Cracking the AQ Code
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing a Tornado Emergency Plan for Schools in Michigan
A GUIDE TO DEVELOPING A TORNADO EMERGENCY PLAN FOR SCHOOLS Also includes information for Instruction of Tornado Safety The Michigan Committee for Severe Weather Awareness March 1999 1 TABLE OF CONTENTS: A GUIDE TO DEVELOPING A TORNADO EMERGENCY PLAN FOR SCHOOLS IN MICHIGAN I. INTRODUCTION. A. Purpose of Guide. B. Who will Develop Your Plan? II. Understanding the Danger: Why an Emergency Plan is Needed. A. Tornadoes. B. Conclusions. III. Designing Your Plan. A. How to Receive Emergency Weather Information B. How will the School Administration Alert Teachers and Students to Take Action? C. Tornado and High Wind Safety Zones in Your School. D. When to Activate Your Plan and When it is Safe to Return to Normal Activities. E. When to Hold Departure of School Buses. F. School Bus Actions. G. Safety during Athletic Events H. Need for Periodic Drills and Tornado Safety Instruction. IV. Tornado Spotting. A. Some Basic Tornado Spotting Techniques. APPENDICES - Reference Materials. A. National Weather Service Products (What to listen for). B. Glossary of Weather Terms. C. General Tornado Safety. D. NWS Contacts and NOAA Weather Radio Coverage and Frequencies. E. State Emergency Management Contact for Michigan F. The Michigan Committee for Severe Weather Awareness Members G. Tornado Safety Checklist. H. Acknowledgments 2 I. INTRODUCTION A. Purpose of guide The purpose of this guide is to help school administrators and teachers design a tornado emergency plan for their school. While not every possible situation is covered by the guide, it will provide enough information to serve as a starting point and a general outline of actions to take. -
A Climatology and Comparison of Parameters for Significant Tornado
106 WEATHER AND FORECASTING VOLUME 27 A Climatology and Comparison of Parameters for Significant Tornado Events in the United States JEREMY S. GRAMS AND RICHARD L. THOMPSON NOAA/NWS/Storm Prediction Center, Norman, Oklahoma DARREN V. SNIVELY Department of Geography, Ohio University, Athens, Ohio JAYSON A. PRENTICE Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa GINA M. HODGES AND LARISSA J. REAMES School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 18 January 2011, in final form 30 August 2011) ABSTRACT A sample of 448 significant tornado events was collected, representing a population of 1072 individual tornadoes across the contiguous United States from 2000 to 2008. Classification of convective mode was assessed from radar mosaics for each event with the majority classified as discrete cells compared to quasi- linear convective systems and clusters. These events were further stratified by season and region and com- pared with a null-tornado database of 911 significant hail and wind events that occurred without nearby tornadoes. These comparisons involved 1) environmental variables that have been used through the past 25– 50 yr as part of the approach to tornado forecasting, 2) recent sounding-based parameter evaluations, and 3) convective mode. The results show that composite and kinematic parameters (whether at standard pressure levels or sounding derived), along with convective mode, provide greater discrimination than thermodynamic parameters between significant tornado versus either significant hail or wind events that occurred in the absence of nearby tornadoes. 1. Introduction severe thunderstorms and tornadoes (e.g., Bluestein 1999; Davies-Jones et al. 2001; Wilhelmson and Wicker Severe weather forecasting has evolved considerably 2001). -
The Fujita Scale Is Used to Rate the Intensity of a Tornado by Examining the Damage Caused by the Tornado After It Has Passed Over a Man-Made Structure
The Fujita Scale is used to rate the intensity of a tornado by examining the damage caused by the tornado after it has passed over a man-made structure. The "Percentage of All Tornadoes 1950- 1994" pie chart reveals that the vast majority of tornadoes are either weak or do damage that can only be attributed to a weak tornado. Only a small percentage of tornadoes can be correctly classed as violent. Such a chart became possible only after the acceptance of the Fujita Scale as the official classification system for tornado damage. It is quite possible that an even higher percentage of all tornadoes are weak. Each year the National Weather Service documents about 1000 tornado touchdowns in the United States. There is evidence that 1000 or more additional weak tornadoes may occur each year and go completely undocumented. The "Percentage of Tornado-Related Deaths 1950-1994" pie chart shows that while violent tornadoes are few in number, they cause a very high percentage of tornado-related deaths. The Tornado Project has analyzed data prior to 1950, and found that the percentage of deaths from violent tornadoes was even greater in the past. This is because the death tolls prior to the introduction of the forecasting/awareness programs were enormous: 695 dead(Missouri-Illinois-Indiana, March 18, 1925); 317 dead(Natchez, Mississippi, May 7, 1840);.255 dead(St. Louis, Missouri and East St. Louis, Illinois, May 27, 1896); 216 dead(Tupelo, Mississippi, April 5, 1936); 203 dead(Gainesville, GA, April 6, 1936). In more recent times, no single tornado has killed more than 50 people since 1971. -
