European Forest Types, Categories and Types For

Total Page:16

File Type:pdf, Size:1020Kb

European Forest Types, Categories and Types For EEA Technical report No 9/2006 European forest types Categories and types for sustainable forest management reporting and policy ISSN 1725‑2237 EEA Technical report No 9/2006 European forest types Categories and types for sustainable forest management reporting and policy Cover design: EEA Layout: EEA Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Communities. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. All rights reserved No part of this publication may be reproduced in any form or by any means electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without the permission in writing from the copyright holder. For translation or reproduction rights please contact EEA (address information below). Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Office for Official Publications of the European Communities, 2006 ISBN xxxxxxxxxx ISSN 1725‑2237 © EEA, Copenhagen, 2007 2nd edition, May 2007 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements .................................................................................................... 8 Executive summary .................................................................................................... 9 1 Reporting on sustainable forest management in Europe ...................................... 11 1.1 Political framework ...........................................................................................11 1.2 Forest types and forest biodiversity assessment ..................................................12 1.3 Forest types: definition and requirements for MCPFE reporting ...............................12 2 The diversity of European forests ......................................................................... 15 2.1 Natural determinants .......................................................................................15 2.2 The anthropogenic footprint ..............................................................................15 3 Current and potential forest vegetation in Europe: an assessment ....................... 21 3.1 Forest cover maps ...........................................................................................21 3.2 Cross‑analysis of forest vegetation maps ............................................................22 4 European forest types: the classification system .................................................. 26 4.1 Limitations of earlier forest classifications ............................................................26 4.2 European forest types: the classification scheme ..................................................26 4.2.1 Development of the classification ............................................................26 4.2.2 Classification structure ..........................................................................27 4.3 Criteria of the classification ...............................................................................29 5 Key to the classification ....................................................................................... 32 6 European forest types nomenclature: category and types descriptions.................35 6.1 Boreal forest ..................................................................................................39 6.1.1 Spruce‑dominated boreal forest .............................................................40 6.1.2 Pine‑dominated boreal forest ................................................................42 6.2 Hemiboreal forest and nemoral coniferous and mixed broadleaved‑coniferous forest 43 6.2.1 Hemiboreal forest ................................................................................43 6.2.2 Nemoral Scots pine forest .....................................................................44 6.2.3 Nemoral spruce forest ..........................................................................44 6.2.4 Nemoral Black pine forest ......................................................................44 6.2.5 Mixed Scots pine‑birch forest .................................................................44 6.2.6 Mixed Scots pine‑pedunculate oak forest .................................................44 6.3 Alpine coniferous forest ....................................................................................45 6.3.1 Subalpine larch‑arolla pine and dwarf pine forest ......................................46 6.3.2 Subalpine and mountainous spruce and mountainous mixed spruce‑silver fir forest ..........................................................................47 6.3.3 Alpine Scots pine and Black pine forest ....................................................48 6.4 Acidophilous oak and oak‑birch forest .................................................................50 6.4.1 Acidophylous oakwood ..........................................................................50 6.4.2 Oak‑birch forest ...................................................................................50 6.5 Mesophytic deciduous forest ..............................................................................51 6.5.1 Pedunculate oak‑hornbeam forest ..........................................................52 6.5.2 Sessile oak‑hornbeam forest .................................................................52 6.5.3 Ashwood and oak‑ash forest ..................................................................53 6.5.4 Maple‑oak forest ..................................................................................54 6.5.5 Lime‑oak forest ....................................................................................55 6.5.6 Maple‑lime forest .................................................................................55 6.5.7 Lime forest ..........................................................................................55 6.5.8 Ravine and slope forest .........................................................................56 6.5.9 Other mesophytic deciduous forests ........................................................56 European forest types 5 Contents 6.6 Beech forest ....................................................................................................57 6.6.1 Lowland beech forest of southern Scandinavia and north central Europe...... 