Hydrology and Flood Modelling

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Technical Assistance Consultant’s Report Project Number: 44167-012 December 2013 Bangladesh: Main River Flood and Bank Erosion Risk Management Program (Financed by the Japan Fund for Poverty Reduction) Prepared by Northwest Hydraulic Consultants, Canada In association with Resource Planning and Management Consultants Ltd., Bangladesh For Bangladesh Water Development Board This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. Government of the People's Republic of Bangladesh Bangladesh Water Development Board Project Preparatory Technical Assistance No. 8054 BAN Main River Flood and Bank Erosion Risk Management Program Final Report, Annex D Hydrology and Flood Modelling September 2013 In association with Resource Planning & Management Consultants Ltd. Asian Development Bank Funded by the Japan Fund for Poverty Reduction Government of the People’s Republic of Bangladesh Bangladesh Water Development Board Project Preparatory Technical Assistance 8054 BAN Main River Flood and Bank Erosion Risk Management Program Final Report, Annex D Hydrology and Flood Modelling September 2013 PPTA 8054-BAN: Main River Flood and Bank Erosion Risk Management Program Document Status Title: Hydrology and Flood Modelling, Annex D Principal Author: Dave McLean Contributions: Vanessa O’Connor IWM model results Final version: September 2013 Document Development Draft Final 15 June, 2013 Revision for Final R13, 28 July 2013 Formatting, spell check, font change, justification R13, 30 July 2013 Formatting, spell check, font change, justification R14, 30 July 2013 Page setup and Print R15, 22SEP2013 Format cover page, header and footer R17 30SEP2013 Updated after comments from ADB R18 28 Feb 2014 Reprinted R17 Review by : ko, 1 August, 2013 ADB, Natsuko Totsuka 9 September, 2013 Page iv September 2013 Hydrology and Flood Modelling MAIN REPORT ANNEXES Annex A Priority Sub-reach Selection & Sub-reach Descriptions Annex A1 Priority Sub-reach Selection Annex A2 Sub-reach Description Annex B Background Data Annex B1 National Water Resources Database Annex B2 Socio-economic Data Annex B3 Surveys and Field Visits Annex C Institutional and Financial Assessment Annex D Hydrology and Flood Modelling Annex E River and Charland Morphology and River Engineering Annex F Design Issues Annex F1 Geotechnical Investigations Annex F2 Technical Designs Annex G Economic Feasibility Annex G1 Project Cost Annex G2 Economic Assessment Annex H Implementation and Procurement Planning Annex I Social Gender Equity Strategy & Action Plan Annex J Environmental Impact Assessment Annex K Involuntary Resettlement Annex K1 Resettlement Framework Annex K2 Resettlement Plan Page v PPTA 8054-BAN: Main River Flood and Bank Erosion Risk Management Program Page vi September 2013 Hydrology and Flood Modelling Table of Content 1 Introduction ....................................................................................................................................... 1 1.1 Purpose ...................................................................................................................................... 1 1.2 Scope of Work ............................................................................................................................ 1 1.3 Project Location ......................................................................................................................... 1 1.4 Outline of Report ....................................................................................................................... 3 2 Physical Setting .................................................................................................................................. 4 2.1 Physiography .............................................................................................................................. 4 2.2 Floodplain Topography .............................................................................................................. 5 2.3 Climate ....................................................................................................................................... 5 3 Flood Hydrology ................................................................................................................................. 7 3.1 Hydrological Data ....................................................................................................................... 7 3.1.1 Available Information ......................................................................................................... 7 3.2 Runoff Pattern............................................................................................................................ 7 3.3 Flood Magnitude and Frequency ............................................................................................... 9 3.4 Flooding and Drainage ............................................................................................................. 12 3.4.1 Factors Affecting Flood Inundation .................................................................................. 12 3.4.2 Relation Between Flooding and Embankment Breaching ................................................ 13 3.4.3 Flooding Extent ................................................................................................................ 13 3.5 Flood Damages ......................................................................................................................... 16 3.6 Climate Change ........................................................................................................................ 20 4 Flood Model Development .............................................................................................................. 22 4.1 Method of Approach ................................................................................................................ 22 4.2 Regional Models and Model Boundaries.................................................................................. 23 4.3 Model Limitations and Accuracy .............................................................................................. 24 4.3.1 Limitations of 1D Modelling ............................................................................................. 24 4.3.2 Limitations of Boundary Conditions ................................................................................. 24 4.3.3 Limitations of Floodplain Topography .............................................................................. 27 4.4 Inflow Conditions ..................................................................................................................... 29 4.5 Model Validation ...................................................................................................................... 30 5 JRB-1 Embankment Project .............................................................................................................. 36 5.1 Project Area ............................................................................................................................. 36 5.1.1 General Features .............................................................................................................. 36 5.1.2 Proposed JRB-1 Project .................................................................................................... 36 Page vii PPTA 8054-BAN: Main River Flood and Bank Erosion Risk Management Program 5.2 JRB-1 Without Project Flood Conditions .................................................................................. 38 5.3 Scenario 1, Tranche-1 and 2 JRB-1: Closing the BRE and restoring the Hurashagar FCD Project 41 5.4 Scenario 2 JRB-1: Tranche-2 Securing the BRE (Effect of Embankment Breach at Enayetpur) . 45 6 JLB-2 and PLB-1Projects ................................................................................................................... 48 6.1 Project Area ............................................................................................................................. 48 6.1.1 Physical Features .............................................................................................................. 48 6.1.2 Project Description ........................................................................................................... 48 6.2 “Without Project” Scenarios .................................................................................................... 51 6.3 Effect of Upgrading Short Section of Embankment .................................................................. 55 6.4 JLB-2 & PLB-1 Alternative 1: Continuous Embankment and Distributary Closures .................. 57 6.5 Alternative 2 - Polders .............................................................................................................. 61 7 Requirements for Improved Flood Modelling .................................................................................. 66 7.1 General Requirements ............................................................................................................ 66 7.2 Improved Hydraulic Modelling ................................................................................................. 66 7.2.1 1D Versus 2D Modelling ..................................................................................................
Recommended publications
  • The Effect of Climate and Anthropogenic Change on the Spatial Variability of Turbidity Maxima in the Southwest Delta of Bangladesh

