The Clinical Spectrum of Pulmonary Aspergillosis Chris Kosmidis, David W Denning

Total Page:16

File Type:pdf, Size:1020Kb

The Clinical Spectrum of Pulmonary Aspergillosis Chris Kosmidis, David W Denning Thorax Online First, published on October 29, 2014 as 10.1136/thoraxjnl-2014-206291 Review Thorax: first published as 10.1136/thoraxjnl-2014-206291 on 29 October 2014. Downloaded from The clinical spectrum of pulmonary aspergillosis Chris Kosmidis, David W Denning The National Aspergillosis ABSTRACT a more indolent fashion, usually affecting patients Centre, University Hospital of The clinical presentation of Aspergillus lung disease is with underlying lung disease, but with no or only South Manchester, The University of Manchester, determined by the interaction between fungus and host. subtle generalised immune compromise. Recently Manchester Academic Health Invasive aspergillosis develops in severely rediscovered is Aspergillus bronchitis in those with Science Centre, Manchester, immunocompromised patients, including those with cystic fibrosis (CF), bronchiectasis especially, as well UK neutropenia, and increasingly in the non-neutropenic as lung transplant recipients and those ventilated in host, including lung transplant recipients, the critically ill intensive therapy units. Finally, an allergic response Correspondence to Dr Chris Kosmidis, patients and patients on steroids. A high index of to inhaled Aspergillus results in allergic broncho- The National Aspergillosis suspicion is required in patients without the classical risk pulmonary aspergillosis (ABPA) and severe asthma Centre, University Hospital factors as early presentation is usually silent and non- with fungal sensitisation. of South Manchester, specific, pyrexia uncommon and timely treatment is Aspergillus fumigatus is the most common The University of Manchester, Manchester Academic Health crucial for survival. Invasive aspergillosis has also been species implicated in all pulmonary syndromes, Science Centre, Manchester diagnosed in normal hosts after massive exposure to although Aspergillus flavus is a more common M23 9LT, UK; fungal spores. Chronic pulmonary aspergillosis affects cause of various forms of allergic rhinosinusitis, [email protected]. patients without obvious immune compromise, but with postoperative aspergillosis and fungal keratitis. uk an underlying lung condition such as COPD or Aspergillus terreus is a common cause of IA in some Received 8 September 2014 sarcoidosis, prior or concurrent TB or non-tuberculous institutions and is amphotericin B resistant. Revised 2 October 2014 mycobacterial disease. Aspergillus bronchitis may be Aspergillus niger is an occasional cause of IA or Accepted 9 October 2014 responsible for persistent respiratory symptoms in Aspergillus bronchitis, but is also a proportionately patients with Aspergillus detected repeatedly in sputum more common coloniser of the respiratory tract. without evidence of parenchymal Aspergillus disease, Several advances have been recently made especially in patients with bronchiectasis and cystic towards understanding the clinical spectrum of fibrosis. Allergic bronchopulmonary aspergillosis affects Aspergillus infection, with improved diagnostic cap- patients with asthma and cystic fibrosis, and is important ability. In this review, we present the clinical syn- to recognise as permanent lung or airways damage may dromes of pulmonary disease caused by Aspergillus accrue if untreated. Changes in the classification of and discuss the most important issues on their Aspergillus allergic lung disease have been proposed management. recently. Cases of extrinsic allergic alveolitis and chronic pulmonary aspergillosis have been observed after INVASIVE ASPERGILLOSIS Aspergillus exposure. Asymptomatic colonisation of the IA implies invasion of lung tissue by hyphae as http://thorax.bmj.com/ respiratory tract needs close monitoring as it can lead to demonstrated on histology. The clinical presenta- clinical disease especially with ongoing tion is relatively rapid, ranging from days to a few immunosuppression. The various syndromes should be weeks. It has been studied extensively in the neu- viewed as a semicontinuous spectrum of disease and tropenic host; however, it has also become increas- one form may evolve into another depending on the ingly recognised in patients without neutropenia. degree of ongoing immunosuppression. Neutropenic host The classic risk factor for IA is neutropenia, and