Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io

Total Page:16

File Type:pdf, Size:1020Kb

Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io by Katherine Rebecca de Kleer A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Astrophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Imke de Pater, Chair Professor Geoffrey Marcy Professor James Graham Professor Michael Manga Spring 2017 Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io Copyright 2017 by Katherine Rebecca de Kleer 1 Abstract Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io by Katherine Rebecca de Kleer Doctor of Philosophy in Astrophysics University of California, Berkeley Professor Imke de Pater, Chair A central goal of planetary science is the creation of a framework within which the properties of each solar system body can be understood as the product of initial conditions acted on by fundamental physical processes. The solar system's extreme worlds - those objects that lie at the far ends of the spectrum in terms of planetary environment - bring to light our misconceptions and present us with opportunities to expand and generalize this framework. Unraveling the processes at work in diverse planetary environments contextualizes our un- derstanding of Earth, and provides a basis for interpreting specific signatures from planets beyond our own solar system. Uranus and Io, with their unusual planetary environments, present two examples of such worlds in the outer solar system. Uranus, one of the outer solar system's ice giants, produces an anomalously low heat flow and orbits the sun on its side. Its relative lack of bright storm features and its bizarre multi-decadal seasons provide insight into the relative effects of internal heat flow and time- varying solar insolation on atmospheric dynamics, while its narrow rings composed of dark, macroscopic particles encode the history of bombardment and satellite disruption within the system. Jupiter's moon Io hosts the most extreme volcanic activity anywhere in the solar sys- tem. Its tidally-powered geological activity provides a window into this satellite's interior, permitting rare and valuable investigations into the exchange of heat and materials between interiors and surfaces. In particular, Io provides a laboratory for studying the process of tidal heating, which shapes planets and satellites in our solar system and beyond. A com- parison between Earth and Io contextualizes the volcanism at work on our home planet, revealing the effects of planetary size, atmospheric density, and plate tectonics on the style and mechanisms of geological activity. This dissertation investigates the processes at work on these solar system outliers through studies of Uranus' atmosphere and rings and of Io's thermal activity. I show that Uranus' rings are spectrally flat in the near-infrared, setting them apart from all other ring systems in the solar system. I investigate the vertical profile of species in Uranus' atmosphere, and demonstrate evidence for seasonal trends in the upper atmosphere on decadal timescales. 2 Based on a large high-cadence dataset of Io's volcanism obtained with adaptive optics over 100 nights, I show that the thermal timelines of Io's volcanoes indicate at least two distinct classes of eruption. The asymmetric spatial distribution of Io's volcanic heat flow suggests additional mechanisms at work modulating the effects of tidal heating. I present the detection of one of the most powerful eruptions ever seen on Io, which I use to derive a eruption temperature of >1300 K, consistent with a highly mafic magma composition. Geophysical modeling of the thermal timeline of Loki Patera, a distinctive volcanic feature on Io, indicates low lava thermal conductivities also consistent with a highly-mafic silicate composition. Ultra-high-resolution thermal mapping of this patera reveals a multi-phase vol- canic resurfacing process that hints at the plumbing system underlying this massive volcanic feature. The results presented here are founded on near-infrared observations of unprecedented resolution in the spatial, spectral, and temporal domains. The interpretation of the data utilizes rigorous statistical techniques to draw meaningful conclusions. In addition to the scientific impact of the findings, this work therefore also pioneers specific ground-based tele- scope capabilities and analysis tools, and demonstrates their utility to solar system