    The Effect of Climate and Anthropogenic Change on the Spatial Variability of Turbidity Maxima in the Southwest Delta of Bangladesh

    The effect of climate and anthropogenic change on the spatial variability of turbidity maxima in the southwest delta of Bangladesh. by MORSHEDA BEGUM Erasmus Mundus Joint Master in Water and Coastal Management. WACOMA 9/28/2018 Research Supervisor Dr Alfredo Iquierdo González Research Co-Supervisor Dr. Hans Middelkoop Mentors: Mohammed Feroz Islam The author has been financially supported by Erasmus Mundus This Master Thesis was carried out in the Department of Applied Physics, Faculty of Marine and Environmental Sciences University of Cadiz, as part of the UNESCO/UNITWIN/WiCoP activities in Cádiz, Spain, and in Utrecht University. The work was part of the project “Living polders: dynamic polder management for sustainable livelihoods, applied to Bangladesh” financed by The Netherlands Organisation for Scientific Research (NOW) (W 07.69.201). The author was supported by an ERASMUS MUNDUS scholarship. STATEMENT I hear by declare that this work has been carried out by me and the thesis has been composed by me and has not been submitted for any other degree or professional qualification. This work is presented to obtain a masters’ degree in Water and Coastal Management (WACOMA). ----------------------------- MORSHEDA BEGUM D. Alfredo Izquierdo González, Profesor del Departamento de Fizică Aplicată de la Universidad de Cádiz y D. Hans Middelkoop, Profesor del Departamento de Departamento de Geografía Física de la Universidad de Utrecht, como sus directores HACEN CONSTAR: Que esta Memoria, titulada “(El efecto del cambio climático y antropogénico sobre la variabilidad espacial de los máximos de turbidez en el delta sudoeste de Bangladesh)”, presentada por D. Morsheda Begum, resume su trabajo de Tesis de Master y, considerando que reúne todos los requisitos legales, autorizan su presentación y defensa para optar al grado de Master Erasmus Mundus in Water and Coastal Management (WACOMA).
  • Present Status of Fish Biodiversity and Abundance in Shiba River, Bangladesh