59 6.6.2 Atlantic and subatlantic lowland beech forest ..........................................59 6.6.3 Subatlantic submountainous beech forest ................................................60 6.6.4 Central European submountainous beech forest .......................................60 6.6.5 Carpathian submountainous beech forest ................................................60 6.6.6 Illyrian submountainous beech forest .....................................................61 6.6.7 Moesian submountainous beech forest ...................................................61 6.7 Mountainous beech forest .................................................................................62 6.7.1 South western European mountainous beech forest (Cantabrians, Pyrenees, central Massif, south western Alps) ....................62 6.7.2 Central European mountainous beech forest ............................................62 6.7.3 Apennine‑Corsican mountainous beech forest ..........................................63 6.7.4 Illyrian mountainous beech forest ..........................................................63 6.7.5 Carpathian mountainous beech forest ....................................................64 6.7.6 Moesian mountainous beech forest ........................................................64 6.7.7 Crimean mountainous beech forest ........................................................64 6.7.8 Oriental beech and hornbeam‑oriental beech forest ...................................64 6.8 Thermophilous deciduous forest .........................................................................66 6.8.1 Downy oak forest ................................................................................67 6.8.2 Turkey oak, Hungarian oak and Sessile oak forest .....................................67 6.8.3 Pyrenean oak forest ..............................................................................68 6.8.4 Portuguese oak and Mirbeck's oak Iberian forest .......................................69 6.8.5 Macedonian oak forest ..........................................................................70 6.8.6 Valonia oak forest .................................................................................70 6.8.7 Chestnut forest ...................................................................................70 6.8.8 Other thermophilous deciduous forests ....................................................71 6.9 Broadleaved evergreen forest ............................................................................73 6.9.1 Mediterranean evergreen oak forest ........................................................73 Cork oak and holm oak forest ............................................................................73 Kermes and alder‑leaved oak forest ....................................................................75
Recommended publications
  • The Mediterranean Forests Are Extraordinarily Beautiful, a Fascinating an Extraordinary Patrimony of Wealth Whose Conservation Can Be Highly Controversy
    THE editerraneanFORESTS mA NEW CONSERVATION STRATEGY 1 3 2 4 5 6 the unveiled a meeting point the mediterranean: amazing plant an unknown millennia forests on the global 200 the terrestrial current a brand new the state of WWF a new approach wealth of the of nature a sea of forests diversity animal world of human the wane in the sub-ecoregions mediterranean tool: the gap mediterranean in action for forest mediterranean and civilisations interaction with mediterranean in the forest cover analysis forests protection forests forests mediterranean 23 46 81012141617 18 19 22 24 7 1 Argania spinosa fruits, Essaouira, Morocco. Credit: WWF/P. Regato 2 Reed-parasol maker, Tunisia. Credit: WWF-Canon/M. Gunther 3 Black-shouldered Kite. Credit: Francisco Márquez 4 Endemic mountain Aquilegia, Corsica. Credit: WWF/P. Regato 5 Sacred ibis. Credit: Alessandro Re 6 Joiner, Kure Mountains, Turkey. Credit: WWF/P. Regato 7 Barbary ape, Morocco. Credit: A. & J. Visage/Panda Photo It is like no other region on Earth. Exotic, diverse, roamed by mythical WWF Mediterranean Programme Office launched its campaign in 1999 creatures, deeply shaped by thousands of years of human intervention, the to protect 10 outstanding forest sites among the 300 identified through cradle of civilisations. a comprehensive study all over the region. When we talk about the Mediterranean region, you could be forgiven for The campaign has produced encouraging results in countries such as Spain, thinking of azure seas and golden beaches, sun and sand, a holidaymaker’s Turkey, Croatia and Lebanon. NATURE AND CULTURE, of forest environments in the region. But in recent times, the balance AN INTIMATE RELATIONSHIP Long periods of considerable forest between nature and humankind has paradise.
    [Show full text]
  • Two Colonisation Stages Generate Two Different Patterns of Genetic Diversity Within Native and Invasive Ranges of Ulex Europaeus
    Heredity (2013) 111, 355–363 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus B Hornoy1,3, A Atlan1, V Roussel1,4, YM Buckley2 and M Tarayre1 Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe.