science. Chapter 2 presents the first high-resolution spectra of Uranus' rings. Chapter 3 introduces Markov Chain Monte Carlo simulations into ice giant atmospheric radiative transfer model- ing, permitting a rigorous analysis of parameter uncertainties and correlations. Chapters 4-7 present results from the first multi-year, high-cadence ground-based observing campaign to study Io's volcanism with sufficient spatial resolution to directly resolve individual volcanoes. The thermal timelines of these volcanoes provide unprecedented insight into the variability and distribution of Io's volcanism over a wide range of timescales. Chapter 7 uses geometric arguments to deduce topography of a volcanic feature on Io based on observations at a range of viewing angles. Finally, Chapter 8 presents the first ground-based observations to map a thermal feature on Io at a spatial resolution of ∼10 km on Io's surface, derived from the first mutual satellite occultation event to be observed with adaptive optics on a dual-telescope interferometric system. These techniques can all be expanded and applied to these and other targets in future near-infrared studies. i For Johan de Kleer ii Contents Contents ii List of Figures viii List of Tables xi 1 Introduction 1 1.1 The outer solar system . 1 1.1.1 Uranus . 3 1.1.2 Io . 4 1.2 Planetary astronomy in the near-infrared . 6 1.2.1 Seeing through Earth's atmosphere . 6 1.2.2 Uranus . 9 1.2.2.1 Uranus' atmosphere . 9 1.2.2.2 Atmospheric modeling . 10 1.2.3 Io . 10 1.2.3.1 Io's volcanism . 10 1.2.3.2 Geophysical modeling . 11 1.3 Outline . 13 I Uranus 15 2 Near-infrared spectra of the uranian ring system 16 2.1 Introduction . 16 2.2 Observations and Data Reduction . 17 2.2.1 Flux Calibration and Atmospheric Transmission Correction . 18 2.2.2 Background Light Subtraction . 20 2.3 Analysis & Results . 20 2.3.1 Ring Reflectivity Spectra . 20 2.3.2 Ring Particle Reflectivities . 23 2.4 Discussion and Conclusions . 27 iii 3 Clouds and Aerosols on Uranus: Radiative Transfer Modeling of Spa- tially{Resolved Near{Infrared Keck Spectra 34 3.1 Introduction . 35 3.2 Observations and Data Processing . 36 3.2.1 Observations: Keck II OSIRIS . 36 3.2.2 Flux Calibration and Photometry . 38 3.2.3 Navigation . 39 3.2.4 Data Uncertainties . 40 3.2.4.1 Noise . 40 3.2.4.2 Photometry . 40 3.3 Radiative Transfer Calculation and Parameter Retrieval . 41 3.3.1 Radiative Transfer Calculation . 41 3.3.2 Parameter Retrieval using MCMC . 42 3.3.3 The Deviance Information Criterion . 43 3.4 Atmospheric Models . 44 3.4.1 Particle Scattering Properties . 44 3.4.2 Temperature and Methane Profiles . 45 3.4.2.1 Methane Depletion . 46 3.4.2.2 Methane Coefficients . 47 3.4.3 Atmospheric Structure Models . 47 3.4.3.1 Discrete Cloud Models . 47 3.4.3.2 Diffuse Haze Models . 48 3.4.3.3 Combination Models . 48 3.4.4 Our Models . 49 3.4.4.1 Two{Cloud Model [2C] . 49 3.4.4.2 Diffuse Haze Model [DH] . 49 3.4.4.3 Modified Diffuse Haze Model [MDH] . 49 3.5 Analysis and Discussion . 50 3.5.1 Compact/Diffuse Profile Comparison . 50 3.5.1.1 Analysis . 50 3.5.1.2 Results . 50 3.5.2 Latitudinal Trends . 57 3.5.2.1 Analysis . 57 3.5.2.2 Results . 58 3.5.3 Discrete Cloud Feature . 62 3.5.3.1 Analysis . 62 3.5.3.2 Results . 62 3.5.4 Circulation Models . 64 3.6 Conclusions . 65 3.6.1 Aerosol Structure . 65 3.6.2 Latitudinal Trends in Aerosols . 65 3.6.3 Methane Depletion . 65 3.6.4 Circumpolar Bands . 66 iv 3.6.5 Cloud Feature . 66 3.6.6 Global Circulation . 66 II Io 70 4 Near-Infrared Monitoring of Io & Detection of a Violent Outburst on 29 August 2013 71 4.1 Introduction . 71 4.2 Monitoring Program: Observations and Techniques . 74 4.2.1 Program Design . 74 4.2.2 Outburst Identification Criteria . 75 4.2.3 Gemini Monitoring . 78 4.2.4 IRTF SpeX Monitoring . 80 4.3 Results: Activity at Volcanic Sites . 83 4.3.1 201308C . 83 4.3.1.1 Flux Densities and Outburst Evolution . 83 4.3.1.2 Temperature and Area Models . 84 4.3.1.3 Io Flow Model . 89 4.3.2 Loki Patera . 91 4.3.3 Rarog & Heno Paterae . 91 4.3.4 Testing Outburst Detection Criteria . 91 4.4 Discussion . 92 4.4.1 August 29 Outburst . 92 4.4.2 Implications . 97 5 Time Variability of Io's Volcanic Activity from Near-IR Adaptive Optics Observations on 100 Nights in 2013-2015 102 5.1 Introduction . 103 5.2 Observations and Data Processing . 104 5.2.1 Keck II NIRC2 . 105 5.2.2 Gemini N NIRI . 105 5.2.3 Flux Calibration . 106 5.2.4 Navigation . 107 5.3 Analysis . ..