PRC.15.1.1 a Publication of AXA XL Risk Consulting
Property Risk Consulting Guidelines PRC.15.1.1 A Publication of AXA XL Risk Consulting WINDSTORMS INTRODUCTION A variety of windstorms occur throughout the world on a frequent basis. Although most winds are related to exchanges of energy (heat) between different air masses, there are a number of weather mechanisms that are involved in wind generation. These depend on latitude, altitude, topography and other factors. The different mechanisms produce windstorms with various characteristics. Some affect wide geographical areas, while others are local in nature. Some storms produce cooling effects, whereas others rapidly increase the ambient temperatures in affected areas. Tropical cyclones born over the oceans, tornadoes in the mid-west and the Santa Ana winds of Southern California are examples of widely different windstorms. The following is a short description of some of the more prevalent wind phenomena. A glossary of terms associated with windstorms is provided in PRC.15.1.1.A. The Beaufort Wind Scale, the Saffir/Simpson Hurricane Scale, the Australian Bureau of Meteorology Cyclone Severity Scale and the Fugita Tornado Scale are also provided in PRC.15.1.1.A. Types Of Windstorms Local Windstorms A variety of wind conditions are brought about by local factors, some of which can generate relatively high wind conditions. While they do not have the extreme high winds of tropical cyclones and tornadoes, they can cause considerable property damage. Many of these local conditions tend to be seasonal. Cold weather storms along the East coast are known as Nor’easters or Northeasters. While their winds are usually less than hurricane velocity, they may create as much or more damage. -
What Are We Doing with (Or To) the F-Scale?
5.6 What Are We Doing with (or to) the F-Scale? Daniel McCarthy, Joseph Schaefer and Roger Edwards NOAA/NWS Storm Prediction Center Norman, OK 1. Introduction Dr. T. Theodore Fujita developed the F- Scale, or Fujita Scale, in 1971 to provide a way to compare mesoscale windstorms by estimating the wind speed in hurricanes or tornadoes through an evaluation of the observed damage (Fujita 1971). Fujita grouped wind damage into six categories of increasing devastation (F0 through F5). Then for each damage class, he estimated the wind speed range capable of causing the damage. When deriving the scale, Fujita cunningly bridged the speeds between the Beaufort Scale (Huler 2005) used to estimate wind speeds through hurricane intensity and the Mach scale for near sonic speed winds. Fujita developed the following equation to estimate the wind speed associated with the damage produced by a tornado: Figure 1: Fujita's plot of how the F-Scale V = 14.1(F+2)3/2 connects with the Beaufort Scale and Mach number. From Fujita’s SMRP No. 91, 1971. where V is the speed in miles per hour, and F is the F-category of the damage. This Amazingly, the University of Oklahoma equation led to the graph devised by Fujita Doppler-On-Wheels measured up to 318 in Figure 1. mph flow some tens of meters above the ground in this tornado (Burgess et. al, 2002). Fujita and his staff used this scale to map out and analyze 148 tornadoes in the Super 2. Early Applications Tornado Outbreak of 3-4 April 1974. -
Quantifying the Impact of Synoptic Weather Types and Patterns On
1 Quantifying the impact of synoptic weather types and patterns 2 on energy fluxes of a marginal snowpack 3 Andrew Schwartz1, Hamish McGowan1, Alison Theobald2, Nik Callow3 4 1Atmospheric Observations Research Group, University of Queensland, Brisbane, 4072, Australia 5 2Department of Environment and Science, Queensland Government, Brisbane, 4000, Australia 6 3School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia 7 8 Correspondence to: Andrew J. Schwartz ([email protected]) 9 10 Abstract. 11 Synoptic weather patterns are investigated for their impact on energy fluxes driving melt of a marginal snowpack 12 in the Snowy Mountains, southeast Australia. K-means clustering applied to ECMWF ERA-Interim data identified 13 common synoptic types and patterns that were then associated with in-situ snowpack energy flux measurements. 14 The analysis showed that the largest contribution of energy to the snowpack occurred immediately prior to the 15 passage of cold fronts through increased sensible heat flux as a result of warm air advection (WAA) ahead of the 16 front. Shortwave radiation was found to be the dominant control on positive energy fluxes when individual 17 synoptic weather types were examined. As a result, cloud cover related to each synoptic type was shown to be 18 highly influential on the energy fluxes to the snowpack through its reduction of shortwave radiation and 19 reflection/emission of longwave fluxes. As single-site energy balance measurements of the snowpack were used 20 for this study, caution should be exercised before applying the results to the broader Australian Alps region. 21 However, this research is an important step towards understanding changes in surface energy flux as a result of 22 shifts to the global atmospheric circulation as anthropogenic climate change continues to impact marginal winter 23 snowpacks. -
