Conf. 12.11 Nomenclature Normalisée (Rev
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extinction Risk in Lizards Life-Histor
For Consideration In: Biological Conservation Article Type: Research Paper Running Title: Extinction risk in lizards Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards Reid Tingleya, Rod A. Hitchmoughb and David G. Chapplec,d* aARC Centre of Excellence for Environmental Decisions, School of Botany, University of Melbourne, Victoria 3010, Australia bDepartment of Conservation, PO Box 10-420, Wellington, New Zealand cAllan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand dSchool of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia E-mail addresses: [email protected] (D. G. Chapple), [email protected] (R. Tingley), [email protected] (R. A. Hitchmough) *Corresponding author. Tel.: +61 3 9905 3015 1 1 2 ABSTRACT 3 A species’ vulnerability to extinction depends on extrinsic threats such as habitat loss, as well 4 as its intrinsic ability to respond or adapt to such threats. Here we investigate the relative 5 roles of extrinsic threats and intrinsic biological traits in determining extinction risk in the 6 lizard fauna of New Zealand. Consistent with the results of previous studies on mammals and 7 birds, we find that habitat specialization, body size and geographic range size are the 8 strongest predictors of extinction risk. However, our analyses also reveal that lizards that 9 occupy areas with high levels of annual rainfall and are exposed to exotic predators and high 10 human population densities are at greater risk. Thus, while the intrinsic traits that render 11 species prone to extinction appear largely congruent across vertebrate taxa, our findings 12 illustrate that both extrinsic threats and intrinsic traits need to be considered in order to 13 accurately predict, and hence prevent, future population declines. -
Mixed-Species Bird Flocks Mob an Amazon Treeboa (Corallus Hortulanus) (Linnaeus, 1758) (Serpentes: Boidae) in the Southwest Brazilian Amazon
Herpetology Notes, volume 12: 1011-1014 (2019) (published online on 17 October 2019) Mixed-species bird flocks mob an Amazon treeboa (Corallus hortulanus) (Linnaeus, 1758) (Serpentes: Boidae) in the Southwest Brazilian Amazon Odair Diogo da Silva1, Thatiane Martins da Costa2, Eder Correa Fermiano1, Almério Câmara Gusmão3, Dionei José da Silva1, and Paulo Sérgio Bernarde4,* Snakes in Brazilian Amazon communities prey on Ecuador, Peru, Bolivia and Brazil, in the Amazon, several groups of animals (amphibians, lizards, rodents, Cerrado, Caatinga and Atlantic Rainforest biomes, birds, other snakes, fish, mollusks, earthworms, with its southern limit located in the state of São Paulo centipedes, among others), and birds may represent the (Hernderson, 1997; Bérnils et al., 2007). This species fourth most consumed item in some areas (Martins and exhibits nocturnal and arboreal habits, preying on small Oliveira, 1998; Bernarde and Abe, 2006). Colubridae mammals (rodents, marsupials and bats), birds, lizards, (such as Oxybelis fulgidus, Phrynonax polylepis and anuran amphibians and monkeys (Martins and Oliveira, Spilotes pullatus) and Boidae (such as Boa constrictor, 1998; Crasto-Astor et al., 1998; Pizzatto et al., 2009; Corallus hortulanus and Epicrates cenchria) are among Bernarde and Abe, 2010; Gonzalez et al., 2016; Ribeiro- the main families that include birds in their diets (Martins Júnior et al., 2016). During hunting, it use the hunting and Oliveira, 1998; Pizzatto et al., 2009; Scartozzoni et tactics of waiting or actively seeking prey on vegetation al., 2009; Bernarde and Abe, 2010). up to 25 m in height (Martins and Oliveira, 1998; Costa- The Amazon tree boa or garden tree boa, Corallus Silva and Henderson, 2012, 2013, 2014; Costa-Silva et hortulanus (Linnaeus, 1758), is the most widespread al., 2012). -
Boidae, Boinae): a Rare Snake from the Vale Do Ribeira, State of São Paulo, Brazil