    Present Status of Fish Biodiversity and Abundance in Shiba River, Bangladesh

    Univ. J. zool. Rajshahi. Univ. Vol. 35, 2016, pp. 7-15 ISSN 1023-6104 http://journals.sfu.ca/bd/index.php/UJZRU © Rajshahi University Zoological Society Present status of fish biodiversity and abundance in Shiba river, Bangladesh D.A. Khanom, T Khatun, M.A.S. Jewel*, M.D. Hossain and M.M. Rahman Department of Fisheries, University of Rajshahi, Rajshahi 6205, Bangladesh Abstract: The study was conducted to investigate the abundance and present status of fish biodiversity in the Shiba river at Tanore Upazila of Rajshahi district, Bangladesh. The study was conducted from November, 2016 to February, 2017. A total of 30 species of fishes were recorded belonging to nine orders, 15 families and 26 genera. Cypriniformes and Siluriformes were the most diversified groups in terms of species. Among 30 species, nine species under the order Cypriniformes, nine species of Siluriformes, five species of Perciformes, two species of Channiformes, two species of Mastacembeliformes, one species of Beloniformes, one species of Clupeiformes, one species of Osteoglossiformes and one species of Decapoda, Crustacea were found. Machrobrachium lamarrei of the family Palaemonidae under Decapoda order was the most dominant species contributing 26.29% of the total catch. In the Shiba river only 6.65% threatened fish species were found, and among them 1.57% were endangered and 4.96% were vulnerable. The mean values of Shannon-Weaver diversity (H), Margalef’s richness (D) and Pielou’s (e) evenness were found as 1.86, 2.22 and 0.74, respectively. Relationship between Shannon-Weaver diversity index (H) and pollution indicates the river as light to moderate polluted.
  • Initial Environmental Examination

    Initial Environmental Examination

    Initial Environmental Examination Project Number: 53382-001 May 2021 Bangladesh: South Asia Sub regional Economic Cooperation Dhaka-Sylhet Corridor Road Investment Project Main report vol. 1 Prepared by the Roads and Highways Division, Bangladesh, Dhaka for the Asian Development Bank. Page i Terms as Definition AASHTO American Association of State Highway and Transportation Officials ADB Asian Development Bank AMAN Rice (grown in wet season) APHA American Public Health Association ARIPA Acquisition and Requisition of Immoveable Property Act As Arsenic BD Bangladesh BIWTA Bangladesh Inland Water Transport Authority BNBC Bangladesh National Building Code BOQ Bill of Quantities Boro Rice (grown in dry season) BRTA Bangladesh Road Transport Authority BWDB Bangladesh Water Development Board CITES Convention on Trade in Endangered Species CO Carbon Monoxide CoI Corridor of Impact CPRs Community Property Resources DMMP Dredged Material Management Plan DC Deputy Commissioner DO Dissolved Oxygen DoE Department of Environment DoF Department of Forest EA Executive Agency ECA Environmental Conservation Act ECR Environmental Conservation Rules EIA Environmental Impact Assessment EMP Environmental Management Plan EMoP Environmental Monitoring Plan Engineer The construction supervision consultant/engineer EPAS Environmental Parameter Air Sampler EPC Engineering Procurement and Construction EQS Environmental Quality Standards ESCAP Economic and Social Commission for Asia and the Pacific ESSU Environmental and Social Safeguards Unit FC Faecal Coliform
  • Temporal Changes of Haors in Sunamganj District by Using Landsat Images and Hydrological Data Farida Yasmin

    Temporal Changes of Haors in Sunamganj District by Using Landsat Images and Hydrological Data Farida Yasmin

    ASSESSMENT OF SPATIO - TEMPORAL CHANGES OF HAORS IN SUNAMGANJ DISTRICT BY USING LANDSAT IMAGES AND HYDROLOGICAL DATA FARIDA YASMIN Roll No: 0413162020 P DEPARTMENT OF WATER RESOURCE ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DHAKA, BANGLADESH March 2018 ASSESSMENT OF SPATIO - TEMPORAL CHANGES OF HAORS IN SUNAMGANJ DISTRICT BY USING LANDSAT IMAGES AND HYDROLOGICAL DATA by FARIDA YASMIN Roll No: 0413162020 P In partial fulfillment of the requirement for the degree of MASTER OF ENGINEERING IN WATER RESOURCES ENGINEERING Department Of Water Resource Engineering BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY Dhaka, Bangladesh March 2018 ii iii iv TABLE OF CONTENTS Page no. LIST OF FIGURES viii LIST OF TABLES xiii ABBREVIATIONS xiv ACKNOWLEDGEMEN xv ABSTRACT xvi CHAPTER 1 INTRODUCTION 1.1 Background of the Study 1 1.2 Scope of the Study 3 1.3 Objectives of the Study 4 1.4 Organization of Thesis Work 5 CHAPTER 2 LITERATURE REVIEW 2.1 General 6 2.2 Definition of Wetland 6 2.3 Importance of Wetland 8 2.4 Wetlands around the World 9 2.5 Wetlands of Bangladesh 10 2.6 Previous Studies on Wetland in Bangladesh 16 2.7 Summary 19 v CHAPTER 3 THEORY AND METHODOLOGY Page no. 3.1 General 20 3.2 Remote Sensing (RS) and Global Information System (GIS) 20 3.2.1 Principles of Remote Sensing Systems 21 3.2.2 Primary Components of Remote Sensing 21 3.2.3 Types of Remote Sensing 22 3.3 Application of GIS 23 3.4 Components of GIS 24 3.5 Working Principle of GIS 25 3.6 Methodology of the Study 26 3.6.1 Study Area 28 3.6.2 Data Collection
  • (PSI) Project Name Mymensingh Kewatkhali Bridge Project Country