on September 24, 2021 by guest. Protected copyright. INTRODUCTION the likelihood of IA correlates with its duration and Aspergillus is a ubiquitous fungus that causes a depth. Platelets may also be important in defence variety of clinical syndromes. Although exposure to against IA, and thrombocytopenia tends to parallel Aspergillus conidia through inhalation is common, neutropenia. Angioinvasion is involved in the only a minority of those exposed will develop lung pathogenesis in neutropenic hosts and is respon- disease. The clinical features, course and prognosis sible for the higher frequency of dissemination to 1 of Aspergillus infections largely depend on the other organs such as skin, brain or eyes (figure 2). degree of immune compromise of the host, At higher risk for IA are patients undergoing allo- although there is increasing recognition of the geneic HSCT and patients with prolonged neutro- importance of genetics. The interplay between the penia following chemotherapy. IA in patients with 23 pathogen and host immune dysfunction or hyper- neutropenia has been extensively reviewed. activity determines which clinical syndrome is more likely to develop (figure 1). Non-neutropenic host On one end of the spectrum, invasive aspergil- IA occurs in a wide range of non-neutropenic losis (IA) predominantly affects patients with pro- hosts. The most common unifying risk factor is cor- To cite: Kosmidis C, found defects in immune function, such as ticosteroid use, often prior to hospital admission. Denning DW. Thorax Published Online First: haematopoietic stem cell transplant (HSCT) or IA has been recognised in solid organ transplant [please include Day Month solid organ transplant recipients, and patients recipients (particularly lung and heart-lung trans- Year] doi:10.1136/thoraxjnl- undergoing chemotherapy or taking corticosteroids. plant recipients), patients with AIDS, COPD, the 2014-206291 Chronic pulmonary aspergillosis (CPA) presents in critically ill intensive care unit (ICU) patients, Kosmidis C, et al. Thorax 2014;0:1–8. doi:10.1136/thoraxjnl-2014-206291 1 Copyright Article author (or their employer) 2014. Produced by BMJ Publishing Group Ltd (& BTS) under licence. Review Thorax: first published as 10.1136/thoraxjnl-2014-206291 on 29 October 2014. Downloaded from Invasive lung disease tends to occur later after transplant, and may be associated with dissemination to other organs. Prophylaxis consisting of inhaled amphotericin or oral vorico- nazole or itraconazole is employed routinely for lung transplant patients with risk factors for development of IA. The most important factor is pre-transplant or post-transplant colonisa- tion; the latter was an independent factor for mortality in a retrospective study.89Other risk factors are induction with alemtuzumab or thymoglobulin, single lung transplant, cyto- megalovirus infection, hypogammaglobulinaemia and rejection with use of monoclonal antibody.8 In a study of patients with CF undergoing transplantation, a positive intraoperative culture was associated with a fourfold higher risk of IA.10 Figure 1 Interaction of Aspergillus with host. ABPA, allergic bronchopulmonary aspergillosis; IA, invasive aspergillosis. The critically ill IA is being increasingly described in the ICU setting, carries high patients with liver failure and those with chronic granulomatous inhospital mortality and is associated with significant costs.11 The disease. In these hosts, in contrast to patients with neutropenia, majority of patients with IA in the ICU do not have neutropenia fi 1 angioinvasion is not a common feature ( gure 2). Fever is and have non-specific risk factors such as COPD, steroid use, uncommon, and symptoms often absent until late in the course. multiple previous antibiotic regimens, renal or hepatic failure fl The time course usually re ects total net immunosuppression. and diabetes. Many cases follow an episode of sepsis, probably Many cases are relatively indolent and the condition progresses due to so-called ‘immunoparalysis’. The widespread use of ster- over weeks rather than over days. Lack of angioinvasion on oids for COPD exacerbations may contribute to the increased imaging was associated with more protracted clinical course and 4 rate of IA. In a multicentre study from the USA that excluded delayed diagnosis in heart transplant recipients. Consequently, patients with the classical risk factors, 77% of critically ill fi diagnosis is often not suspected because of