    [Show full text]
  • Dietary Analysis of Piraino 1, Sicily, Italy: the Role of Archaeopalynology in Forensic Science
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2012 Dietary analysis of Piraino 1, Sicily, Italy: The oler of archaeopalynology in forensic science Dario Piombino-Mascali Institute for Mummies and the Iceman Albert R. Zink Institute for Mummies and the Iceman Karl J. Reinhard University of Nebraska at Lincoln, [email protected] Melissa Lein University of Nebraska-Lincoln Stephanie Panzer Department of Radiology, Trauma Center Murnau See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Piombino-Mascali, Dario; Zink, Albert R.; Reinhard, Karl J.; Lein, Melissa; Panzer, Stephanie; Aufderheide, Arthur C.; Rachid, Rachel; De Souza, Wanderley; Araujo, Adauto; Chavez, Sergio A.M.; LeRoy-Toren, Sara; Teixeira-Santos, Isabel; and Dutra, Juliana M. F., "Dietary analysis of Piraino 1, Sicily, Italy: The or le of archaeopalynology in forensic science" (2012). Papers in Natural Resources. 480. http://digitalcommons.unl.edu/natrespapers/480 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Dario Piombino-Mascali, Albert R. Zink, Karl J. Reinhard, Melissa Lein, Stephanie Panzer, Arthur C. Aufderheide, Rachel Rachid, Wanderley De Souza, Adauto Araujo, Sergio A.M. Chavez, Sara LeRoy-Toren, Isabel Teixeira-Santos, and Juliana M. F. Dutra This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/natrespapers/480 Published in Journal of Archaeological Science 40:4 (April 2013), pp.
    [Show full text]
  • From Hungary on Zinnia Elegans (Asteraceae)
    Acta Phytopathologica et Entomologica Hungarica 55 (2), pp. 223–234 (2020) DOI: 10.1556/038.55.2020.023 A New Leipothrix Species (Acari: Acariformes: Eriophyoidea) from Hungary on Zinnia elegans (Asteraceae) G. RIPKA1*, E. KISS2, J. KONTSCHÁN3 and Á. SZABÓ4 1National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, H-1118 Budapest, Budaörsi út 141-145, Hungary 2Plant Protection Institute, Szent István University, H-2100 Gödöllő, Páter Károly u. 1, Hungary 3Plant Protection Institute, Centre for Agricultural Research, H-1525 Budapest, P.O. Box 102, Hungary 4Department of Entomology, Faculty of Horticultural Science, Szent István University, H-1118 Budapest, Villányi út 29-43, Hungary (Received: 11 September 2020; accepted: 12 October 2020) A new vagrant species of phyllocoptine mites, Leipothrix nagyi n. sp. collected from Zinnia elegans (Asteraceae) is described and illustrated from Hungary. Further three eriophyoid species were recorded for the first time in Hungary, viz. Aceria hippophaena (Nalepa, 1898) found on Hippophaë rhamnoides, Epitrimerus cupressi (Keifer, 1939) collected from Cupressus sempervirens and Epitrimerus tanaceti Boczek et Davis, 1984 associated with Tanacetum vulgare. The female of E. tanaceti is re-described, while the male and nymph are described for the first time. Keywords: Eriophyidae, Leipothrix, common zinnia, Asteraceae, Hungary. The large family Asteraceae (Compositae) contains 1,911 plant genera with 32,913 accepted species names (The Plant List, 2013). Representatives of the family Asteraceae are a dominant feature of the Hungarian flora with 267 recognised species. According to Király (2009) it amounts to 9.8% of the current vascular plants of Hungary. An ex- traordinary range of eriophyoids occupy the plants of this family.
    [Show full text]
  • Notes Oak News
    THE NEWSLETTER OF THE INTERNATIONAL OAK SOCIETY&, VOLUME 16, NO. 1, WINTER 2012 Greek OakOak Open Days: News September 26 - October Notes 2, 2011 From the 21st century CE to the 2nd century—BCE! The next morning early we met our large tour bus and its charming and skillful driver, Grigoris, who hails from the mountain village of Gardiki not far from here. We did a bit of leisurely botanizing before we reached Perdika, our first destination of the day. There are two reasons to visit Perdika: one is the Karavostasi beach, a curving strand with golden sand, and the archaeological site of Dymokastron, a Hellenis- tic mountain-top town reached by a steep hike. The view of the beach far below was beautiful, as it must have been when the town was still inhabited. The town was destroyed in 167 BCE by a Roman army, along with most of the other towns in the vicinity, all allied with Rome’s enemy, Macedonia. The site is under active excavation, and we were able to admire the remnants of protective walls (how in the world did they get those big stones up there?), building foundations, and cisterns, which were certainly needed in case of a prolonged siege, Some members of the IOS Greek tour relaxing under the plane tree in the which Dymocastron must have experienced more than once. village square. Vitsa, Epirus, Greece. (Photo: Gert Dessoy) The site also has many living trees, including wild pears (Py- rus spinosa Vill., also known as P. amygdaliformis Vill.) and uring this early autumn week of incomparable weather, figs (Ficus carica L.) which appear to be descendants of wild Dtwelve members of the IOS, and three others who were native trees selected by the original inhabitants, as well as guests, enjoyed a truly memorable time in northern Greece.
