Nasal Gene Expression Differentiates COPD from Controls and Overlaps Bronchial Gene Expression Ilse M

Total Page:16

File Type:pdf, Size:1020Kb

Nasal Gene Expression Differentiates COPD from Controls and Overlaps Bronchial Gene Expression Ilse M Boudewijn et al. Respiratory Research (2017) 18:213 DOI 10.1186/s12931-017-0696-5 RESEARCH Open Access Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression Ilse M. Boudewijn1,2* , Alen Faiz1,2, Katrina Steiling3,4, Erica van der Wiel1,2, Eef D. Telenga1,2, Susan J. M. Hoonhorst1,2, Nick H. T. ten Hacken1,2, Corry-Anke Brandsma2,5, Huib A. M. Kerstjens1,2, Wim Timens2,5, Irene H. Heijink1,2,5, Marnix R. Jonker5, Harold G. de Bruin5, J. Sebastiaan Vroegop6, Henk R. Pasma7, Wim G. Boersma8, Pascal Wielders9, Frank van den Elshout10, Khaled Mansour11, Avrum Spira3,4, Marc E. Lenburg3,4, Victor Guryev12, Dirkje S. Postma1,2 and Maarten van den Berge1,2 Abstract Background: Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium. Methods: Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls. Results: In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate < 0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA < 0.001). Conclusion: We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD. Trial registration: ClinicalTrials.gov registration number NCT01351792 (registration date May 10, 2011), ClinicalTrials. gov registration number NCT00848406 (registration date February 19, 2009), ClinicalTrials.gov registration number NCT00807469 (registration date December 11, 2008). Keywords: COPD, Nasal epithelium, Bronchial epithelium, Genome wide gene expression, Microarray * Correspondence: [email protected] 1University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, the Netherlands 2University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Boudewijn et al. Respiratory Research (2017) 18:213 Page 2 of 10 Background Center Groningen (UMCG) and seven other participating Chronic obstructive pulmonary disease (COPD) is one of hospitals in The Netherlands between 2011 and 2012. the most common chronic diseases affecting over 10% of From this study, we only included current smokers adults older than 65 years worldwide [1]. It is characterized aged 40 years and older with at least 10 pack years, a by incompletely reversible airflow obstruction, which re- forced expiratory volume in 1 s (FEV1)/forced vital sults in reduced quality of life and increased mortality. capacity (FVC) < 0.7 and an FEV1 < 60% predicted. COPD is currently the fourth leading cause of death world- Controls were recruited in the UMCG between 2009 wide, according to the World Health Organization [2]. and 2012, including only current smokers aged 40 years Some genetic factors, such as alpha-1 anti-trypsin defi- and older with normal pulmonary function (i.e. post- ciency, and environmental exposures, such as cigarette bronchodilator FEV1/FVC > lower limit of normal, ab- smoking, are well-established contributors to COPD, yet sence of bronchial hyperresponsiveness and reversibility the precise molecular mechanisms of the disease remain of FEV1 to salbutamol <10% predicted). Spirometry and to be elucidated. Genome-wide gene expression profiling body plethysmography measurements were performed ac- offers opportunities to develop new insights in the origins cording to international guidelines [6, 7]. Symptom scores of COPD based on molecular features. were assessed using the Clinical COPD Questionnaire The airway epithelium is the initial site of exposure (CCQ) [8]. to cigarette smoke and reflects molecular changes asso- Nasal epithelial brushings were obtained using a soft ciated with both cigarette smoke exposure and smoking- cytology brush sampling the inferior turbinate of the associated lung disease. We have previously demonstrated nose [5, 9]. Total RNA was isolated and microarray that the bronchial airway epithelium responds to cigarette hybridization to Affymetrix Human Gene 1.0 ST Arrays smoke exposure with characteristic alterations in gene ex- was performed. pression [3]. Building upon this observation, we identified a bronchial airway gene expression signature associated Data normalization, preprocessing and analysis with COPD and disease severity that is similarly altered in Statistical analyses were performed using R version 3.3.2. COPD-affected lung tissue [4]. These data suggest that The quality of the microarray hybridization was assessed bronchial gene expression obtained by bronchoscopy may as previously described [4]. Nasal gene expression pro- be applied to monitor disease activity in COPD. However, files associated with COPD were identified using a linear the relative invasiveness of this procedure precludes its regression