Differential Forms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Relativity Fall 2018 Lecture 10: Integration, Einstein-Hilbert Action
General Relativity Fall 2018 Lecture 10: Integration, Einstein-Hilbert action Yacine Ali-Ha¨ımoud (Dated: October 3, 2018) σ σ HW comment: T µν antisym in µν does NOT imply that Tµν is antisym in µν. Volume element { Consider a LICS with primed coordinates. The 4-volume element is dV = d4x0 = 0 0 0 0 dx0 dx1 dx2 dx3 . If we change coordinates, we have 0 ! @xµ d4x0 = det d4x: (1) µ @x Now, the metric components change as 0 0 0 0 @xµ @xν @xµ @xν g = g 0 0 = η 0 0 ; (2) µν @xµ @xν µ ν @xµ @xν µ ν since the metric components are ηµ0ν0 in the LICS. Seing this as a matrix operation and taking the determinant, we find 0 !2 @xµ det(g ) = − det : (3) µν @xµ Hence, we find that the 4-volume element is q 4 p 4 p 4 dV = − det(gµν )d x ≡ −g d x ≡ jgj d x: (4) The integral of a scalar function f is well defined: given any coordinate system (even if only defined locally): Z Z f dV = f pjgj d4x: (5) We can only define the integral of a scalar function. The integral of a vector or tensor field is mean- ingless in curved spacetime. Think of the integral as a sum. To sum vectors, you need them to belong to the same vector space. There is no common vector space in curved spacetime. Only in flat spacetime can we define such integrals. First parallel-transport the vector field to a single point of spacetime (it doesn't matter which one). -
Introduction to Gauge Theory Arxiv:1910.10436V1 [Math.DG] 23
Introduction to Gauge Theory Andriy Haydys 23rd October 2019 This is lecture notes for a course given at the PCMI Summer School “Quantum Field The- ory and Manifold Invariants” (July 1 – July 5, 2019). I describe basics of gauge-theoretic approach to construction of invariants of manifolds. The main example considered here is the Seiberg–Witten gauge theory. However, I tried to present the material in a form, which is suitable for other gauge-theoretic invariants too. Contents 1 Introduction2 2 Bundles and connections4 2.1 Vector bundles . .4 2.1.1 Basic notions . .4 2.1.2 Operations on vector bundles . .5 2.1.3 Sections . .6 2.1.4 Covariant derivatives . .6 2.1.5 The curvature . .8 2.1.6 The gauge group . 10 2.2 Principal bundles . 11 2.2.1 The frame bundle and the structure group . 11 2.2.2 The associated vector bundle . 14 2.2.3 Connections on principal bundles . 16 2.2.4 The curvature of a connection on a principal bundle . 19 arXiv:1910.10436v1 [math.DG] 23 Oct 2019 2.2.5 The gauge group . 21 2.3 The Levi–Civita connection . 22 2.4 Classification of U(1) and SU(2) bundles . 23 2.4.1 Complex line bundles . 24 2.4.2 Quaternionic line bundles . 25 3 The Chern–Weil theory 26 3.1 The Chern–Weil theory . 26 3.1.1 The Chern classes . 28 3.2 The Chern–Simons functional . 30 3.3 The modui space of flat connections . 32 3.3.1 Parallel transport and holonomy . -
Laplacians in Geometric Analysis
LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1. -
Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0. -
1.2 Topological Tensor Calculus
PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space. -
Vector Calculus and Multiple Integrals Rob Fender, HT 2018
Vector Calculus and Multiple Integrals Rob Fender, HT 2018 COURSE SYNOPSIS, RECOMMENDED BOOKS Course syllabus (on which exams are based): Double integrals and their evaluation by repeated integration in Cartesian, plane polar and other specified coordinate systems. Jacobians. Line, surface and volume integrals, evaluation by change of variables (Cartesian, plane polar, spherical polar coordinates and cylindrical coordinates only unless the transformation to be used is specified). Integrals around closed curves and exact differentials. Scalar and vector fields. The operations of grad, div and curl and understanding