Cancer Associated Mutator Variants, Proofreading Defects and Post

Total Page:16

File Type:pdf, Size:1020Kb

Cancer Associated Mutator Variants, Proofreading Defects and Post UNDERSTANDING HUMAN DNA POLYMERASE EPSILON FLTNCTIONS: CANCER- ASSOCIATED MUTATOR VARIANTS, PROOFREADING DEFECTS AND POST. TRANSLATIONAL MODIFIC ATION S AN ABSTRACT SUBMITTED ON THE NINTH DAY OF MARCH 2015 TO THE DEPARTMENT OF BIOCI{EMISTRY AND MOLECULAR BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF TI{E GRADUATE SCHOOL OF TULANE LINryERSITY FOR T}IE DEGREE OF DOCTOR OF PHILOSOPHY BY .\ -ru ./ -t' i..tr- -*<*fr**_-*f ERIN ELV ABETH T{ENNINGER APPROVED: F. Pursell, Ph.D. Advisor Dr. Samuel J. Dr. Victoria Bellancio ABSTRACT DNA Polymerase Epsilon (Pol ε) is one of three main eukaryotic Pols responsible for nuclear DNA replication. The Pol ε holoenzyme is comprised of four subunits, termed p261, p59, p17, and p12, with the largest subunit containing the DNA polymerase and 3ʹ to 5ʹ exonuclease (exo) proofreading activities. In addition to nuclear DNA replication, Pol ε participates in DNA repair, recombination, maintenance of epigenetic states and S-phase regulation, though the contribution of the smaller subunits to these processes is largely unknown. I set out to identify functions of the p12 subunit through determining post-translational modifications and protein- protein interaction partners. This approach found that p12 is likely constitutively phosphorylated and that p12 ubiquitylation dynamics may be important during replication stress and fork stalling. p12 also putatively interacts with proteins involved in maintaining genome stability including TOP1, HSP90, nucleolin and PRKDC. A larger portion of my project involved studying the role of cancer-associated mutations within the exo domain of POLE1, the gene encoding the p261 subunit. Tumors harboring these POLE1 mutations are hypermutated, with mutation frequencies exceeding 100 mutations/Mb. However, unlike POLE1 wild type hypermutated tumors, the POLE1 mutant tumors are microsatellite stable (MSS). With our collaborators at the Baylor College of Medicine Human Genome Sequencing Center and the Memorial Sloan Kettering Cancer Center, we determined that C→A and C→T base pair substitutions are highly elevated in these tumors relative to others, specifically at TCT and TCG motifs, respectively. I purified recombinant Pol ε and showed that several cancer mutant constructs, including S459F, P286H/R, L424V/I, and D275A/E277A, had elevated error rates for all 12 base pair substitutions and frameshifts, with the same propensity to make TCT→TAT mutations in vitro. In order to study the mechanism of how these specific mutations are made upon Pol ε exo inactivation in vivo, I constructed a knock-in cell culture model. In this model, I used targeted knock-in approach to introduce the D275A/E277A double amino acid substitution at the genomic POLE1 locus using an engineered recombinant adeno- associated virus. Mutation rates and base pair substitution error rates were both increased in a mismatch repair null background upon Pol exo inactivation. TCT→TAT basepair substitutions had the highest increase in error rate in the engineered cell culture system, as was seen in the POLE tumors, demonstrating the utility of this system for studying the relationship between Pol -dependent mutagenesis and tumor formation. The high rate of TCT→TAT mutagenesis has interesting consequences in tumors. The nucleotide preference of Pol ε variants leads to increases in recurrent nonsense mutations in key tumor suppressors such as TP53, ATM and PIK3R1. Moreover, strand-specific mutation patterns are seen during replication of these genes. Mapping of TCT→TAT hotspot mutations around known origin of replications provided the first direct evidence that Pol ε is the leading strand polymerase in human cells. The strand specificity of these mutations and high abundance in human tumors allows for unique identification of eukaryotic origins of replication. LINDERSTANDING HUMAN DNA POLYMERASE EPSILON FLINCTIONS: CANCER- ASSOCIATED MUTATOR VARIANTS, PROOFREADING DEFECTS AND POST- TRANSLATTONAL MODIFICATIONS A DISSERTATION SUBMITTED ON THE NTNTH DAY OF MARCH 2015 TO T}IE DE,PARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE GRADUATE SCHOOL OF TI.ILANE UNTVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY "' {*- .---*" l,..