2.1. Sodium Borohydride As a Fuel: Direct Borohydride Fuel Cell
Total Page:16
File Type:pdf, Size:1020Kb
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING AND THE ENVIRONMENT Engineering Sciences Investigation of the use of sodium borohydride for fuel cells by Irene Merino Jimenez Thesis for the degree of Doctor of Philosophy November 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND THE ENVIRONMENT ENGINEERING SCIENCES Doctor of Philosophy INVESTIGATION OF THE USE OF SODIUM BOROHYDRIDE FOR FUEL CELLS Irene Merino Jimenez The use of NaBH4 for fuel cells offers a promising alternative to incumbent electrical power generation technologies. The predicted high energy density (9.3 kW h kg-1) of the direct borohydride fuel cell (DBFC) and its capacity to release 8e- per molecule converts it to a potential substitute for the H2/O2 system. Sodium borohydride, with 10.6 wt. % hydrogen content, can also generate H2 gas to be fed into a traditional H2/O2 fuel cell in an indirect borohydride fuel cell (IBFC). However, there are fundamental aspects of the DBFC and the IBFC that need to be addressed to achieve their optimal performance. The hydrolysis of borohydride is the key factor in both cases, being the undesired parallel reaction that occurs during the borohydride oxidation in the DBFC, and the main reaction taking place and to be promoted in the IBFC. The competition - between BH4 oxidation and its hydrolysis depends on the electrode material, electrolyte composition and operation conditions, such as the temperature. In this work, two approaches to the use of NaBH4 for fuel cells are considered. Catalysts such as Pd-Ir alloy on microbifrous carbon, gold coated reticulated vitreous carbon (RVC), planar gold and dispersed nanoparticulate gold supported on carbon (Au/C), were tested for the direct borohydride oxidation while Pd-Ir alloy, Pt nanoparticles on carbon paper and Pd deposited on granular carbon (Pd/C) were evaluated to generate H2 from NaBH4 for use in an IBFC. The gold coated RVC electrodes demonstrated good activity towards the borohydride oxidation, increasing the kinetic rate constants and the current density with the thickness of the coating and the porosity grades. The Pd-Ir alloy was also catalytic towards the DBFC, with current densities between 100 and 200 mA -2 3 -1 cm but with low H2 generation rates (< 0.1 cm min ). As computational methods could play a prominent role in the design and characterisation of DBFCs, density functional theory (DFT) was used to investigate the reaction mechanism of borohydride i oxidation at Pd-Ir surfaces. This work also studies the use of surfactants, including Triton X-100, Zonyl FSO, S-228M, sodium dodecyl sulphate and FC4430, during the direct oxidation of borohydride ions using a planar gold and Au/C electrodes. The addition of 0.001 wt. % Triton X-100 to the alkaline borohydride solution decreased the H2 generation by 23 % at the Au/C electrode, while the borohydride oxidation remained unaffected. In contrast, in the H2 generator, the Pd/C catalyst showed an excellent activity towards the borohydride hydrolysis, obtaining a maximum rate of 8 × 103 cm3 -1 -1 -3 3 min gmetal during 120 minutes using 4 mol dm NaBH4 in 350 cm distilled water and 15 g of catalyst. This is the highest H2 generation rate reported in a laboratory scale reactor using borohydride and a Pd base catalyst. Keywords: borohydride oxidation and decomposition, catalysis, DBFC, IBFC, hydrogen generation, hydrolysis inhibition, kinetic rate constant. ii Contents ABSTRACT ...................................................................................................................... i Contents .......................................................................................................................... iii List of tables .................................................................................................................... vi List of figures ................................................................................................................. vii DECLARATION OF AUTHORSHIP ...................................................................... xvii Acknowledgements ...................................................................................................... xix Abbreviations ............................................................................................................... xxi Symbols ........................................................................................................................ xxii Chapter 1: Introduction ................................................................................................. 1 1.1. Background and motivation .................................................................................. 1 1.2. Aims and objectives .............................................................................................. 8 1.3. Thesis outline ........................................................................................................ 9 Chapter 2: Literature Review ...................................................................................... 11 2.1. Sodium borohydride as a fuel: Direct Borohydride Fuel Cell ............................ 12 2.1.1. Anode ............................................................................................................. 12 2.1.2. Cathode ......................................................................................................... 33 2.1.3. Membranes .................................................................................................... 36 2.1.4. Cell performance ........................................................................................... 40 2.1.5. Hydrogen evolution and the use of inhibitors ............................................... 42 2.1.6. Influence of operational conditions in a DBFC ............................................ 49 2.1.7. Engineering aspects of direct borohydride fuel cells .................................... 53 2.1.8. Modelling and Simulation ............................................................................. 58 2.1.9. Recycling sodium metaborate product to sodium borohydride reactant....... 62 2.1.10. Synthesis of sodium borohydride .................................................................. 65 2.2. Sodium borohydride for hydrogen generation .................................................... 66 2.2.1. Hydrogen generation from metal hydrides – Sodium borohydride .............. 66 2.2.2. Engineering aspects of the indirect borohydride fuel cell ............................ 74 2.3. Summary ............................................................................................................. 79 Chapter 3: Experimental methodology ....................................................................... 83 3.1. Materials and chemicals ...................................................................................... 83 iii 3.2. Equipment ........................................................................................................... 84 3.3. Electrochemical cell and methodology ............................................................... 84 3.3.1. Electrolysis .................................................................................................... 84 - 3.3.2. Effects of surfactants on the BH4 oxidation kinetics ................................... 87 3.4. Borohydride oxidation at Pd-Ir/Ti electrode ....................................................... 88 3.5. Gold coated RVC electrodes for borohydride oxidation .................................... 90 3.5.1. PVD sputtering technique ............................................................................. 90 3.5.2. Cyclic voltammetry ....................................................................................... 90 3.6. Hydrogen generator design and testing ............................................................... 91 Chapter 4: Pd-Ir coated microfibrous carbon for borohydride oxidation .............. 96 4.1. Electrolysis .......................................................................................................... 96 4.2. Cyclic voltammetry ........................................................................................... 102 4.3. Computational methods..................................................................................... 105 4.3.1. Pd-Ir(111) crystalline structures .................................................................. 114 4.3.2. Activation energy ......................................................................................... 116 4.4. DFT results and discussion ............................................................................... 117