and use of identities involving these. The statements of the theorems of Gauss and Stokes with simple applications. Conservative fields. Recommended Books: Mathematical Methods for Physics and Engineering (Riley, Hobson and Bence) This book is lazily referred to as “Riley” throughout these notes (sorry, Drs H and B) You will all have this book, and it covers all of the maths of this course. However it is rather terse at times and you will benefit from looking at one or both of these: Introduction to Electrodynamics (Griffiths) You will buy this next year if you haven’t already, and the chapter on vector calculus is very clear Div grad curl and all that (Schey) A nice discussion of the subject, although topics are ordered differently to most courses NB: the latest version of this book uses the opposite convention to polar coordinates to this course (and indeed most of physics), but older versions can often be found in libraries 1 Week One A review of vectors, rotation of coordinate systems, vector vs scalar fields, integrals in more than one variable, first steps in vector differentiation, the Frenet-Serret coordinate system Lecture 1 Vectors A vector has direction and magnitude and is written in these notes in bold e.g. -
Mathematical Theorems
Appendix A Mathematical Theorems The mathematical theorems needed in order to derive the governing model equations are defined in this appendix. A.1 Transport Theorem for a Single Phase Region The transport theorem is employed deriving the conservation equations in continuum mechanics. The mathematical statement is sometimes attributed to, or named in honor of, the German Mathematician Gottfried Wilhelm Leibnitz (1646–1716) and the British fluid dynamics engineer Osborne Reynolds (1842–1912) due to their work and con- tributions related to the theorem. Hence it follows that the transport theorem, or alternate forms of the theorem, may be named the Leibnitz theorem in mathematics and Reynolds transport theorem in mechanics. In a customary interpretation the Reynolds transport theorem provides the link between the system and control volume representations, while the Leibnitz’s theorem is a three dimensional version of the integral rule for differentiation of an integral. There are several notations used for the transport theorem and there are numerous forms and corollaries. A.1.1 Leibnitz’s Rule The Leibnitz’s integral rule gives a formula for differentiation of an integral whose limits are functions of the differential variable [7, 8, 22, 23, 45, 55, 79, 94, 99]. The formula is also known as differentiation under the integral sign. H. A. Jakobsen, Chemical Reactor Modeling, DOI: 10.1007/978-3-319-05092-8, 1361 © Springer International Publishing Switzerland 2014 1362 Appendix A: Mathematical Theorems b(t) b(t) d ∂f (t, x) db da f (t, x) dx = dx + f (t, b) − f (t, a) (A.1) dt ∂t dt dt a(t) a(t) The first term on the RHS gives the change in the integral because the function itself is changing with time, the second term accounts for the gain in area as the upper limit is moved in the positive axis direction, and the third term accounts for the loss in area as the lower limit is moved. -
Chapter 5 ANGULAR MOMENTUM and ROTATIONS
Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another. -
Solving the Geodesic Equation
Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how to use metric independence to find Killing vector fields, which allow us to solve the geodesic equation when there are helpful symmetries. We also discuss a more general way to find Killing vector fields, and some of their properties as a Lie algebra. 1 The Variational Method We will exploit the following variational principle to characterize motion in general relativity: The world line of a free test particle between two timelike separated points extremizes the proper time between them. where a test particle is one that is not a significant source of spacetime cur- vature, and a free particles is one that is only under the influence of curved spacetime. Similarly to classical Lagrangian mechanics, we can use this to de- duce the equations of motion for a metric. The proper time along a timeline worldline between point A and point B for the metric gµν is given by Z B Z B µ ν 1=2 τAB = dτ = (−gµν (x)dx dx ) (1) A A using the Einstein summation notation, and µ, ν = 0; 1; 2; 3. We can parame- terize the four coordinates with the parameter σ where σ = 0 at A and σ = 1 at B. This gives us the following equation for the proper time: Z 1 dxµ dxν 1=2 τAB = dσ −gµν (x) (2) 0 dσ dσ We can treat the integrand as a Lagrangian, dxµ dxν 1=2 L = −gµν (x) (3) dσ dσ and it's clear that the world lines extremizing proper time are those that satisfy the Euler-Lagrange equation: @L d @L − = 0 (4) @xµ dσ @(dxµ/dσ) 1 These four equations together give the equation for the worldline extremizing the proper time. -
Geodetic Position Computations
GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem. -
The Divergence Theorem Cartan's Formula II. for Any Smooth Vector
The Divergence Theorem Cartan’s Formula II. For any smooth vector field X and any smooth differential form ω, LX = iX d + diX . Lemma. Let x : U → Rn be a positively oriented chart on (M,G), with volume j ∂ form vM , and X = Pj X ∂xj . Then, we have U √ 1 n ∂( gXj) L v = di v = √ X , X M X M g ∂xj j=1 and √ 1 n ∂( gXj ) tr DX = √ X . g ∂xj j=1 Proof. (i) We have √ 1 n LX vM =diX vM = d(iX gdx ∧···∧dx ) n √ =dX(−1)j−1 gXjdx1 ∧···∧dxj ∧···∧dxn d j=1 n √ = X(−1)j−1d( gXj) ∧ dx1 ∧···∧dxj ∧···∧dxn d j=1 √ n ∂( gXj ) = X dx1 ∧···∧dxn ∂xj j=1 √ 1 n ∂( gXj ) =√ X v . g ∂xj M j=1 ∂X` ` k ∂ (ii) We have D∂/∂xj X = P` ∂xj + Pk Γkj X ∂x` , which implies ∂X` tr DX = X + X Γ` Xk. ∂x` k` ` k Since 1 Γ` = X g`r{∂ g + ∂ g − ∂ g } k` 2 k `r ` kr r k` r,` 1 == X g`r∂ g 2 k `r r,` √ 1 ∂ g ∂ g = k = √k , 2 g g √ √ ∂X` X` ∂ g 1 n ∂( gXj ) tr DX = X + √ k } = √ X . ∂x` g ∂x` g ∂xj ` j=1 Typeset by AMS-TEX 1 2 Corollary. Let (M,g) be an oriented Riemannian manifold. Then, for any X ∈ Γ(TM), d(iX dvg)=tr DX =(div X)dvg. Stokes’ Theorem. Let M be a smooth, oriented n-dimensional manifold with boundary. Let ω be a compactly supported smooth (n − 1)-form on M. -
Differential Forms Diff Geom II, WS 2015/16
J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2015/16 B. DIFFERENTIAL FORMS instance, if S has k elements this gives a k-dimensional vector space with S as basis. We have already seen one-forms (covector fields) on a Given vector spaces V and W, let F be the free vector space over the set V × W. (This consists of formal sums manifold. In general, a k-form is a field of alternating k- P linear forms on the tangent spaces of a manifold. Forms ai(vi, wi) but ignores all the structure we have on the set are the natural objects for integration: a k-form can be in- V × W.) Now let R ⊂ F be the linear subspace spanned by tegrated over an oriented k-submanifold. We start with ten- all elements of the form: sor products and the exterior algebra of multivectors. (v + v0, w) − (v, w) − (v0, w), (v, w + w0) − (v, w) − (v, w0), (av, w) − a(v, w), (v, aw) − a(v, w). B1. Tensor products These correspond of course to the bilinearity conditions Recall that, if V, W and X are vector spaces, then a map we started with. The quotient vector space F/R will be the b: V × W → X is called bilinear if tensor product V ⊗ W. We have started with all possible v ⊗ w as generators and thrown in just enough relations to b(v + v0, w) = b(v, w) + b(v0, w), make the map (v, w) 7→ v ⊗ w be bilinear. b(v, w + w0) = b(v, w) + b(v, w0), The tensor product is commutative: there is a natural linear isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v.