*4-**-:- ERIN ELIZABETH HENNINGER APPROVED: achfury F. Pursell, Dr. Victoria Bellanci<r ACKNOWLEDGEMENTS I first and foremost want to thank my advisor, Zachary Pursell, as without you this dissertation would not have been possible. I am thankful to have had the opportunity to study biochemistry in your lab, and I know you were very committed to giving me the best education I could get. To my committee members Dr. Victoria Belancio, Dr. Sam Landry, Dr. Arthur Lustig, and Dr. Astrid Engel: thank you all for being on my committee, and for the encouragements and acknowledgements you have given me during my stay at Tulane. I would also like to thank Dr. William Wimley and Dr. Erik Flemmington: you were great mentors to me. Thanks to my Pursell lab mates: Anderson Ayuk Agbor: my “big brother” who was very reassuring; Yassi Goksenin: the helpful raccoon who found fun new lab things for us to tinker with; Kim LeCompte: who gave great lab, baking, and shopping advice; Karl Hodel: who admirably works very hard and shares funny cat videos. To Dr. Paul Lambert and my labmates at Wisconsin: for helping me make the switch from chemistry to biology, being very patient with me and going out of their way to help me learn new things. To Wisconsin Friends: Soyeong Park and Rup Chakravorty: Thanks for all of the fun times we had together. I enjoyed our sleepover/study sessions in the Ebling Library and our weekly “BRIS” dinners at Nam’s Noodles. To Nicole Woodards, Shu Yao, and Justin Shorb: my chemistry buddies. Thank you for all the times we could be silly together and laugh until our sides hurt. We have too many fun adventures to name, and I hope to continue them. To Jessica Gross: It was such a joy spending undergrad and part of grad school with you. I’m so proud of what you’ve accomplished for your PhD; To Kimberly and George Dahlman: You are both ii amazing and strong people. Thanks for your support through a difficult time in my life. To Jim and Cheryl Rot: I love you guys so much (mom and dad!). I could write this whole section just on the two of you. And I don’t know where I would be without you. Thanks for helping me grow as a person, showing me what unconditional love is, and taking me in as your own daughter. Thanks to great friends from New Orleans, Philly, and Americorps: Brian Ridley: I admire your hard work and dedication to everything you do; Colleen Purcell: you have a wonderful, bubbly personality and you truly set an example with your passion for helping others; Kate Jenkins: thanks for getting me acquainted with New Orleans and being and awesome roommate and person; Andrea Covington: my twin and dancing buddy; Donna Edwards: thanks for all the laughs; Preet Gill: my best college friend, we had so many fun times together. I would even take P chem again if I could do it with you; Lesley McCall: I’m so lucky to have made a lifelong friend like you, and I have always looked up to you ever since I can remember; Cecilia Burns: I have never met a more kind and caring person, with such an endless store of compassion and I admire you so much; Rebecca Bortolin: you are one of my favorite people and a great concert buddy. I really appreciate all of your advice and compassion; Mallory Cortez: you are also one of my favorite people, an amazing scientist, and gave the best advice about grad school. I will miss our fun times at the camp and 80s nights; Teddy Livingston: you are so smart, considerate, and selfless. Thanks for helping me through difficult decisions and for being a great friend; Amie Devlin: my soulmate friend, I love that we have the best times when we are together, even if we were to end up stranded in NYC for a night, Your friendship has meant the world to me; Meredith Sosulski: I’m so glad we became such good friends. I will miss hanging out at Finns with you; Nam Nguyen: thanks for helping me through and always listening. You are a wonderful person who deserves great things; Brian Deskin: you were my first and are my best friend from BMS, and you are like a brother to me. Will see you soon in Europe; Aaron Miller: I know in heaven you are “in my corner.” I will always remember you. iii To the Nechvatal Clan, Grandma and Grandpa Henninger, and Uncle Brett: Thanks for always believing in me and loving me. I don’t know where I would be without any of you either, and it would take a long time to thank all of you, but thanks for teaching me how important family is. Uncle Brett, I know you supported me from heaven as well. I miss you. To Mom, Dad and Jeff: I know you would do anything for me, and I know I made it through because of you. I can’t thank you enough, for everything. I definitely have the best family one could ask for. I could go on and on, but I know I wouldn’t be able to thank you enough. I love you dearly. To my husband, Doug Stanley: I’m so glad I found you, and I know I would have even if I had stayed in Wisconsin. It was meant to be. I know it isn’t easy being with someone who has chronic illness, but it shows what an amazing and special person you must be. You truly are my best friend. Thank you beyond words.