model with the log2-transformed expression use in large populations. We therefore characterized the of each gene as dependent variable, and COPD, age, gen- upper airway genomic response to cigarette smoke expos- der, packyears, RNA integrity number (RIN), and the ure by profiling epithelial cells collected by brushing the first 4 principal components (PCs) as independent vari- inferior turbinate of the nose. Using paired bronchial and ables. We adjusted for PCs to reduce technical variation nasal airway samples obtained from the same healthy in the microarray data (online Additional file 1). A individuals, we showed that smoking-induced changes in Benjamini-Hochberg False Discovery Rate (FDR) proced- bronchial airway gene expression are similarly altered in ure was applied to account for multiple testing, with an the nasal epithelium [5]. Therefore, nasal epithelial gene FDR < 0.01 indicating statistical significance [10]. expression profiling could potentially function as a non-invasive biomarker in COPD. Comparison of COPD-associated gene expression changes In the present study, we investigated whether gene ex- in the nasal and bronchial epithelium pression profiling of the nasal epithelium can distinguish We compared nasal COPD-associated gene expression with between patients with and without COPD. Additionally, bronchial COPD-associated gene expression in two inde- we established whether COPD-associated gene expres- pendent datasets of bronchial brushings (comparator co- sion changes in nasal epithelium reflect those occurring hort 1 and comparator cohort 2 as described below), using in the bronchial epithelium. Gene Set Enrichment Analysis (GSEA) version 2.2.4 [11]. The local ethical committees approved the two studies and Methods all included subjects gave their written informed consent. The online supplement provides additional details and a flowchart of the identification cohort and comparator – Comparator cohort 1 was a previously published cohorts (online Additional file 1: Figure E1). dataset of bronchial airway gene expression in current and former smokers with and without Identification cohort, sample collection and processing moderate-to-severe COPD (GSE37147) [4]. The local ethical committees approved the studies and all – Comparator cohort 2 was an independent cohort of included subjects gave their written informed consent. current and former smokers with and without COPD patients were recruited in the University Medical moderate-to-severe COPD who participated in a Boudewijn et al. Respiratory Research (2017) 18:213 Page 3 of 10 previous study in the UMCG [12, 13]. COPD was we performed Gene Ontology enrichment analyses defined as FEV1/FVC ≤ 0.7. Bronchial brushes were (GOrilla) on COPD-associated genes exhibiting dif- taken during bronchoscopy and RNA was isolated ferential expression in nasal samples. and processed as described in the online supplement. Results We performed GSEA for genes associated with COPD Study populations in nasal and bronchial epithelium. First, we investigated The identification cohort consisted of 31 COPD patients COPD-associated nasal gene expression with COPD- and 22 controls
Recommended publications
  • Prdm16 Is Required for the Maintenance of Neural Stem Cells in the Postnatal Forebrain and Their Differentiation Into Ependymal Cells
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells Issei S. Shimada,1,2 Melih Acar,1,2,3 Rebecca J. Burgess,1,2 Zhiyu Zhao,1,2 and Sean J. Morrison1,2,4 1Children’s Research Institute, 2Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; 3Bahcesehir University, School of Medicine, Istanbul 34734, Turkey; 4Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA We and others showed previously that PR domain-containing 16 (Prdm16) is a transcriptional regulator required for stem cell function in multiple fetal and neonatal tissues, including the nervous system. However, Prdm16 germline knockout mice died neonatally, preventing us from testing whether Prdm16 is also required for adult stem cell function. Here we demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. We also discovered that Prdm16 is required for the formation of ciliated ependymal cells in the lateral ventricle. Conditional Prdm16 deletion during fetal development using Nestin-Cre prevented the formation of ependymal cells, disrupting cerebrospinal fluid flow and causing hy- drocephalus. Postnatal Prdm16 deletion using Nestin-CreERT2 did not cause hydrocephalus or prevent the forma- tion of ciliated ependymal cells but caused defects in their differentiation. Prdm16 was required in neural stem/ progenitor cells for the expression of Foxj1, a transcription factor that promotes ependymal cell differentiation.