Recommended publications
  • Appendix 1: Io's Hot Spots Rosaly M
    Appendix 1: Io's hot spots Rosaly M. C. Lopes,Jani Radebaugh,Melissa Meiner,Jason Perry,and Franck Marchis Detections of plumes and hot spots by Galileo, Voyager, HST, and ground-based observations. Notes and sources . (N) NICMOS hot spots detected by Goguen etal . (1998). (D) Hot spots detected by C. Dumas etal . in 1997 and/or 1998 (pers. commun.). Keck are hot spots detected by de Pater etal . (2004) and Marchis etal . (2001) from the Keck telescope using Adaptive Optics. (V, G, C) indicate Voyager, Galileo,orCassini detection. Other ground-based hot spots detected by Spencer etal . (1997a). Galileo PPR detections from Spencer etal . (2000) and Rathbun etal . (2004). Galileo SSIdetections of hot spots, plumes, and surface changes from McEwen etal . (1998, 2000), Geissler etal . (1999, 2004), Kezthelyi etal. (2001), and Turtle etal . (2004). Galileo NIMS detections prior to orbit C30 from Lopes-Gautier etal . (1997, 1999, 2000), Lopes etal . (2001, 2004), and Williams etal . (2004). Locations of surface features are approximate center of caldera or feature. References de Pater, I., F. Marchis, B. A. Macintosh, H. G. Rose, D. Le Mignant, J. R. Graham, and A. G. Davies. 2004. Keck AO observations of Io in and out of eclipse. Icarus, 169, 250±263. 308 Appendix 1: Io's hot spots Goguen, J., A. Lubenow, and A. Storrs. 1998. HST NICMOS images of Io in Jupiter's shadow. Bull. Am. Astron. Assoc., 30, 1120. Geissler, P. E., A. S. McEwen, L. Keszthelyi, R. Lopes-Gautier, J. Granahan, and D. P. Simonelli. 1999. Global color variations on Io. Icarus, 140(2), 265±281.