Recommended publications
  • Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
    School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage.
    [Show full text]
  • Dual Histone Methyl Reader ZCWPW1 Facilitates Repair of Meiotic Double
    RESEARCH ARTICLE Dual histone methyl reader ZCWPW1 facilitates repair of meiotic double strand breaks in male mice Mohamed Mahgoub1†, Jacob Paiano2,3†, Melania Bruno1, Wei Wu2, Sarath Pathuri4, Xing Zhang4, Sherry Ralls1, Xiaodong Cheng4, Andre´ Nussenzweig2, Todd S Macfarlan1* 1The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, United States; 2Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, United States; 3Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States; 4Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States Abstract Meiotic crossovers result from homology-directed repair of DNA double-strand breaks (DSBs). Unlike yeast and plants, where DSBs are generated near gene promoters, in many vertebrates DSBs are enriched at hotspots determined by the DNA binding activity of the rapidly evolving zinc finger array of PRDM9 (PR domain zinc finger protein 9). PRDM9 subsequently catalyzes tri-methylation of lysine 4 and lysine 36 of Histone H3 in nearby nucleosomes. Here, we identify the dual histone methylation reader ZCWPW1, which is tightly co-expressed during spermatogenesis with Prdm9, as an essential meiotic recombination factor required for efficient repair of PRDM9-dependent DSBs and for pairing of homologous chromosomes in male mice. In sum, our results indicate that the evolution of a dual histone methylation writer/reader (PRDM9/ *For correspondence: ZCWPW1) system in vertebrates remodeled genetic recombination hotspot selection from an [email protected] ancestral static pattern near genes towards a flexible pattern controlled by the rapidly evolving †These authors contributed DNA binding activity of PRDM9. equally to this work Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • 1471-2105-8-217.Pdf
    BMC Bioinformatics BioMed Central Software Open Access GenMAPP 2: new features and resources for pathway analysis Nathan Salomonis1,2, Kristina Hanspers1, Alexander C Zambon1, Karen Vranizan1,3, Steven C Lawlor1, Kam D Dahlquist4, Scott W Doniger5, Josh Stuart6, Bruce R Conklin1,2,7,8 and Alexander R Pico*1 Address: 1Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158 USA, 2Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA, 3Functional Genomics Laboratory, University of California, Berkeley, CA 94720 USA, 4Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8220, Los Angeles, CA 90045 USA, 5Computational Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63108 USA, 6Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064 USA, 7Department of Medicine, University of California, San Francisco, CA 94143 USA and 8Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA 94143 USA Email: Nathan Salomonis - [email protected]; Kristina Hanspers - [email protected]; Alexander C Zambon - [email protected]; Karen Vranizan - [email protected]; Steven C Lawlor - [email protected]; Kam D Dahlquist - [email protected]; Scott W Doniger - [email protected]; Josh Stuart - [email protected]; Bruce R Conklin - [email protected]; Alexander R Pico* - [email protected] * Corresponding author Published: 24 June 2007 Received: 16 November 2006 Accepted: 24 June 2007 BMC Bioinformatics 2007, 8:217 doi:10.1186/1471-2105-8-217 This article is available from: http://www.biomedcentral.com/1471-2105/8/217 © 2007 Salomonis et al; licensee BioMed Central Ltd.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Identification of Proteins Involved in the Maintenance of Genome Stability
    Identification of Proteins Involved in the Maintenance of Genome Stability by Edith Hang Yu Cheng A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto ©Copyright by Edith Cheng2015 Identification of Proteins Involved in the Maintenance of Genome Stability Edith Cheng Doctor of Philosophy Department of Biochemistry University of Toronto 2015 Abstract Aberrant changes to the genome structure underlie numerous human diseases such as cancers. The functional characterization ofgenesand proteins that maintain chromosome stability will be important in understanding disease etiology and developing therapeutics. I took a multi-faceted approach to identify and characterize genes involved in the maintenance of genome stability. As biological pathways involved in genome maintenance are highly conserved in evolution, results from model organisms can greatly facilitate functional discovery in humans. In S. cerevisiae, I identified 47 essential gene depletions with elevated levels of spontaneous DNA damage foci and 92 depletions that caused elevated levels of chromosome rearrangements. Of these, a core subset of 15 DNA replication genes demonstrated both phenotypes when depleted. Analysis of rearrangement breakpoints revealed enrichment at yeast fragile sites, Ty retrotransposons, early origins of replication and replication termination sites. Together, thishighlighted the integral role of DNA replicationin genome maintenance. In light of my findings in S. cerevisiae, I identified a list of 153 human proteins that interact with the nascentDNA at replication forks, using a DNA pull down strategy (iPOND) in human cell lines. As a complementary approach for identifying human proteins involved in genome ii maintenance, I usedthe BioID techniqueto discernin vivo proteins proximal to the human BLM- TOP3A-RMI1-RMI2 genome stability complex, which has an emerging role in DNA replication progression.