    (PSI) Project Name Mymensingh Kewatkhali Bridge Project Country

    Project Number: 000163 Project Summary Information (PSI) Project Name Mymensingh Kewatkhali Bridge Project Country People’s Republic of Bangladesh Sector Transport Project No. 0000163 Borrower People’s Republic of Bangladesh Implementation Agency Ministry of Road Transport and Bridges Environmental and Social Category A Date of PSI prepared or updated Sep. 5, 2018 Date of Concept Decision Approved on Sep. 4, 2018 Estimated Date of Board Consideration Aug., 2019 I. Introduction Mymensingh Kewatkhali Bridge is part of the Dhaka-Mymensingh-India border corridor, which is strategically important for both regional and local connectivity. Three land ports have been developed along the Indian border in Mymensingh Division, namely Nakugaon Land port in Sherpur district, Gobrakura Land Port and Haluaghat Land Port in Mymensingh District. Traffic from the three land ports must cross Old Brahmaputra River at Mymensingh City in order to reach Dhaka and other parts of Bangladesh. As with other land ports on the northern border with India, the main import items are coal, lime stone, boulder, stone, glass sand, fruits and raw hides. Export items are food and beverage items, plastic goods and bricks. Given the proximity to the Indian border (around 60-80 km from Mymensingh to the three land ports), the road passing through Mymensingh serves international trade by carrying the major import/export items from/to India. The improved crossing at Mymensingh will help facilitate cross-border trade with northeast India. On the other hand, the Mymensingh Kewatkhali bridge will provide crossing over the Old Brahmaputra River to connect the landlocked north central and northeast Bangladesh with Dhaka.
  • Upstream Satellite Remote Sensing for River Discharge Forecasting: Application to Major Rivers in South Asia

    Upstream Satellite Remote Sensing for River Discharge Forecasting: Application to Major Rivers in South Asia

    Remote Sensing of Environment 131 (2013) 140–151 Contents lists available at SciVerse ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Upstream satellite remote sensing for river discharge forecasting: Application to major rivers in South Asia Feyera A. Hirpa a, Thomas M. Hopson b,⁎, Tom De Groeve c, G. Robert Brakenridge d, Mekonnen Gebremichael a, Pedro J. Restrepo e a Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA b Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA c Joint Research Centre of the European Commission, Ispra, Via Fermi 2147, 21020 Ispra, Italy d CSDMS, INSTAAR, University of Colorado, Boulder, CO 80309-0450, USA e North Central River Forecast Center, NOAA, Chanhassen, MN, 55317, USA article info abstract Article history: In this work we demonstrate the utility of satellite remote sensing for river discharge nowcasting and forecasting Received 19 August 2011 for two major rivers, the Ganges and Brahmaputra, in southern Asia. Passive microwave sensing of the river and Received in revised form 16 November 2012 floodplain at more than twenty locations upstream of Hardinge Bridge (Ganges) and Bahadurabad (Brahmaputra) Accepted 17 November 2012 gauging stations are used to: 1) examine the capability of remotely sensed flow information to track the down- Available online xxxx stream propagation of river flow waves and 2) evaluate their use in producing river flow nowcasts, and forecasts at 1–15 days lead time. The pattern of correlation between upstream satellite data and in situ observations of Keywords: Floods downstream discharge is used to estimate wave propagation time.
  • Socio-Economic and Livelihood Status of Fishermen Around the Atrai And