    [Show full text]
  • Experiences from Lithuania
    EUROPEANEUROPEAN FORESTFOREST TYPESTYPES Technical workshop “Reporting using the new European Forest Types” EXPERIENCESEXPERIENCES FROMFROM LITHUANIALITHUANIA Lithuanian State Forest Service National Forest Inventory Department Gintaras Kulbokas European forest types/Technical workshop © Lithuanian State Forest Service Bordeaux, France| May 19-21, 2010 e‐mail [email protected] FORESTFOREST GROWINGGROWING CONDITIONSCONDITIONS ININ LITHUANIALITHUANIA ¾The surface is covered by quaternary rocks, originated from glacier; ¾Thickness of this layer: in the northern part - 1-5 m, in the south - up to 200-250 m; ¾The climate is comparable mild, ranging from sea to continental; ¾The hilly highlands are mixtured with plain lowlands; ¾Mean height above sea level is 99 m; ¾ Highest point being 294 m; ¾Mean annual temperature +6ºC; ¾Amount of annual precipitation 630 mm. Area of Lithuania – 65.3 km2 European forest types/Technical workshop © Lithuanian State Forest Service Bordeaux, France| May 19-21, 2010 e‐mail [email protected] LITHUANIANLITHUANIAN FORESTFOREST TYPESTYPES (NFI(NFI--2007)2007) Pine forest 34% Forest area 2.1 mln. ha Spruce forest 18% Birch forest 20% Aspen forest 6% Black alder forest 9% Grey alder forest 7% Oak forest 2% Ash forest 2 % 70% of the forests are stands of natural origin. European forest types/Technical workshop © Lithuanian State Forest Service Bordeaux, France| May 19-21, 2010 e‐mail [email protected] LITUANIANLITUANIAN FORESTFOREST SITESITE TYPESTYPES (NFI(NFI--2007)2007) Humidity of soil: Fertility of soil: Slopes (>15º) 2% Very poor 5% Normal water regime 38% Poor 25% Temporarily overmoisture 37% Fertile 40% Overmoisture 7% Very fertile 27% Drained peatland 8% Especially fertile 3% Peatland 8% Totally 56 forest site types European forest types/Technical workshop © Lithuanian State Forest Service Bordeaux, France| May 19-21, 2010 e‐mail [email protected] RELATIONSHIPRELATIONSHIP BETWEENBETWEEN LITHUANIANLITHUANIAN SITESITE TYPESTYPES ANDAND EUROPEANEUROPEAN FORESTFOREST TYPESTYPES Lithuanian forest site types European forest types Soil fer 2.