SALAMANDRA 47(2) 112–115 20 May 2011 ISSNCorrespondence 0036–3375 Correspondence New record of Corallus cropanii (Boidae, Boinae): a rare snake from the Vale do Ribeira, State of São Paulo, Brazil Paulo R. Machado-Filho 1, Marcelo R. Duarte 1, Leandro F. do Carmo 2 & Francisco L. Franco 1 1) Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, CEP: 05503-900, Brazil 2) Departamento de Agroindústria, Alimentos e Nutrição. Escola Superior de Agronomia “Luiz de Queiroz” – ESALQ/USP, Av. Pádua Dias, 11 C.P.: 9, Piracicaba, SP, CEP: 13418-900, Brazil Correspondig author: Francisco L. Franco, e-mail: [email protected] Manuscript received: 9 December 2010 The boid genusCorallus Daudin, 1803 is comprised of nine Until recently, only four specimens (including the above Neotropical species (Henderson et al. 2009): Corallus an mentioned holotype) of C. cropanii were deposited in her- nulatus (Cope, 1876), Corallus batesii (Gray, 1860), Co petological collections: three in the Coleção Herpetológica rallus blombergi (Rendahl & Vestergren, 1941), Coral “Alphonse Richard Hoge”, Instituto Butantan, São Paulo, lus caninus (Linnaeus, 1758), Corallus cookii Gray, 1842, Corallus cropanii (Hoge, 1954), Corallus grenadensis (Bar- bour, 1914), Corallus hortulanus (Linnaeus, 1758), and Corallus ruschenbergerii (Cope, 1876). The most conspic- uous morphological attributes of representatives of these species are the laterally compressed body, robust head, slim neck, and the presence of deep pits in some of the la- bial scales (Henderson 1993a, 1997). Species of Corallus are distributed from northern Central American to south- ern Brazil, including Trinidad and Tobago and islands of the south Caribbean. Four species occur in Brazil: Corallus batesii, C. -
Predation by Corallus Annulatus (Boidae) on Rhynchonycteris Naso
Cuad. herpetol., 2323 (2):(2): 9393–96,–96, 20092009 93 N OTA loured juvenile female C. annulatus (270 mm TL / 180 mm SVL) was dis- PREDATION BY CORALLUS covered in the roofing rafters at Caño ANNULATUS (BOIDAE) ON Palma’s boat dock (Fig. 1.0). Rhyncho- RHYNCHONYCTERIS NASO nycteris naso were regularly observed (EMBALLONURIDAE) IN A roosting beneath the dock in groups of LOWLAND TROPICAL WET between three and eight individuals (Fig FOREST, COSTA RICA 1.1) several nights before we found the snake. We discovered, without the need for regurgitation by palpation, typical TODD R. LEWIS shapes of bat morphology and deduced Westfield, 4 Worgret Road, Wareham, Dorset, that it was possible that the snake had BH20 4PJ, United Kingdom. eaten a R. naso. On the second occa- [email protected] sion we observed an orange / taupe co- loured adult male C. annulatus (584 DARRYN J. NASH mm TL / 512 mm SVL) swallowing a 60 West Road, Spondon, Derby DE21 7AB. Unit- R. naso in the crown of a Manicaria ed Kingdom. saccifera palm, approximately 200 m [email protected] along a riparian section of the Biologi- cal Station’s forest. Rhynchonycteris PAUL B. C. GRANT naso are an abundant insectivorous bat 4901 Cherry Tree Bend, Victoria, British Colom- found throughout most tropical lowlands bia, V8Y 1S1, Canada. from southern Mexico through to the northern half of South America (Sorin, Corallus annulatus (Northern Annu- 1999). They are a small bat ranging lated Tree-boa) is a little-studied tropical from 35 to 41 mm in forearm length Boid occurring disjunctively throughout and typically weigh around 4 g. -
Skeletal Variation in Extant Species Enables Systematic Identification of New Zealand's Large, Subfossil Diplodactylids
Scarsbrook et al. BMC Ecol Evo (2021) 21:67 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01808-7 RESEARCH Open Access Skeletal variation in extant species enables systematic identifcation of New Zealand’s large, subfossil diplodactylids Lachie Scarsbrook1*, Emma Sherratt2, Rodney A. Hitchmough3 and Nicolas J. Rawlence1 Abstract New Zealand’s diplodactylid geckos exhibit high species-level diversity, largely independent of discernible osteologi- cal changes. Consequently, systematic afnities of isolated skeletal elements (fossils) are primarily determined by comparisons of size, particularly in the identifcation of Hoplodactylus duvaucelii, New Zealand’s largest extant gecko species. Here, three-dimensional geometric morphometrics of maxillae (a common fossilized element) was used to determine whether