    [Show full text]
  • The Causes and Consequences of Topological Stress During DNA Replication
    G C A T T A C G G C A T genes Review The Causes and Consequences of Topological Stress during DNA Replication Andrea Keszthelyi †, Nicola E. Minchell † and Jonathan Baxter * Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK; [email protected] (A.K.); [email protected] (N.E.M.) * Correspondence: [email protected]; Tel.: +44-(0)1273-876637 † These authors contributed equally to this manuscript. Academic Editor: Eishi Noguchi Received: 31 October 2016; Accepted: 14 December 2016; Published: 21 December 2016 Abstract: The faithful replication of sister chromatids is essential for genomic integrity in every cell division. The replication machinery must overcome numerous difficulties in every round of replication, including DNA topological stress. Topological stress arises due to the double-stranded helical nature of DNA. When the strands are pulled apart for replication to occur, the intertwining of the double helix must also be resolved or topological stress will arise. This intrinsic problem is exacerbated by specific chromosomal contexts encountered during DNA replication. The convergence of two replicons during termination, the presence of stable protein-DNA complexes and active transcription can all lead to topological stresses being imposed upon DNA replication. Here we describe how replication forks respond to topological stress by replication fork rotation and fork reversal. We also discuss the genomic contexts where topological stress is likely to occur in eukaryotes, focusing on the contribution of transcription. Finally, we describe how topological stress, and the ways forks respond to it, may contribute to genomic instability in cells.
    [Show full text]
  • Transcriptional Landscape of Pulmonary Lymphatic Endothelial Cells During Fetal Gestation
    RESEARCH ARTICLE Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation 1,2 3 1 1,4 Timothy A. Norman, Jr.ID *, Adam C. Gower , Felicia Chen , Alan Fine 1 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America, 2 Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America, 3 Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America, 4 Boston Veteran's Hospital, West Roxbury, a1111111111 Massachusetts, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract The genetic programs responsible for pulmonary lymphatic maturation prior to birth are not known. To address this gap in knowledge, we developed a novel cell sorting strategy to col- OPEN ACCESS lect fetal pulmonary lymphatic endothelial cells (PLECs) for global transcriptional profiling. Citation: Norman TA, Jr., Gower AC, Chen F, Fine A We identified PLECs based on their unique cell surface immunophenotype (CD31+/Vegfr3 (2019) Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation. +/Lyve1+/Pdpn+) and isolated them from murine lungs during late gestation (E16.5, E17.5, PLoS ONE 14(5): e0216795. https://doi.org/ E18.5). Gene expression profiling was performed using whole-genome microarrays, and 10.1371/journal.pone.0216795 1,281 genes were significantly differentially expressed with respect to time (FDR q < 0.05) Editor: Vladimir V. Kalinichenko, Cincinnati and grouped into six clusters. Two clusters containing a total of 493 genes strongly upregu- Children's Hospital Medical Center, UNITED lated at E18.5 were significantly enriched in genes with functional annotations correspond- STATES ing to innate immune response, positive regulation of angiogenesis, complement & Received: October 19, 2018 coagulation cascade, ECM/cell-adhesion, and lipid metabolism.