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • Molecular Characterization of Acute Myeloid Leukemia by Next Generation Sequencing: Identification of Novel Biomarkers and Targets of Personalized Therapies
    Alma Mater Studiorum – Università di Bologna Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Dottorato di Ricerca in Oncologia, Ematologia e Patologia XXX Ciclo Settore Scientifico Disciplinare: MED/15 Settore Concorsuale:06/D3 Molecular characterization of acute myeloid leukemia by Next Generation Sequencing: identification of novel biomarkers and targets of personalized therapies Presentata da: Antonella Padella Coordinatore Prof. Pier-Luigi Lollini Supervisore: Prof. Giovanni Martinelli Esame finale anno 2018 Abstract Acute myeloid leukemia (AML) is a hematopoietic neoplasm that affects myeloid progenitor cells and it is one of the malignancies best studied by next generation sequencing (NGS), showing a highly heterogeneous genetic background. The aim of the study was to characterize the molecular landscape of 2 subgroups of AML patients carrying either chromosomal number alterations (i.e. aneuploidy) or rare fusion genes. We performed whole exome sequencing and we integrated the mutational data with transcriptomic and copy number analysis. We identified the cell cycle, the protein degradation, response to reactive oxygen species, energy metabolism and biosynthetic process as the pathways mostly targeted by alterations in aneuploid AML. Moreover, we identified a 3-gene expression signature including RAD50, PLK1 and CDC20 that characterize this subgroup. Taking advantage of RNA sequencing we aimed at the discovery of novel and rare gene fusions. We detected 9 rare chimeric transcripts, of which partner genes were transcription factors (ZEB2, BCL11B and MAFK) or tumor suppressors (SAV1 and PUF60) rarely translocated across cancer types. Moreover, we detected cryptic events hiding the loss of NF1 and WT1, two recurrently altered genes in AML. Finally, we explored the oncogenic potential of the ZEB2-BCL11B fusion, which revealed no transforming ability in vitro.
    [Show full text]
  • GINS1/2/3/4 Upregulation Predicts Poor Prognosis in Human Sarcoma
    GINS1/2/3/4 Upregulation Predicts Poor Prognosis in Human Sarcoma Gen Wu Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Ziyuan Chen Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Tong Wu Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Jian Zhou Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Qunyan Tian Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Ren Wu Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Pengcheng Dou Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Shuo Jie Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 Wanchun Wang ( [email protected] ) Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China Research Article Keywords: Sarcoma, Bioinformatics analysis, Prognosis, GEPIA, GINS Posted Date: January 22nd, 2021 Page 1/18 DOI: https://doi.org/10.21203/rs.3.rs-140815/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/18 Abstract Background: GINS family was reported to be highly expressed in many tumors. However, the association of GINS family with human sarcoma remained unknown. This study was undertaken to explore the expression and prognostic value of GINS family in human sarcoma. Methods: In terms of the expression levels of mRNA for GINS family members, a particular contrast in various cancers, especially human sarcoma, was conducted through ONCOMINE and GEPIA and CCLE databases.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Genome‐Wide Association Study for Age at Puberty in Young Nelore Bulls
    Received: 3 May 2019 | Revised: 12 August 2019 | Accepted: 13 August 2019 DOI: 10.1111/jbg.12438 ORIGINAL ARTICLE Genome‐wide association study for age at puberty in young Nelore bulls Nedenia Bonvino Stafuzza1 | Eliane Vianna da Costa e Silva2 | Rafael Medeiros de Oliveira Silva3 | Luiz Carlos Cesar da Costa Filho2,4 | Fernanda Battistotti Barbosa2,4 | Gustavo Guerino Macedo2 | Raysildo B. Lobo5 | Fernando Baldi6 1Centro de Pesquisa em Bovinos de Corte, Instituto de Zootecnia (IZ), Abstract Sertãozinho, Brazil Selection for bulls that would reach puberty early reduces the generation interval 2Laboratório de Reprodução and increases fertility and herd productivity. Despite its economic importance, Animal, Faculdade de Medicina