alkylating agent, its reaction mechanism and the secondary structure of the DNA target. Of the commonly used laboratory alkylating agents, methyl Introduction methanesulphonate (MMS), dimethylsulphate (DMS) and methyl iodide (MeI) react via a SN2 mechanism Methylating agents comprise a major class of DNA and methylate DNA almost exclusively at nitrogen damaging compounds that occur both endogenously moieties in the purine and pyrimidine rings. and in the environment. They are extremely cytotoxic In contrast, N-methyl-N’-nitro-N-nitrosoguanidine and frequently also mutagenic, and are employed for (MNNG) and N-methylnitrosourea (MNU), which chemotherapy of certain cancers. All organisms have are SN1 agents, alkylate both nitrogens and oxygens multiple DNA repair strategies to counteract the effects in the DNA bases and also oxygens in the sugar- of DNA alkylation. To defend against fluctuating phosphate backbone. The major lesions generated in levels of environmental alkylating agents, many double-stranded DNA are 7-methylguanine (7-meG), bacteria mount an inducible response that enhances 3-methyladenine (3-meA) and O6-methylguanine (O6- cellular resistance to these same agents.
    [Show full text]
  • Adaptive Response in Mammalian Cells
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 1062-1066, February 1984 Biochemistry Adaptive response in mammalian cells: Crossreactivity of different pretreatments on cytotoxicity as contrasted to mutagenicity (DNA repair/nitrosoureas/alkylating agents/O6-methylguanine/rat hepatoma cells) FRANIOISE LAVAL* AND JACQUES LAVALt *Groupe Radiochimie de I'ADN and tUnitd de Biochimie et Enzymologie, Institut Gustave Roussy, 94805 Villejuif Cedex, France Communicated by Heinz Fraenkel-Conrat, November 7, 1983 ABSTRACT Pretreatment of H4 (rat hepatoma) cells for bation of V79 Chinese hamster cells with a subtoxic dose of 48 hr with low nontoxic doses of alkylating agents [methyl MNNG or MNU also modifies the cell sensitivity towards methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguani- these agents (14). dine (MNNG), and N-methyl-N-nitrosoureal renders the cells In mammalian cells, 7-alkylguanine, 3-alkyladenine, and more resistant to the toxic effect of these compounds. Cross- 3-alkylguanine are enzymatically excised through a DNA reactivity for survival is also observed with the different alkyl- glycosylase pathway that creates an apurinic site (15-17), ating agents tested. Pretreatment with MNNG enables the cells whereas O6MeGua is repaired by a transalkylase (18). There- to be less mutated than control cultures during a subsequent fore, mammalian cells contain the potential proteins that challenge with high doses of this compound. However, pre- could mimic the situation observed in adapted E. coli. treatment with MMS does not modify the mutation frequency The aim of our work was to determine whether mammali- of cells challenged with either MMS or MNNG. The adaptive an cells could be adapted for killing and mutagenesis by re- response to mutagenesis is correlated with a faster and more peated treatment with low nontoxic concentrations of alkyl- efficient removal of 06-methylguanine in MNNG-pretreated ating agents and whether these effects could be related to the cells as compared to control cultures, whereas the disappear- type of damage induced by the drugs.
    [Show full text]
  • The Dichotomous Effects of Caffeine on Homologous Recombination in Mammalian Cells
    bioRxiv preprint doi: https://doi.org/10.1101/072058; this version posted August 29, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. THE DICHOTOMOUS EFFECTS OF CAFFEINE ON HOMOLOGOUS RECOMBINATION IN MAMMALIAN CELLS Alissa C. Magwood, Maureen M. Mundia, Dick D. Mosser and Mark D. Baker1 Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1 Running title: Caffeine-induced DNA damage responses in mammalian cells Key words: Caffeine, cell cycle, ATM, ATR, p53, Rad51, Brca2, homologous recombination, DNA repair 1Correspondence: Dr. Mark D. Baker Dept of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph 50 Stone Road East, Guelph, Ontario N1G 2W1 Canada Telephone: 519-824-4120 Ext. 54788 Fax: 519-837-2750 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/072058; this version posted August 29, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT This study was initiated to examine the effects of caffeine on the DNA damage response (DDR) and homologous recombination (HR). An initial 2 h exposure to 5 mM caffeine slowed a fraction of the cells in G1, but thereafter, continued caffeine exposure permitted this cell fraction to progress through the cycle until they eventually stalled at G2/M and underwent apoptosis. This prolonged caffeine exposure also induced a strong DDR along with subsequent activation of wild-type p53 protein.
    [Show full text]
  • The SOS and Rpos Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA-Polymerase Pol II
    Genetics: Early Online, published on May 3, 2017 as 10.1534/genetics.116.199471 GENETICS | INVESTIGATION The SOS and RpoS regulons contribute to bacterial cell robustness to genotoxic stress by synergistically regulating DNA-polymerase Pol II Tanja Dapa∗, Sébastien Fleurier∗, Marie-Florence Bredeche∗ and Ivan Matic∗,†,1 ∗INSERM U1001, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 24 rue du Faubourg Saint-Jacques, Paris 75014, France, †Centre National de la Recherche Scientifique, 75016 Paris, France ABSTRACT Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli. SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability.
    [Show full text]
  • Large-Scale Ratcheting in a Bacterial DEAH/RHA-Type RNA Helicase That Modulates Antibiotics Susceptibility
    Large-scale ratcheting in a bacterial DEAH/RHA-type RNA helicase that modulates antibiotics susceptibility Lena M. Grassa, Jan Wollenhauptb, Tatjana Barthela,b, Iwan Parfentevc, Henning Urlaubc,d, Bernhard Lolla, Eberhard Klaucke, Haike Antelmanne, and Markus C. Wahla,b,1 aLaboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany; bMacromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany; cBioanalytical Mass Spectrometry, Max-Planck-Institut für biophysikalische Chemie, D-37077 Göttingen, Germany; dBioanalytics, Institute of Clinical Chemistry, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany; and eMicrobiology, Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany Edited by Robert Huber, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany, and approved June 14, 2021 (received for review January 10, 2021) Many bacteria harbor RNA-dependent nucleoside-triphosphatases by α-helices and harbor up to about a dozen conserved sequence of the DEAH/RHA family, whose molecular mechanisms and cellular motifs that are involved in NTP binding/hydrolysis, RNA/RNP functions are poorly understood. Here, we show that the Escheri- binding/remodeling, and functionally connecting these activities chia coli DEAH/RHA protein, HrpA, is an ATP-dependent 3 to 5′ RNA (17, 18). Additional domains and regions can modulate the func- helicase and that the RNA helicase activity of HrpA influences bac- tions of the RecA cores in diverse ways (27). terial survival under antibiotics treatment. Limited proteolysis, crys- Based on the presence and conservation of particular motifs, tal structure analysis, and functional assays showed that HrpA the presence of auxiliary domains and the biochemical activities, contains an N-terminal DEAH/RHA helicase cassette preceded by a nucleic acid–dependent NTPases have been divided into six su- unique N-terminal domain and followed by a large C-terminal re- perfamilies (SFs) (17, 18).
    [Show full text]