    [Show full text]
  • (Sines) Are a Major Source of Canine Genomic Diversity
    Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Dog Special/Letter Short interspersed elements (SINEs) are a major source of canine genomic diversity Wei Wang and Ewen F. Kirkness1 The Institute for Genomic Research, Rockville, Maryland 20850, USA SINEs are retrotransposons that have enjoyed remarkable reproductive success during the course of mammalian evolution, and have played a major role in shaping mammalian genomes. Previously, an analysis of survey-sequence data from an individual dog (a poodle) indicated that canine genomes harbor a high frequency of alleles that differ only by the absence or presence of a SINEC_Cf repeat. Comparison of this survey-sequence data with a draft genome sequence of a distinct dog (a boxer) has confirmed this prediction, and revealed the chromosomal coordinates for >10,000 loci that are bimorphic for SINEC_Cf insertions. Analysis of SINE insertion sites from the genomes of nine additional dogs indicates that 3%–5% are absent from either the poodle or boxer genome sequences—suggesting that an additional 10,000 bimorphic loci could be readily identified in the general dog population. We describe a methodology that can be used to identify these loci, and could be adapted to exploit these bimorphic loci for genotyping purposes. Approximately half of all annotated canine genes contain SINEC_Cf repeats, and these elements are occasionally transcribed. When transcribed in the antisense orientation, they provide splice acceptor sites that can result in incorporation of novel exons. The high frequency of bimorphic SINE insertions in the dog population is predicted to provide numerous examples of allele-specific transcription patterns that will be valuable for the study of differential gene expression among multiple dog breeds.
    [Show full text]
  • Endocrine System Local Gene Expression
    Copyright 2008 By Nathan G. Salomonis ii Acknowledgments Publication Reprints The text in chapter 2 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics. 2007 Jun 24;8:218. The co-authors listed in this publication co-wrote the manuscript (AP and KH) and provided critical feedback (see detailed contributions at the end of chapter 2). The text in chapter 3 of this dissertation contains a reprint of materials as it appears in: Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, Dolganov G, Conklin BR. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12. Epub 2005 Jan 28. The co-authors listed in this publication developed the hierarchical clustering method (KP), co-designed the study (NC, AZ, BC), provided statistical guidance (KV), co- contributed to GenMAPP 2.0 (SD) and performed quantitative mRNA analyses (GD). The text of this dissertation contains a reproduction of a figure from: Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):R74. Epub 2004 Sep 13. The reproduction was taken without permission (chapter 1), figure 1.3. iii Personal Acknowledgments The achievements of this doctoral degree are to a large degree possible due to the contribution, feedback and support of many individuals. To all of you that helped, I am extremely grateful for your support.
    [Show full text]
  • Human Single-Stranded DNA Binding Proteins Are Essential For
    Ashton et al. BMC Molecular Biology 2013, 14:9 http://www.biomedcentral.com/1471-2199/14/9 REVIEW Open Access Human single-stranded DNA binding proteins are essential for maintaining genomic stability Nicholas W Ashton1, Emma Bolderson1, Liza Cubeddu2, Kenneth J O’Byrne1 and Derek J Richard1* Abstract The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single- stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance. Keywords: Single-stranded DNA binding proteins (SSBs), Oligonucleotide/oligosaccharide binding (OB)-fold, Double-strand DNA break (DSB) repair, Homology-directed repair (HDR), Translesion synthesis, Nucleotide excision repair (NER), Replication fork restart, Cell cycle checkpoint activation, Telomere maintenance Introduction The characteristic functional unit of the SSBs is DNA exists primarily as a duplex to stabilise and protect the oligonucleotide/oligosaccharide-binding (OB)-fold, our genome.
    [Show full text]
  • Meta-Analysis of Five Genome-Wide Association Studies Identifies Multiple New Loci Associated with Testicular Germ Cell Tumor
    This is a repository copy of Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/131470/ Version: Accepted Version Article: Wang, Z, McGlynn, KA, Rajpert-De Meyts, E et al. (21 more authors) (2017) Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nature Genetics, 49 (7). pp. 1141-1147. ISSN 1061-4036 https://doi.org/10.1038/ng.3879 (c) 2017 Nature America, Inc., part of Springer Nature. This is an author produced version of a paper published in Nature Genetics. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Europe PMC Funders Group Author Manuscript Nat Genet. Author manuscript; available in PMC 2017 December 12.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]