consistent shape and size diferences exist between genera, and if cryptic extinctions have occurred in subfossil ‘Hoplodactylus cf. duvaucelii’. Sampling included 13 diplodactylid species from fve genera, and 11 Holocene subfossil ‘H. cf. duvaucelii’ individuals. We found phylogenetic history was the most important predictor of maxilla morphology among extant diplodactylid genera. Size comparisons could only diferentiate Hoplodactylus from other genera, with the remaining genera exhibiting variable degrees of overlap. Six subfossils were positively identifed as H. duvaucelii, confrming their proposed Holocene distribution throughout New Zealand. Conversely, fve subfossils showed no clear afnities with any modern diplodactylid genera, implying either increased morphological diversity in mainland ‘H. cf. duvaucelii’ or the presence of at least one extinct, large, broad-toed diplodactylid species. Keywords: Diplodactylidae, Ecomorphology, Geometric morphometrics, Hoplodactylus duvaucelii, Taxonomy Background (e.g. coloration and scalation), with interspecifc skeletal New Zealand’s lizard fauna is characteristic of isolated variation rarely analysed. -
Bonobo (Pan Paniscus)
Bonobo (Pan paniscus) Conservation Strategy 2012–2022 About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN’s work focuses on valuing and conserving nature, ensuring effective and equitable governance of its use, and deploying nature- based solutions to global challenges in climate, food and development. IUCN supports scientific research, manages field projects all over the world, and brings governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,200 government and NGO Members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 45 offices and hundreds of partners in public, NGO and private sectors around the world. IUCN Species Survival Commission The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions with a global membership of 8,000 experts. SSC advises IUCN and its members on the wide range of technical and scientific aspects of species conservation and is dedicated to securing a future for biodiversity. SSC has significant input into the international agreements dealing with biodiversity conservation. www.iucn.org/themes/ssc IUCN Species Programme The IUCN Species Programme supports the activities of the IUCN Species Survival Commission and individual Specialist Groups, as well as implementing global species conservation initiatives. It is an integral part of the IUCN Secretariat and is managed from IUCN’s international headquarters in Gland, Switzerland. -
Reference Guide
Reference Guide A practical tool to support implementation of the Wildlife Trade Regulations of the European Union December 2020 This is a revised and updated version, based on the previous edition of the Reference Guide to the European Union Wildlife Trade Regulations originally produced in 1998 by the European Commission, TRAFFIC Europe and WWF. Support from UNEP-WCMC to this revision is gratefully acknowledged. This document does not necessarily represent the opinion of the European Commission and is not a legal interpretation of European Union legislation. The contents of this document may be freely reproduced provided that the source is adequately recorded: European Commission and TRAFFIC (2020). Reference Guide to the European Union Wildlife Trade Regulations. Brussels, Belgium. More details and information relating to the implementation and enforcement of CITES and the EU Wildlife Trade Regulations can be found on the website of the European Commission or by contacting the relevant authorities in EU Member States. Reference Guide to the European Union Wildlife Trade Regulations (December 2020) 2 TABLE OF CONTENTS LIST OF FIGURES AND TABLES ......................................................................................... 7 1. HOW DO I USE THIS GUIDE? ........................................................................................ 9 2. WHAT SPECIES ARE COVERED BY THE REGULATIONS, AND IN WHAT WAY? ............. 12 2.1 The CITES Appendices ........................................................................................................................... -