    Socio-Economic and Livelihood Status of Fishermen Around the Atrai And

    International Journal of Fisheries and Aquatic Studies 2015; 2(6): 402-408 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 Socio-economic and livelihood status of fishermen (GIF) Impact Factor: 0.352 around the Atrai and Kankra Rivers of Chirirbandar IJFAS 2015; 2(6): 402-408 © 2015 IJFAS Upazila under Dinajpur District www.fisheriesjournal.com Received: 20-05-2015 Accepted: 23-06-2015 Salim Reza, Md. Sazzad Hossain, Ujjwal Hossain, Md. Abu Zafar Salim Reza Department of Aquaculture, Abstract Faculty of Fisheries, Bangladesh The study was conducted to investigate the socio-economic and livelihood status of the fishermen around Agricultural University, the Atrai and Kankra rivers at Chirirbandar Upazila, Dinajpur from October, 2013 to January 2014. Mymensingh-2202. Twenty five fishermen were randomly selected from the areas who were solely involved in fishing in the rivers. Several PRA tools were used to collect the data from the fishing communities such as, personal Md. Sazzad Hossain interview, crosscheck interview with extension agents, older persons, transect walk and case study. The Department of Aquaculture, data interpretations showed that 60% respondent’s primary occupation were fishing, majority of them Faculty of Fisheries, Bangladesh were middle age group (31-45 yrs) and mostly were landless or marginal land holders. All of the Agricultural University, respondents were male of which 84% were Muslims and rests were Hindus. About 88% fishermen were Mymensingh-2202. married and average size of middle household (56%) was more than the national average (4.4%). Ujjwal Hossain Moreover, 64% family was nuclear, 44% fishermen were illiterate and 36% can only sign.
  • Rivers of Peace: Restructuring India Bangladesh Relations

    Rivers of Peace: Restructuring India Bangladesh Relations

    C-306 Montana, Lokhandwala Complex, Andheri West Mumbai 400053, India E-mail: [email protected] Project Leaders: Sundeep Waslekar, Ilmas Futehally Project Coordinator: Anumita Raj Research Team: Sahiba Trivedi, Aneesha Kumar, Diana Philip, Esha Singh Creative Head: Preeti Rathi Motwani All rights are reserved. No part of this book may be reproduced or utilised in any form or by any means, electronic or mechanical, without prior permission from the publisher. Copyright © Strategic Foresight Group 2013 ISBN 978-81-88262-19-9 Design and production by MadderRed Printed at Mail Order Solutions India Pvt. Ltd., Mumbai, India PREFACE At the superficial level, relations between India and Bangladesh seem to be sailing through troubled waters. The failure to sign the Teesta River Agreement is apparently the most visible example of the failure of reason in the relations between the two countries. What is apparent is often not real. Behind the cacophony of critics, the Governments of the two countries have been working diligently to establish sound foundation for constructive relationship between the two countries. There is a positive momentum. There are also difficulties, but they are surmountable. The reason why the Teesta River Agreement has not been signed is that seasonal variations reduce the flow of the river to less than 1 BCM per month during the lean season. This creates difficulties for the mainly agrarian and poor population of the northern districts of West Bengal province in India and the north-western districts of Bangladesh. There is temptation to argue for maximum allocation of the water flow to secure access to water in the lean season.
  • Dayton Valley Development Guidelines Final Draft

    Dayton Valley Development Guidelines Final Draft

    FINAL DRAFT Dayton Valley Development Guidelines Supplement to the Dayton Valley Area Drainage Master Plan prepared for August Lyon County | Storey County | 2019 Carson Water Subconservancy District i FINAL DRAFT Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Background and Rationale ............................................................................................................ 3 1.1.1 More Frequent Flooding ....................................................................................................... 3 1.1.2 Larger Flood Peaks ................................................................................................................ 3 1.1.3 Scour and Erosion ................................................................................................................. 3 1.1.4 Flow Diversion ....................................................................................................................... 3 1.1.5 Flow Concentration ............................................................................................................... 3 1.1.6 Expanded Floodplains ........................................................................................................... 3 1.1.7 Reduced Surface Storage ...................................................................................................... 3 1.1.8 Decreased Ground Water Recharge ....................................................................................
  • A Case Study on Deepor Beel: the Ramsar Site and the Most