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Io Observer SDT to Steer a Comprehensive Mission Concept Study for the Next Decadal Survey
    Io as a Target for Future Exploration Rosaly Lopes1, Alfred McEwen2, Catherine Elder1, Julie Rathbun3, Karl Mitchell1, William Smythe1, Laszlo Kestay4 1 Jet Propulsion Laboratory, California Institute of Technology 2 University of Arizona 3 Planetary Science Institute 4 US Geological Survey Io: the most volcanically active body is solar system • Best example of tidal heating in solar system; linchpin for understanding thermal evolution of Europa • Effects reach far beyond Io: material from Io feeds torus around Jupiter, implants material on Europa, causes aurorae on Jupiter • Analog for some exoplanets – some have been suggested to be volcanically active OPAG recommendation #8 (2016): OPAG urges NASA PSD to convene an Io Observer SDT to steer a comprehensive mission concept study for the next Decadal Survey • An Io Observer mission was listed in NF-3, Decadal Survey 2003, the NOSSE report (2008), Visions and Voyages Decadal Survey 2013 (for inclusion in the NF-5 AO) • Io Observer is a high OPAG priority for inclusion in the next Decadal Survey and a mission study is an important first step • This study should be conducted before next Decadal and NF-5 AO and should include: o recent advances in technology provided by Europa and Juno missions o advances in ground-based techniques for observing Io o new resources to study Io in future, including JWST, small sats, miniaturized instruments, JUICE Most recent study: Decadal Survey Io Observer (2010) (Turtle, Spencer, Khurana, Nimmo) • A mission to explore Io’s active volcanism and interior structure (including determining whether Io has a magma ocean) and implications for the tidal evolution of the Jupiter-Io-Europa- Ganymede system and ancient volcanic processes on the terrestrial planets.
    [Show full text]
  • A New Stereo Topographic Map of Io: Implications for Geology from Global
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE A new stereo topographic map of Io: Implications 10.1002/2013JE004591 for geology from global to local scales Key Points: Oliver L. White1, Paul M. Schenk2, Francis Nimmo3, and Trudi Hoogenboom2 • A new DEM of Io has been constructed using Voyager and Galileo stereo pairs 1NASA Ames Research Center, Moffett Field, California, USA, 2Lunar and Planetary Institute, Houston, Texas, USA, • Global-scale undulations 3 contain implications for Io’s Department of Earth and Planetary Sciences, University of California, Santa Cruz, California, USA heating mechanism • Topography of recognized and undetected regional-scale features Abstract We use Voyager and Galileo stereo pairs to construct the most complete stereo digital elevation is revealed model (DEM) of Io assembled to date, controlled using Galileo limb profiles. Given the difficulty of applying these two techniques to Io due to its anomalous surface albedo properties, we have experimented Supporting Information: extensively with the relevant procedures in order to generate what we consider to be the most reliable DEMs. • Readme Our final stereo DEM covers ~75% of the globe, and we have identified a partial system of longitudinally • File S1 • Figure S1 arranged alternating basins and swells that correlates well to the distribution of mountain and volcano • Figure S2 concentrations. We consider the correlation of swells to volcano concentrations and basins to mountain • Figure S3 concentrations, to imply a heat flow distribution across Io that is consistent with the asthenospheric tidal • Figure S4 • Figure S5 heating model of Tackley et al. (2001). The stereo DEM reveals topographic signatures of regional-scale • Figure S6 features including Loki Patera, Ra Patera, and the Tvashtar Paterae complex, in addition to previously • Figure S7 unrecognized features including an ~1000 km diameter depression and a >2000 km long topographic arc • Figure S8 • Figure S9 comprising mountainous and layered plains material.
    [Show full text]
  • ALMA Observations of Io Going Into and Coming out of Eclipse
    Draft version September 17, 2020 Typeset using LATEX twocolumn style in AASTeX63 ALMA Observations of Io Going into and Coming out of Eclipse Imke de Pater,1 Statia Luszcz-Cook,2 Patricio Rojo,3 Erin Redwing,4 Katherine de Kleer,5 and Arielle Moullet6 1University of California, 501 Campbell Hall, Berkeley, CA 94720, USA, and Faculty of Aerospace Engineering, Delft University of Technology, Delft 2629 HS, The Netherlands 2University of Columbia, Astronomy Department, New York, USA 3Universidad de Chile, Departamento de Astronomia, Casilla 36-D, Santiago, Chile 4University of California, 307 McCone Hall, Berkeley, CA 94720, USA 5California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101, USA 6SOFIA/USRA, NASA Ames Building N232, Moffett Field, CA 94035, USA (Received XXX; Revised XXX; Accepted XXX) Submitted to Planetary Science Journal ABSTRACT We present 1-mm observations constructed from ALMA [Atacama Large (sub)Millimeter Array] data of SO2, SO and KCl when Io went from sunlight into eclipse (20 March 2018), and vice versa (2 and 11 September 2018). There is clear evidence of volcanic plumes on 20 March and 2 September. The plumes distort the line profiles, causing high-velocity (&500 m/s) wings, and red/blue-shifted shoulders in the line profiles. During eclipse ingress, the SO2 flux density dropped exponentially, and the atmosphere reformed in a linear fashion when re-emerging in sunlight, with a \post-eclipse brightening" after ∼10 minutes. While both the in-eclipse decrease and in-sunlight increase in SO was more gradual than for SO2, the fact that SO decreased at all is evidence that self-reactions at the surface are important and fast, and that in-sunlight photolysis of SO2 is the dominant source of SO.