    [Show full text]
  • Global Ecological Forest Classification and Forest Protected Area Gap Analysis
    United Nations Environment Programme World Conservation Monitoring Centre Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) 2nd revised edition, January 2009 Global Ecological Forest Classification and Forest Protected Area Gap Analysis Analyses and recommendations in view of the 10% target for forest protection under the Convention on Biological Diversity (CBD) Report prepared by: United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) World Wide Fund for Nature (WWF) Network World Resources Institute (WRI) Institute of Forest and Environmental Policy (IFP) University of Freiburg Freiburg University Press 2nd revised edition, January 2009 The United Nations Environment Programme World Conservation Monitoring Centre (UNEP- WCMC) is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organization. The Centre has been in operation since 1989, combining scientific research with practical policy advice. UNEP-WCMC provides objective, scientifically rigorous products and services to help decision makers recognize the value of biodiversity and apply this knowledge to all that they do. Its core business is managing data about ecosystems and biodiversity, interpreting and analysing that data to provide assessments and policy analysis, and making the results
    [Show full text]
  • Re-Thinking Impacts of Island Colonisation
    Kerry-Anne Mairs (2007) Islands and human impact... University of Edinburgh, Unpublished PhD Thesis. 398 pp. Chapter 3: Island contexts Chapter 3 Island contexts Introduction Perhaps the thing that most distinguishes islands, at least oceanic islands… is their extreme vulnerability or susceptibility to disturbance (Fosberg 1963: 559). This chapter examines the wider context of island research as introduced in the framework in Figure 1.5 with regards to the notion that islands represent a model system, from which globally occurring processes can be understood. The chapter aims to provide a brief overview of islands and what characterises them, both as islands, and as locations from which to explore human-environment interactions. Recent examples of human-environment research in some Pacific islands, where wide ranging archaeological and comparative-led research has been carried out, are also reviewed. From this research, hypotheses regarding human impacts on environments can be developed with regards to the Faroe Islands. Island contexts as models for human impact and global change The smaller, more manageable spatial scale and insularity of island environments and societies, has made islands (particularly remote islands) popular field locations for research in a variety of disciplines, including biology, ecology, biogeography, ethnography and more recently, environmental archaeology. Islands have been referred to as outdoor laboratories (Kirch 1997a, Fitzhugh and Hunt 1997), where human-environment research can be approached from a comparative
    [Show full text]
  • The Great White Egret in Europe: Population Increase and Range Expansion Since 1980 Łukasz Ławicki
    The Great White Egret in Europe: population increase and range expansion since 1980 Łukasz Ławicki Abstract The European breeding and non-breeding populations of the Great White Egret Ardea alba have increased dramatically since 1980. During this period the breeding range has expanded to the north and west, and the species has nested for the first time in 13 countries, including Sweden and England. Since 2000 there has also been a substantial increase in the wintering populations in western and central Europe, where it formerly wintered in small numbers or only occasionally, with flocks of several hundred individuals reported from some countries. Changes in the availability of foraging habitat and food, the cessation of persecution and related human-induced mortality, improved legal protection, and climate change have probably all played a part in the patterns described here. The feathers of the male are much sought after as decorations, which in the East are a sign of great dignity and highly prized; formerly they were used in Europe as ornamentation by knights and the fair sex. (Taczanowski 1882) he Great White Egret Ardea alba is a Historical status and distribution cosmopolitan species, found on all It seems likely that Great White Egrets were Tcontinents except Antarctica in a common in central Europe in the past. In variety of wetland habitats where food (espe - Poland, for example, they were commonly cially fish) is available: marshes, river flood - hunted using Saker Falcons Falco cherrug plains, the margins of lakes, ponds and (Stajszczyk 2011). Historically, a core area of reservoirs, coasts, estuaries and mangrove the population was probably present-day thickets (Voisin 1991; Kushlan & Hancock Ukraine and Hungary.
    [Show full text]
  • The Gasteromycetes of the Aland Islands, SW Finland: an Annotated Checklist
    Karstenia 37:11-18, 1997 0 The Gasteromycetes of the Aland Islands, SW Finland: an annotated checklist CARL-ADAM fuEGGSTROM HJEGGSTROM, C.-A. 1997: The Gasteromycetes of the Aland Islands, SW Finland: an annotated checklist. - Karstenia 37:11-18. Helsinki. ISSN 0453-3402 Both herbarium specimens and published data on the Gasteromycetes s.l. of the Aland Islands are treated. Altogether, 37 species have been reported which is a little more than half of the total species number of Finland. Seven species, namely Bovista nigres­ cens, B. plumbea, Calvatia excipuliformis, C. utriformis, Lycoperdon perlatum, L. pyriforme and Phallus impudicus seem to be common or fairly common in the Aland Islands. Eight species, viz. Geastrum elegans, G. floriforme, G. schmidelii, G. stria­ tum, Langermannia gigantea, Lycoperdon echinatum, Melanogaster ambiguus and Tulostoma brumale are listed as threatened in Aland. Key words: Aland Islands, checklist, Finland, Gasteromycetes Carl-Adam Hceggstrdm, Department of Ecology and Systematics, PO. Box 7, FIN- 00014 University of Helsinki, Finland Introduction trum specimens in the herbarium of Dr. Stellan Sunhede which are treated in detail in his doctor­ The written knowledge of the Gasteromycetes of al thesis (Sunhede 1989). Besides my own col­ the Aland Islands has hitherto been both scat­ lections (included in H), I have obtained speci­ tered and rather insignificant. In his papers on mens from the following herbaria: H, OULU, Basidiomycetes of Finland, P.A. Karsten (1889, TUR, TURA and UPS . No specimens were sent 1893, 1898) enumerates 27 species, some of from GB , KUO, LD and S. Furthermore, I have them dubious, or defined differently than now, of tried to find published information on Gastero­ the Gasteromycetes s.l.