AFRICAN PRIMATES the Journal of the Africa Section of the IUCN SSC Primate Specialist Group
Volume 9 2014 ISSN 1093-8966 AFRICAN PRIMATES The Journal of the Africa Section of the IUCN SSC Primate Specialist Group Editor-in-Chief: Janette Wallis PSG Chairman: Russell A. Mittermeier PSG Deputy Chair: Anthony B. Rylands Red List Authorities: Sanjay Molur, Christoph Schwitzer, and Liz Williamson African Primates The Journal of the Africa Section of the IUCN SSC Primate Specialist Group ISSN 1093-8966 African Primates Editorial Board IUCN/SSC Primate Specialist Group Janette Wallis – Editor-in-Chief Chairman: Russell A. Mittermeier Deputy Chair: Anthony B. Rylands University of Oklahoma, Norman, OK USA Simon Bearder Vice Chair, Section on Great Apes:Liz Williamson Oxford Brookes University, Oxford, UK Vice-Chair, Section on Small Apes: Benjamin M. Rawson R. Patrick Boundja Regional Vice-Chairs – Neotropics Wildlife Conservation Society, Congo; Univ of Mass, USA Mesoamerica: Liliana Cortés-Ortiz Thomas M. Butynski Andean Countries: Erwin Palacios and Eckhard W. Heymann Sustainability Centre Eastern Africa, Nanyuki, Kenya Brazil and the Guianas: M. Cecília M. Kierulff, Fabiano Rodrigues Phillip Cronje de Melo, and Maurício Talebi Jane Goodall Institute, Mpumalanga, South Africa Regional Vice Chairs – Africa Edem A. Eniang W. Scott McGraw, David N. M. Mbora, and Janette Wallis Biodiversity Preservation Center, Calabar, Nigeria Colin Groves Regional Vice Chairs – Madagascar Christoph Schwitzer and Jonah Ratsimbazafy Australian National University, Canberra, Australia Michael A. Huffman Regional Vice Chairs – Asia Kyoto University, Inuyama, -
Page 1 Kunsill Tal-Unjoni Ewropea Brussell, 28 Ta' Lulju 2021 (OR. En
Kunsill tal-Unjoni Ewropea Brussell, 28 ta' Lulju 2021 (OR. en) 11099/21 ADD 2 ENV 557 WTO 188 NOTA TA' TRAŻMISSJONI minn: Kummissjoni Ewropea data meta waslet: 27 ta' Lulju 2021 lil: Segretarjat Ġenerali tal-Kunsill Nru dok. Cion: D074372/02 - Annexes 2 to 3 Suġġett: ANNESSI tar-REGOLAMENT TAL-KUMMISSJONI (UE) .../... li jemenda r-Regolament tal-Kummissjoni (KE) Nru 865/2006 li jistabbilixxi regoli dettaljati dwar l-implimentazzjoni tar-Regolament tal-Kunsill (KE) Nru 338/97 dwar il-protezzjoni ta’ speċi ta’ fawna u flora selvaġġi billi jkun regolat il-kummerċ fihom Id-delegazzjonijiet għandhom isibu mehmuż id-dokument D074372/02 - Annexes 2 to 3. Mehmuż: D074372/02 - Annexes 2 to 3 11099/21 ADD 2 /gac TREE.1.A MT IL-KUMMISSJONI EWROPEA Brussell, XXX D074372/02 […](2021) XXX draft ANNEXES 2 to 3 ANNESSI tar- REGOLAMENT TAL-KUMMISSJONI (UE) .../... li jemenda r-Regolament tal-Kummissjoni (KE) Nru 865/2006 li jistabbilixxi regoli dettaljati dwar l-implimentazzjoni tar-Regolament tal-Kunsill (KE) Nru 338/97 dwar il- protezzjoni ta’ speċi ta’ fawna u flora selvaġġi billi jkun regolat il-kummerċ fihom MT MT ANNESS 2 ‘ANNESS VIII Referenzi standard għan-nomenklatura li għandhom jintużaw skont l-Artikolu 5(4) sabiex jindikaw ismijiet xjentifiċi ta’ speċijiet fil-permessi u ċ- ċertifikati FAWNA Unità tassonomika Referenza tassonomika kkonċernata MAMMALIA L-unitajiet tassonomiċi WILSON, D. E. & REEDER, D. M. (ed.) (2005). Mammal Species of the World. A Taxonomic and kollha tal-MAMMALIA Geographic Reference. Third edition, Vol. 1-2, xxxv + 2142 pp. Baltimore (John Hopkins University - għajr ir-rikonoxximent tal- Press). -
G Iant Snakes
Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Giant Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Snakes, particularly venomous snakes and exceptionally large constricting snakes, have haunted the human brain for a millennium. They appear to be responsible for our excellent vision, as well as the John C. Murphy & Tom Crutchfield & Tom C. Murphy John anxiety we feel. Despite the dangers we faced in prehistory, snakes now hold clues to solving some of humankind’s most debilitating diseases. Pythons and boas are capable of eating prey that is equal to more than their body weight, and their adaptations for this are providing insight into diabetes. Fascination with snakes has also drawn many to keep them as