    [Show full text]
  • Works of Love
    reader.ad section 9/21/05 12:38 PM Page 2 AMAZING LIGHT: Visions for Discovery AN INTERNATIONAL SYMPOSIUM IN HONOR OF THE 90TH BIRTHDAY YEAR OF CHARLES TOWNES October 6-8, 2005 — University of California, Berkeley Amazing Light Symposium and Gala Celebration c/o Metanexus Institute 3624 Market Street, Suite 301, Philadelphia, PA 19104 215.789.2200, [email protected] www.foundationalquestions.net/townes Saturday, October 8, 2005 We explore. What path to explore is important, as well as what we notice along the path. And there are always unturned stones along even well-trod paths. Discovery awaits those who spot and take the trouble to turn the stones. -- Charles H. Townes Table of Contents Table of Contents.............................................................................................................. 3 Welcome Letter................................................................................................................. 5 Conference Supporters and Organizers ............................................................................ 7 Sponsors.......................................................................................................................... 13 Program Agenda ............................................................................................................. 29 Amazing Light Young Scholars Competition................................................................. 37 Amazing Light Laser Challenge Website Competition.................................................. 41 Foundational
    [Show full text]
  • Emission from Volcanic SO Gas on Io at High Spectral Resolution
    Emission from Volcanic SO Gas on Io at High Spectral Resolution Katherine de Kleera, Imke de Paterb, M´at´e Ad´amkovics´ c aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 bDepartment of Astronomy, The University of California at Berkeley, Berkeley, CA 94720 cDepartment of Physics & Astronomy, Clemson University, Clemson, SC 29634 Keywords: Io; Volcanism; Satellites, Atmospheres; Spectroscopy; Infrared Observations Abstract Jupiter's moon Io hosts a dynamic atmosphere that is continually stripped off and replenished through frost sublimation and volcanic outgassing. We observed an emission band at 1.707 µm thought to be produced by hot SO molecules directly ejected from a volcanic vent; the observations were made the NIRSPEC instrument on the Keck II telescope while Io was in eclipse by Jupiter on three nights in 2012-2016, and included two observations with 10× higher spectral resolution than all prior observations of this band. These high-resolution spectra permit more complex and realistic modeling, and reveal a contribution to the SO emission from gas reservoirs at both high and low rotational temperatures. The scenario preferred by de Pater et al. (2002) for the source of the SO gas - direct volcanic emission of SO in the excited state - is consistent with these two temperature components if the local gas density is high enough that rotational energy can be lost collisionally before the excited electronic state spontaneously decays. Under this scenario, the required bulk atmospheric gas density and surface pressure are n ∼ 1011 cm−3 and 1-3 nbar, consistent with observations and modeling of Io's dayside atmosphere at altitudes below 10 km (Lellouch et al.