    [Show full text]
  • Ecoregions of the Mississippi Alluvial Plain
    92° 91° 90° 89° 88° Ecoregions of the Mississippi Alluvial Plain Cape Girardeau 73cc 72 io Ri Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of This level III and IV ecoregion map was compiled at a scale of 1:250,000 and depicts revisions and Literature Cited: PRINCIPAL AUTHORS: Shannen S. Chapman (Dynamac Corporation), Oh ver environmental resources; they are designed to serve as a spatial framework for the research, subdivisions of earlier level III ecoregions that were originally compiled at a smaller scale (USEPA Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Omernik, J.M., 1987, Ecoregions of the conterminous United States (map Barbara A. Kleiss (USACE, ERDC -Waterways Experiment Station), James M. ILLINOIS assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing 2003, Omernik, 1987). This poster is part of a collaborative effort primarily between USEPA Region Ecoregions and subregions of the United States (map) (supplementary supplement): Annals of the Association of American Geographers, v. 77, no. 1, Omernik, (USEPA, retired), Thomas L. Foti (Arkansas Natural Heritage p. 118-125, scale 1:7,500,000. 71 the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the VII, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), table of map unit descriptions compiled and edited by McNab, W.H., and Commission), and Elizabeth O. Murray (Arkansas Multi-Agency Wetland Bailey, R.G.): Washington, D.C., U.S. Department of Agriculture - Forest Planning Team). 37° environment by its probable response to disturbance (Bryce and others, 1999).
    [Show full text]
  • Status of the Eastern Imperial Eagle (Aquila Heliaca) in the European Part of Turkey
    ACTA ZOOLOGICA BULGARICA Acta zool. bulg., Suppl. 3, 2011: 87-93 Status of the Eastern Imperial Eagle (Aquila heliaca) in the European part of Turkey Dimitar A. Demerdzhiev1, Stoycho A. Stoychev2, Nikolay G. Terziev2, and Ivaylo D. Angelov2 1 31 Bulgaria Blv�., 4230 Asenovgra�, Bulgaria; E�mails: �emer�jiev@yahoo.�om; �_�emer�[email protected]; w��.bspb.org 2 Haskovo 6300, P.O.Box 130, Bulgaria; E�mails: stoy�hev.s@gmail.�om; w��.bspb.org; [email protected]; ivailoange� [email protected]; w��.bspb.org Abstract: This arti�le presents the results of the �rst more �etaile� stu�ying on the �istribution an� numbers of the Eastern Imperial Eagle (Аquila heliaca SA V I G NY 1809) population in the European part of Turkey. T�enty territories o��upie� by Imperial Eagle pairs, �istribute� in three �ifferent regions �ere �is�overe� �uring the perio� 2008�2009. The bree�ing population was estimate� at 30�50 pairs. The stu�y i�enti�e� t�o main habitat types typi�al of the Imperial Eagles in European Turkey – open hilly areas an� lo� mountain areas (up to 450 m a.s.l.) an� lo� relief plain areas (50�150 m a.s.l.). Poplar trees (Populus sp. L) were i�enti�e� as the most preferre� nesting substratum (44%), follo�e� by Oaks (Quercus sp. L) (40%). Bree�ing �ensity �as 1 pair/100 km2 in both habitat types. The shortest �istan�e bet�een t�o bree�ing pairs �as 5.8 km re�or�e� in plain areas in the Thra�e region.
    [Show full text]