the non-speci c patients with IA had received high-dose steroids during their hos- symptoms and imaging. As an example, more than half of pitalisation.11 Recently, cases occurring after severe H1N1 infec- patients with liver cirrhosis and IA where diagnosed post- 5 tion and after extracorporeal membrane oxygenation use have mortem. IA is the most common infection-related missed diag- 12 13 6 been reported. In some cases, IA in patients admitted to the nosis at autopsy in ICU patients. ICU has been attributed to Aspergillus contamination of air filters.14 With better supportive care that prolongs survival in Lung transplant recipients critically ill patients, the incidence of IA is likely to increase. Aspergillosis is the most common fungal infection in lung trans- Diagnosis of IA in the
Recommended publications
  • Rapid and Precise Diagnosis of Pneumonia Coinfected By
    Rapid and precise diagnosis of pneumonia coinfected by Pneumocystis jirovecii and Aspergillus fumigatus assisted by next-generation sequencing in a patient with systemic lupus erythematosus: a case report Yili Chen Sun Yat-Sen University Lu Ai Sun Yat-Sen University Yingqun Zhou First Peoples Hospital of Nanning Yating Zhao Sun Yat-Sen University Jianyu Huang Sun Yat-Sen University Wen Tang Sun Yat-Sen University Yujian Liang ( [email protected] ) Sun Yat-Sen University Case report Keywords: Pneumocystis jirovecii, Aspergillus fumigatus, Next generation sequencing, Case report Posted Date: March 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-154016/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract Background: Pneumocystis jirovecii and Aspergillus fumigatus, are opportunistic pathogenic fungus that has a major impact on mortality in patients with systemic lupus erythematosus. With the potential to invade multiple organs, early and accurate diagnosis is essential to the survival of SLE patients, establishing an early diagnosis of the infection, especially coinfection by Pneumocystis jirovecii and Aspergillus fumigatus, still remains a great challenge. Case presentation: In this case, we reported that the application of next -generation sequencing in diagnosing Pneumocystis jirovecii and Aspergillus fumigatus coinfection in a Chinese girl with systemic lupus erythematosus (SLE). Voriconazole was used to treat pulmonary aspergillosis, besides sulfamethoxazole and trimethoprim (SMZ-TMP), and caspofungin acetate to treat Pneumocystis jirovecii infection for 6 days. On Day 10 of admission, her chest radiograph displayed obvious absorption of bilateral lung inammation though the circumstance of repeated fever had not improved.
    [Show full text]
  • Central Nervous System Infections by Members of the Pseudallescheria
    Review article Central nervous system infections by members of the Pseudallescheria boydii species complex in healthy and immunocompromised hosts: epidemiology, clinical characteristics and outcome A. Serda Kantarcioglu,1 Josep Guarro2 and G. S. de Hoog3 1Department of Microbiology and Clinical Microbiology, Cerrahpasa Medical Faculty, Istanbul, Turkey, 2Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain and 3Centraalbureau voor Schimmelcultures, Utrecht, and Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands Summary Infections caused by members of the Pseudallescheria boydii species complex are currently among the most common mould infections. These fungi show a particular tropism for the central nervous system (CNS). We reviewed all the available reports on CNS infections, focusing on the geographical distribution, infection routes, immunity status of infected individuals, type and location of infections, clinical manifestations, treatment and outcome. A total of 99 case reports were identified, with similar percentage of healthy and immunocompromised patients (44% vs. 56%; P = 0.26). Main clinical types were brain abscess (69%), co-infection of brain tissue and ⁄ or spinal cord with meninges (10%) and meningitis (9%). The mortality rate was 74%, regardless of the patientÕs immune status, or the infection type and ⁄ or location. Cerebrospinal fluid culture was revealed as a not very important tool as the percentage of positive samples for P. boydii complex was not different from that of negative ones (67% vs. 33%; P = 0.10). In immunocompetent patients, CNS infection was preceded by near drowning or trauma. In these patients, the infection was characterised by localised involvement and a high fatality rate (76%).