    [Show full text]
  • Interview: Bill Workman & Ian Jordan
    VOL 20 ISSUE 01 Space Telescope Science Institute NASA and G. Bacon, STScI. (See page 24.) NASA and G. NASA and G. Bacon, STScI. (See page 24.) NASA and G. Illustration Credit: Interview: Illustration Credit: Bill Workman & Ian Jordan An artist’s concept of a gas giant planet orbiting the cool, red dwarf star Gliese 876. Bill Workman, [email protected], and Ian Jordan, [email protected] An artist’s concept of a gas giant planet orbiting the cool, red dwarf star Gliese 876. Bill and Ian, you are working on the Hubble long-range (constraint) window with available telescope orbit resources. Since we don’t observing plan (LRP). Please explain the role of the LRP actually schedule the telescope, the task is—by definition—statistical in Hubble operations and the work that creating it entails. in nature. Like any good science project, the ‘fun’ part is dealing with the ILL: Well, it’s not clear we can describe what we do in less than ‘Hubble uncertainties in the system. In this case, this means predicting HST behavior BTime’, but we’ll try! and what the whole General Observer (GO) observing program will look like BILL & IAN: Primarily the Long Range Planning Group (LRPG) and the LRP for the cycle. exist to help the Institute and user community maximize the science output of the Hubble Space Telescope (HST). Observers see the LRP as a set of plan How do you know when you are done with the LRP? windows that represent times when a particular set of exposures are likely IAN: Well, the long range plan is never done! Perhaps the LRP logo should to be observed by the telescope, similar to scheduling observing runs at a be a yin-yang symbol? ground-based observatory.
    [Show full text]
  • Loki Patera As a Magma Sea Dennis L
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, E09002, doi:10.1029/2006JE002703, 2006 Click Here for Full Article Io: Loki Patera as a magma sea Dennis L. Matson,1 Ashley Gerard Davies,1 Glenn J. Veeder,1 Julie A. Rathbun,2 Torrence V. Johnson,1 and Julie C. Castillo1 Received 15 February 2006; revised 31 March 2006; accepted 17 May 2006; published 2 September 2006. [1] We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 Â 106 kg sÀ1, with a total solidified volume averaging 100 km3 yrÀ1. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera’s SW quadrant toward the NE at a rate of 1kmdÀ1. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a ‘‘heat deficit’’ which promotes the solidification of additional magma onto the sinking plate (‘‘bulking up’’). In the limiting case, the mass of sinking material can increase to a mass of 3 times that of the foundering plate.
    [Show full text]
  • A Systematic Look at a Serial Problem: Sexual Harassment of Students by University Faculty
    Wayne State University Law Faculty Research Publications Law School 2018 A Systematic Look at a Serial Problem: Sexual Harassment of Students by University Faculty Nancy Chi Cantalupo William C. Kidder Follow this and additional works at: https://digitalcommons.wayne.edu/lawfrp Part of the Criminal Law Commons, Education Law Commons, Law and Economics Commons, Law and Society Commons, and the Sexuality and the Law Commons A SYSTEMATIC LOOK AT A SERIAL PROBLEM: SEXUAL HARASSMENT OF STUDENTS BY UNIVERSITY FACULTY Nancy Chi Cantalupo" and William C. Kidder" Abstract One in ten female graduate students at major research universities report being sexually harassed by a faculty member. Many universities face intense media scrutiny regardingfaculty sexual harassment, and whether women are being harassed out of academic careers in scientific disciplines is currently a subject of significantpublic debate. However, to date, scholarshipin this area issignificantly constrained.Surveys cannot entirely mesh with the legal/policy definition of sexual harassment. Policymakers want to know about serial (repeat) sexual harassers,where answers provided by student surveys are least satisfactory. Strict confidentiality restrictions block most campus sexual harassment cases from public view. Taking advantage of recent advances in data availability,this Article represents the most comprehensive effort to inventory and analyze actual faculty sexual harassment cases. This review includes over 300 cases obtainedfrom: (1) media reports; (2) federal civil rights investigations by *© 2018 Nancy Chi Cantalupo. Assistant Professor of Law, Barry University Dwayne 0. Andreas School of Law; B.S.F.S., Georgetown University; J.D., Georgetown University Law Center. We are grateful to the following scholars for their reviews of various drafts of this article: Ian Ayres, Deborah Brake, Naomi Cahn,Gabriel "Jack" Chin, Richard Delgado, Phyllis Goldfarb, Rachel Moran, David Oppenheimer, Marjorie Shultz, Carol Stabile, and Merle Weiner.