Veterinária there are few QTL associated with age at puberty described in the literature. In e Zootecnia (FAMEZ), Universidade Federal de Mato Grosso do Sul (UFMS), this study, a weighted single‐step genome‐wide association study was performed Campo Grande, Brazil to detect genomic regions and putative candidate genes related to age at puberty in 3 Zoetis, Edifício Morumbi Corporate ‐ young Nelore bulls. Several protein‐coding genes related to spermatogenesis func- Diamond Tower, São Paulo, Brazil tions were identified within the genomic regions that explain more than 0.5% of 4PROCRIAR Assistência Veterinária, ADAM11, Campo Grande, Brazil the additive genetic variance for age at puberty in Nelore bulls, such as 5Associação Nacional dos Criadores e BRCA1, CSNK2A, CREBBP, MEIOC, NDRG2, NECTIN3, PARP2, PARP9, PRSS21,
    [Show full text]
  • Meta-Analysis of Transcriptomic Datasets Identifies Genes Enriched
    9860–9873 Nucleic Acids Research, 2017, Vol. 45, No. 17 Published online 18 August 2017 doi: 10.1093/nar/gkx714 Meta-analysis of transcriptomic datasets identifies genes enriched in the mammalian circadian pacemaker Laurence A. Brown1, John Williams2, Lewis Taylor1, Ross J. Thomson1,PatrickM.Nolan2, Russell G. Foster1,* and Stuart N. Peirson1,* 1Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3RE, UK and 2MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK Received September 07, 2016; Revised July 27, 2017; Editorial Decision July 30, 2017; Accepted August 04, 2017 ABSTRACT of an endogenous biological clock. In mammals, the site of the master circadian pacemaker is the suprachiasmatic The master circadian pacemaker in mammals is lo- nuclei (SCN) in the anterior hypothalamus (1). The SCN cated in the suprachiasmatic nuclei (SCN) which reg- receives light information from the retina via the retinohy- ulate physiology and behaviour, as well as coordi- pothalamic tract, synchronizing (entraining) SCN rhythms nating peripheral clocks throughout the body. In- to the external environment. SCN lesions result in loss of vestigating the function of the SCN has often fo- physiological and behavioural rhythms, and transplanta- cused on the identification of rhythmically expressed tion of foetal SCN can restore rhythmicity with a period genes. However, not all genes critical for SCN func- consistent with that of the donor tissue (2). The circa- tion are rhythmically expressed. An alternative strat- dian clock is the product of an intracellular transcriptional- egy is to characterize those genes that are selec- translational feedback loop (TTFL), comprised of a num- tively enriched in the SCN.
    [Show full text]
  • Novel Gene Discovery in Primary Ciliary Dyskinesia
    Novel Gene Discovery in Primary Ciliary Dyskinesia Mahmoud Raafat Fassad Genetics and Genomic Medicine Programme Great Ormond Street Institute of Child Health University College London A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy University College London 1 Declaration I, Mahmoud Raafat Fassad, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Primary Ciliary Dyskinesia (PCD) is one of the ‘ciliopathies’, genetic disorders affecting either cilia structure or function. PCD is a rare recessive disease caused by defective motile cilia. Affected individuals manifest with neonatal respiratory distress, chronic wet cough, upper respiratory tract problems, progressive lung disease resulting in bronchiectasis, laterality problems including heart defects and adult infertility. Early diagnosis and management are essential for better respiratory disease prognosis. PCD is a highly genetically heterogeneous disorder with causal mutations identified in 36 genes that account for the disease in about 70% of PCD cases, suggesting that additional genes remain to be discovered. Targeted next generation sequencing was used for genetic screening of a cohort of patients with confirmed or suggestive PCD diagnosis. The use of multi-gene panel sequencing yielded a high diagnostic output (> 70%) with mutations identified in known PCD genes. Over half of these mutations were novel alleles, expanding the mutation spectrum in PCD genes. The inclusion of patients from various ethnic backgrounds revealed a striking impact of ethnicity on the composition of disease alleles uncovering a significant genetic stratification of PCD in different populations.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]