    A Case Study on Deepor Beel: the Ramsar Site and the Most

    A case study on Deepor Beel: The Ramsar site and the most prominent flood plain wetland of Brahmaputra The genesis Deepor Beel Wildlife Sanctuary and the Ramsar site of international importance recognized under the Ramsar Convention, 1971, located about 18 km southwest of Guwahati city between 90036∕ 39∕∕ E and 91041∕∕25∕∕ E longitude and 26005∕26∕∕ N and 2609∕26∕∕ N latitude and 55 m above the mean sea level is considered as one of the largest and prominent flood-plain lakes in the Brahmaputra valley in Ramcharani Mouza of Guwahati sub-division under Kamrup (Metropolitan) district. Deepor Beel included in the Directory of Asian Wetlands as a wetland type 14 is an open beel connected with a set of inflow and out flow channels. The main inlets of the beel are the Mara Bharalu and the Basishtha-Bahini rivers which carry the sewage as well as rain water from Guwahati city. The only outlet of the beel is Khanajan located towards the north- east having connection with the main river Brahmaputra. Another outlet, Kalmoni has now no existence due to the rampant construction over the channel. Conservation History of Deepor Beel 1989: Preliminary notification of Deepor Beel Wildlife Sanctuary vide FRW 1∕89∕25, 12 January (Area - 4.1sq. km.) 1997: Formation of Deepor beel Management Authority by Government of Assam 2002: Declaration of Ramsar site (Area - 40 sq. km.) 2004: Declaration of Important Bird Area (IBA) by Birdlife International 2009: Final notification of Deepor Beel Wildlife Sanctuary vide FRM 140∕2005∕260, 21 February (Area - 4.1sq.
  • Upper Susquehanna River Basin Flood Damage Reduction Study

    Upper Susquehanna River Basin Flood Damage Reduction Study

    Final Fish and Wildlife Coordination Act Report Upper Susquehanna Comprehensive Flood Damage Reduction Study Prepared For: U.S. Army Corps of Engineers Prepared By: Department of the Interior U.S. Fish and Wildlife Service New York Field Office Cortland, New York Preparers: Anne Secord & Andy Lowell New York Field Office Supervisor: David Stilwell February 2019 EXECUTIVE SUMMARY Flooding in the Upper Susquehanna watershed of New York State frequently causes damage to infrastructure that has been built within flood-prone areas. This report identifies a suite of watershed activities, such as urban development, wetland elimination, stream alterations, and certain agricultural practices that have contributed to flooding of developed areas. Structural flood control measures, such as dams, levees, and floodwalls have been constructed, but are insufficient to address all floodwater-human conflicts. The U.S. Army Corps of Engineers (USACE) is evaluating a number of new structural and non-structural measures to reduce flood damages in the watershed. The New York State Department of Environmental Conservation (NYSDEC) is the “local sponsor” for this study and provides half of the study funding. New structural flood control measures that USACE is evaluating for the watershed largely consist of new levees/floodwalls, rebuilding levees/floodwalls, snagging and clearing of woody material from rivers and removing riverine shoals. Non-structural measures being evaluated include elevating structures, acquisition of structures and property, relocating at-risk structures, developing land use plans and flood proofing. Some of the proposed structural measures, if implemented as proposed, have the potential to adversely impact riparian habitat, wetlands, and riverine aquatic habitat. In addition to the alternatives currently being considered by the USACE, the U.S.
  • A Checklist of Fishes and Fisheries of the Padda (Padma) River Near Rajshahi City

    A Checklist of Fishes and Fisheries of the Padda (Padma) River Near Rajshahi City

    Available online at www.ijpab.com Farjana Habib et al Int. J. Pure App. Biosci. 4 (2): 53-57 (2016) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.2248 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 4 (2): 53-57 (2016) Research Article A checklist of Fishes and Fisheries of the Padda (Padma) River near Rajshahi City Farjana Habib 1*, Shahrima Tasnin 1 and N.I.M. Abdus Salam Bhuiyan 2 1Research Scholar, 2Professor Department of Zoology, University of Rajshahi, Bangladesh *Corresponding Author E-mail: [email protected] Received: 22.03.2016 | Revised: 30.03.2016 | Accepted: 5.04.2016 ABSTRACT The present study was carried out to explore the existing fish fauna of the Padda (Padma) River near Rajshahi City Corporation area for a period of seven months (February to August). This study includes a checklist of the species composition found to inhabit the waters of this region, which included 82 species of fishes under 11 orders and two classes. The list also includes two species of prawns. A total of twenty nine fish species of the study area are recorded as threatened according to IUCN red list. This finding will help to evaluate the present status of fishes in Padda River and their seasonal abundance. Key words : Exotic, Endangered, Rajshahi City, Padda (Padma) River INTRODUCTION Padda is one of the main rivers of Bangladesh. It Kilometers (1,400 mi) from the source, the is the main distributary of the Ganges, flowing Padma is joined by the Jamuna generally southeast for 120 kilometers (75 mi) to (Lower Brahmaputra) and the resulting its confluence with the Meghna River near combination flows with the name Padma further the Bay of Bengal 1.