    [Show full text]
  • AAS Newsletter (ISSN 8750-9350) Is Amateur
    AASAAS NNEWSLETTEREWSLETTER March 2003 A Publication for the members of the American Astronomical Society Issue 114 President’s Column Caty Pilachowski, [email protected] Inside The State of the AAS Steve Maran, the Society’s Press Officer, describes the January meeting of the AAS as “the Superbowl 2 of astronomy,” and he is right. The Society’s Seattle meeting, highlighted in this issue of the Russell Lecturer Newsletter, was a huge success. Not only was the venue, the Reber Dies Washington State Convention and Trade Center, spectacular, with ample room for all of our activities, exhibits, and 2000+ attendees at Mt. Stromlo Observatory 3 Bush fires in and around the Council Actions the stimulating lectures in plenary sessions, but the weather was Australian Capital Territory spectacular as well. It was a meeting packed full of exciting science, have destroyed much of the 3 and those of us attending the meeting struggled to attend as many Mt. Stromlo Observatory. Up- Election Results talks and see as many posters as we could. Many, many people to-date information on the stopped me to say what a great meeting it was. The Vice Presidents damage and how the US 4 and the Executive Office staff, particularly Diana Alexander, deserve astronomy community can Astronomical thanks from us all for putting the Seattle meeting together. help is available at Journal www.aas.org/policy/ Editor to Retire Our well-attended and exciting meetings are just one manifestation stromlo.htm. The AAS sends its condolences to our of the vitality of the AAS. Worldwide, our Society is viewed as 8 Australian colleagues and Division News strong and vigorous, and other astronomical societies look to us as stands ready to help as best a model for success.
    [Show full text]
  • Full Curriculum Vitae
    Jason Thomas Wright—CV Department of Astronomy & Astrophysics Phone: (814) 863-8470 Center for Exoplanets and Habitable Worlds Fax: (814) 863-2842 525 Davey Lab email: [email protected] Penn State University http://sites.psu.edu/astrowright University Park, PA 16802 @Astro_Wright US Citizen, DOB: 2 August 1977 ORCiD: 0000-0001-6160-5888 Education UNIVERSITY OF CALIFORNIA, BERKELEY PhD Astrophysics May 2006 Thesis: Stellar Magnetic Activity and the Detection of Exoplanets Adviser: Geoffrey W. Marcy MA Astrophysics May 2003 BOSTON UNIVERSITY BA Astronomy and Physics (mathematics minor) summa cum laude May 1999 Thesis: Probing the Magnetic Field of the Bok Globule B335 Adviser: Dan P. Clemens Awards and fellowships NASA Group Achievement Award for NEID 2020 Drake Award 2019 Dean’s Climate and Diversity Award 2012 Rock Institute Ethics Fellow 2011-2012 NASA Group Achievement Award for the SIM Planet Finding Capability Study Team 2008 University of California Hewlett Fellow 1999-2000, 2003-2004 National Science Foundation Graduate Research Fellow 2000-2003 UC Berkeley Outstanding Graduate Student Instructor 2001 Phi Beta Kappa 1999 Barry M. Goldwater Scholar 1997 Last updated — Jan 15, 2021 1 Jason Thomas Wright—CV Positions and Research experience Associate Department Head for Development July 2020–present Astronomy & Astrophysics, Penn State University Director, Penn State Extraterrestrial Intelligence Center March 2020–present Professor, Penn State University July 2019 – present Deputy Director, Center for Exoplanets and Habitable Worlds July 2018–present Astronomy & Astrophysics, Penn State University Acting Director July 2020–August 2021 Associate Professor, Penn State University July 2015 – June 2019 Associate Department Head for Diversity and Equity August 2017–August 2018 Astronomy & Astrophysics, Penn State University Visiting Associate Professor, University of California, Berkeley June 2016 – June 2017 Assistant Professor, Penn State University Aug.
    [Show full text]