pets, including the largest species. Their popularity in the pet trade has led to these large constrictors inhabiting southern Florida. This book explores what we know about the largest snakes, how they are kept in captivity, and how they have managed to traverse ocean barriers with our help. Copyrighted Material Some pages are omitted from this book preview. Copyrighted Material Some pages are omitted from this book preview. Giant Snakes A Natural History John C. Murphy & Tom Crutchfield Copyrighted Material Some pages are omitted from this book preview. Giant Snakes Copyright © 2019 by John C. Murphy & Tom Cructhfield All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means including information storage and retrieval systems, without permission in writing from the publisher. Printed in the United States of America First Printing March 2019 ISBN 978-1-64516-232-2 Paperback ISBN 978-1-64516-233-9 Hardcover Published by: Book Services www.BookServices.us ii Copyrighted Material Some pages are omitted from this book preview. -
Conf. 12.11 Nomenclatura Normalizada (Rev
Conf. 12.11 Nomenclatura normalizada (Rev. CoP17) RECORDANDO la Resolución Conf. 11.22, aprobada por la Conferencia de las Partes en su 11ª reunión (Gigiri, 2000); TOMANDO NOTA de que la nomenclatura biológica no es inmutable; CONSCIENTE de que es necesaria la normalización de los nombres de los géneros y de las especies de varias familias y de que la actual falta de una obra de referencia normalizada con información adecuada disminuye la eficacia de la aplicación de CITES en lo que respecta a la conservación de numerosas especies incluidas en los Apéndices; RECONOCIENDO que la taxonomía utilizada en los Apéndices de la Convención será más útil a las Partes si está normalizada de acuerdo a una nomenclatura de referencia; CONSCIENTE de que el antiguo Comité de Nomenclatura identificó nombres de taxa en los Apéndices de la Convención que deberían ser cambiados para que reflejen la denominación aceptada en biología; TOMANDO NOTA de que esos cambios deben ser aprobados por la Conferencia de las Partes en la Convención; RECONOCIENDO que hay varios taxa incluidos en los Apéndices de los que existen formas domesticadas y que en varios casos las Partes han decidido establecer una distinción entre las formas silvestres y domesticadas aplicando a la forma protegida un nombre diferente del nombre mencionado en la nomenclatura normalizada; RECONOCIENDO que, en lo que respecta a las nuevas propuestas de inclusión de especies en los Apéndices, las Partes deberían utilizar las obras de referencia normalizadas adoptadas, cada vez que sea posible; CONSIDERANDO -
Monitoring the Impacts of Invasive Mammals on Arboreal Geckos’ Habitat Use, Cell Foam Retreat Use, and the Effectiveness of Different Monitoring Techniques
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Monitoring the impacts of invasive mammals on arboreal geckos’ habitat use, cell foam retreat use, and the effectiveness of different monitoring techniques. A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology Massey University, Auckland, New Zealand Joshua Jeffrey Thoresen 2011 I DOC: AK 20666-FAU; General handling Permit (includes Iwi consultation) (under Dianne Brunton) Ethics approval: Standard research handling of geckos, i.e. measuring demographics only, which does not require animal ethics approval. II “Four things on earth are small, yet they are exceedingly wise... A lizard grasps skillfully with its hands, and it is found in kings’ palaces” Proverbs 30 vs. 24...28 For Adonai III ABSTRACT Gecko ecology was studied in areas of pest control and no control in four areas around Auckland. The density index of geckos was highest at Waiheke (treatment, i.e. pest control) with an average of 137.5 geckos ha¯¹ compared with Waiheke (control, i.e. no pest control): 56 g/ha¯¹, Tawharanui: 20.3 g/ha¯¹ and Shakespear: 9.5 g/ha¯¹. The Waiheke sites were then studied further; gecko condition was measured and males were found to have lower body conditions at the non pest controlled sites, rats were also found to be more abundant at these sites and large invertebrates less abundant.