19.4 Updated Mobile Radar Climatology of Supercell
19.4 UPDATED MOBILE RADAR CLIMATOLOGY OF SUPERCELL TORNADO STRUCTURES AND DYNAMICS Curtis R. Alexander* and Joshua M. Wurman Center for Severe Weather Research, Boulder, Colorado 1. INTRODUCTION evolution of angular momentum and vorticity near the surface in many of the tornado cases is also High-resolution mobile radar observations of providing some insight into possible modes of supercell tornadoes have been collected by the scale contraction for tornadogenesis and failure. Doppler On Wheels (DOWs) platform between 1995 and present. The result of this ongoing effort 2. DATA is a large observational database spanning over 150 separate supercell tornadoes with a typical The DOWs have collected observations in and data resolution of O(50 m X 50 m X 50 m), near supercell tornadoes from 1995 through 2008 updates every O(60 s) and measurements within including the fields of Doppler velocity, received 20 m of the surface (Wurman et al. 1997; Wurman power, normalized coherent power, radar 1999, 2001). reflectivity, coherent reflectivity and spectral width (Wurman et al. 1997). Stemming from this database is a multi-tiered effort to characterize the structure and dynamics of A typical observation is a four-second quasi- the high wind speed environments in and near horizontal scan through a tornado vortex. To date supercell tornadoes. To this end, a suite of there have been over 10000 DOW observations of algorithms is applied to the radar tornado supercell tornadoes comprising over 150 individual observations for quality assurance along with tornadoes. detection, tracking and extraction of kinematic attributes. Data used for this study include DOW supercell tornado observations from 1995-2003 comprising The integration of observations across tornado about 5000 individual observations of 69 different cases in the database is providing an estimate of mesocyclone-associated tornadoes. -
George C. Mdrrhall Space Flight Center Marshall Space F/@T Center, Alabdrnd
NASA TECHNICAL MEMORANDUM (NASA-TU-78262) A PRELI8INABY LOOK AT N80- 18636 AVE-SESAHE 1 CONDUCTED 0U 10-11 APRIL 1979 (8lASA) 52 p HC AO4/HP A01 CSCL 040 Unclas G3/47 47335 A PRELIMINARY LOOK AT AVE-SESAME I CONDUCTED ON APRIL 10-1 1, 1979 By Steven F. Williams, James R. Scoggins, Nicholas Horvath, and Kelly Hill February 1980 NASA George C. Mdrrhall Space Flight Center Marshall Space F/@t Center, Alabdrnd MBFC - Form 3190 (Rev June 1971) ,. .. .. .. , . YAFrl," I?? CONTENTS Page LIST OF FIGURES ........................... iv LIST OF TABLES ............................ vii 1. OBJECTIVES AND SCOPE ...................... 1 2. DATA COLLECTGD ......................... 1 a. Rawinsonde Soundinps.... .................... 1 b. Surface a* Upper -Air -..+ .................... 4 3. SMOPTIC CONDITIONS ....................... 4 a. Synoptic Charts ....................... 4 b. Radar.. .......................... 5 c. Satellite.. ........................ 5 4. SEVERE AND UNUSUAL WkXPIk h. REPORTED ............... 37 PRriCICDINQ PAGE BUNK NOT FKMED iii - .%; . ,,. r* , . * *. '' ,..'~ LIST OE' FIGURES Figure Page Location of rawinsonde stations participating in the AVE-SESAME I experiment ................. 3 Synoptic charts for 1200 GMT. 10 April 1979 ....... 6 Surface chart for 1800 GMT. 10 April 1979 ........ 9 Synoptic charts for 0000 GMT. 11 April 1979 ....... 10 Surface chart for 0600 GMT. 11 April 1979 ........ 13 Synoptic charts for 1200 GMT. 11 April 1979 ....... 14 Radar sunmxy for 1435 GMT. 10 April 1979 ........ 17 Radar summary for 1935 GMT. 10 ~pril1979 ........ 17 Radar summary for 2235 GMT. 10 April1979 ........ 18 Radar sumnary for 0135 GMT. 11 ~pril1979 ........ 18 Radar summary for 0235 GMT. 11 ~pril1979 ........ 19 Radar sununary for 0435 GMT. 11 April 1979 ........ 19 Radar summary for 0535 GMT. 11 April 1979 ....... -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Tornadoes & Downburst
TORNADOES & DOWNBURST TORNADOES • A devastating F5 tornado about 200 meters wide plows through Hesston, Kansas, on March 13, 1990, leaving almost 300 people homeless and 13 injured. • Total destruction caused by an F5 tornado that devastated parts of Oklahoma on May 3, 1999. • A tornado is a violently rotating (usually counterclockwise in the northern hemisphere) column of air descending from a thunderstorm and in contact with the ground. Although tornadoes are usually brief, lasting only a few minutes, they can sometimes last for more than an hour and travel several miles causing considerable damage. In a typical year about 1000 tornadoes will strike the United States. The peak of the tornado season is April through June and more tornadoes strike the central United States than any other place in the world. This area has been nicknamed "tornado alley." Most tornadoes are spawned from supercell thunderstorms. Supercell thunderstorms are characterized by a persistent rotating updraft and form in environments of strong vertical wind shear. Wind shear is the change in wind speed and/or direction with height. • Tornadoes are natures most destructive weather hazard. Annual Number of Tornadoes per State (upper number) • Tornado incidence by state. The upper figure shows the number of tornadoes reported by each state during a 25-year period. The lower figure is the average annual number of tornadoes per 10,000 square miles. The darker the shading, the greater the frequency of tornadoes. • Average number of tornadoes during each month in the United States. Fujita Scale F0-F1 Fujita scale is a measure of tornado intensity Winds 60 - 115 mph quantified through a subjective analysis of relating tornadic damage to wind speed. -
The Interactions Between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred During the Summer Season
502 MONTHLY WEATHER REVIEW VOLUME 126 NOTES AND CORRESPONDENCE The Interactions between a Midlatitude Blocking Anticyclone and Synoptic-Scale Cyclones That Occurred during the Summer Season ANTHONY R. LUPO AND PHILLIP J. SMITH Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 20 September 1996 and 2 May 1997 ABSTRACT Using the Goddard Laboratory for Atmospheres Goddard Earth Observing System 5-yr analyses and the Zwack±Okossi equation as the diagnostic tool, the horizontal distribution of the dynamic and thermodynamic forcing processes contributing to the maintenance of a Northern Hemisphere midlatitude blocking anticyclone that occurred during the summer season were examined. During the development of this blocking anticyclone, vorticity advection, supported by temperature advection, forced 500-hPa height rises at the block center. Vorticity advection and vorticity tilting were also consistent contributors to height rises during the entire life cycle. Boundary layer friction, vertical advection of vorticity, and ageostrophic vorticity tendencies (during decay) consistently opposed block development. Additionally, an analysis of this blocking event also showed that upstream precursor surface cyclones were not only important in block development but in block maintenance as well. In partitioning the basic data ®elds into their planetary-scale (P) and synoptic-scale (S) components, 500-hPa height tendencies forced by processes on each scale, as well as by interactions (I) between each scale, were also calculated. Over the lifetime of this blocking event, the S and P processes were most prominent in the blocked region. During the formation of this block, the I component was the largest and most consistent contributor to height rises at the center point. -
1 International Approaches to Tornado Damage and Intensity Classification International Association of Wind Engineers
International Approaches to Tornado Damage and Intensity Classification International Association of Wind Engineers (IAWE), International Tornado Working Group 2017 June 6, DRAFT FINAL REPORT 1. Introduction Tornadoes are one of the most destructive natural Hazards on Earth, with occurrences Having been observed on every continent except Antarctica. It is difficult to determine worldwide occurrences, or even the fatalities or losses due to tornadoes, because of a lack of systematic observations and widely varying approacHes. In many jurisdictions, there is not any tracking of losses from severe storms, let alone the details pertaining to tornado intensity. Table 1 provides a summary estimate of tornado occurrence by continent, with details, wHere they are available, for countries or regions Having more than a few observations per year. Because of the lack of systematic identification of tornadoes, the entries in the Table are a mix of verified tornadoes, reports of tornadoes and climatological estimates. Nevertheless, on average, there appear to be more than 1800 tornadoes per year, worldwide, with about 70% of these occurring in North America. It is estimated that Europe is the second most active continent, with more than 240 per year, and Asia third, with more than 130 tornadoes per year on average. Since these numbers are based on observations, there could be a significant number of un-reported tornadoes in regions with low population density (CHeng et al., 2013), not to mention the lack of systematic analysis and reporting, or the complexity of identifying tornadoes that may occur in tropical cyclones. Table 1 also provides information on the approximate annual fatalities, althougH these data are unavailable in many jurisdictions and could be unreliable.