    [Show full text]
  • Spontaneous Pneumothorax in COVID-19 Patients Treated with High-Flow Nasal Cannula Outside the ICU: a Case Series
    International Journal of Environmental Research and Public Health Case Report Spontaneous Pneumothorax in COVID-19 Patients Treated with High-Flow Nasal Cannula outside the ICU: A Case Series Magdalena Nalewajska 1, Wiktoria Feret 1 , Łukasz Wojczy ´nski 1, Wojciech Witkiewicz 2 , Magda Wi´sniewska 1 and Katarzyna Kotfis 3,* 1 Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70–111 Szczecin, Poland; [email protected] (M.N.); [email protected] (W.F.); [email protected] (Ł.W.); [email protected] (M.W.) 2 Department of Cardiology, Pomeranian Medical University, 70–111 Szczecin, Poland; [email protected] 3 Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70–111 Szczecin, Poland * Correspondence: katarzyna.kotfi[email protected] Abstract: The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic and a burden to global health at the turn of 2019 and 2020. No targeted treatment for COVID-19 infection has been identified so far, thus supportive treatment, invasive and non-invasive oxygen support, and corticosteroids remain a common therapy. High-flow nasal cannula (HFNC), a non-invasive oxygen support method, has become a prominent treatment option for respiratory failure during the SARS-CoV-2 pandemic. Citation: Nalewajska, M.; Feret, W.; HFNC reduces the anatomic dead space and increases positive end-expiratory pressure (PEEP), Wojczy´nski,Ł.; Witkiewicz, W.; allowing higher concentrations and higher flow of oxygen. Some studies suggest positive effects of Wi´sniewska,M.; Kotfis, K. HFNC on mortality and avoidance of intubation.
    [Show full text]
  • FINAL RISK ASSESSMENT for Aspergillus Niger (February 1997)
    ATTACHMENT I--FINAL RISK ASSESSMENT FOR Aspergillus niger (February 1997) I. INTRODUCTION Aspergillus niger is a member of the genus Aspergillus which includes a set of fungi that are generally considered asexual, although perfect forms (forms that reproduce sexually) have been found. Aspergilli are ubiquitous in nature. They are geographically widely distributed, and have been observed in a broad range of habitats because they can colonize a wide variety of substrates. A. niger is commonly found as a saprophyte growing on dead leaves, stored grain, compost piles, and other decaying vegetation. The spores are widespread, and are often associated with organic materials and soil. History of Commercial Use and Products Subject to TSCA Jurisdiction The primary uses of A. niger are for the production of enzymes and organic acids by fermentation. While the foods, for which some of the enzymes may be used in preparation, are not subject to TSCA, these enzymes may have multiple uses, many of which are not regulated except under TSCA. Fermentations to produce these enzymes may be carried out in vessels as large as 100,000 liters (Finkelstein et al., 1989). A. niger is also used to produce organic acids such as citric acid and gluconic acid. The history of safe use for A. niger comes primarily from its use in the food industry for the production of many enzymes such as a-amylase, amyloglucosidase, cellulases, lactase, invertase, pectinases, and acid proteases (Bennett, 1985a; Ward, 1989). In addition, the annual production of citric acid by fermentation is now approximately 350,000 tons, using either A.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]
  • Crohn's Disease-Associated Interstitial Lung Disease Mimicking Sarcoidosis
    Case report SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2016; 33; 288-291 © Mattioli 1885 Crohn’s disease-associated interstitial lung disease mimicking sarcoidosis: a case report and review of the literature Choua Thao1, A Amir Lagstein2, T Tadashi Allen3, Huseyin Erhan Dincer4, Hyun Joo Kim4 1Department of Internal Medicine, University of Nevada School of Medicine Las Vegas, Las Vegas, NV; 2Department of Pathology, Univer- sity of Michigan, Ann Arbor, MI; 3Department of Radiology, University of Minnesota, Minneapolis, MN; 4 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN Abstract. Respiratory involvement in Crohn’s disease (CD) is a rare manifestation known to involve the large and small airways, lung parenchyma, and pleura. The clinical presentation is nonspecific, and diagnostic tests can mimic other pulmonary diseases, posing a diagnostic challenge and delay in treatment. We report a case of a 60-year-old female with a history of CD and psoriatic arthritis who presented with dyspnea, fever, and cough with abnormal radiological findings. Diagnostic testing revealed an elevated CD4:CD8 ratio in the bronchoal- veolar lavage fluid, and cryoprobe lung biopsy results showed non-necrotizing granulomatous inflammation. We describe here the second reported case of pulmonary involvement mimicking sarcoidosis in Crohn’s disease and a review of the literature on the approaches to making a diagnosis of CD-associated interstitial lung disease. (Sarcoidosis Vasc Diffuse Lung Dis 2016; 33: 288-291) Key words: interstitial lung disease, Crohns disease, sarcoidosis, cryoprobe lung biopsy Introduction Moreover, certain diagnostic tests such as bronchoal- veolar lavage (BAL) cell analysis and tissue biopsy Pulmonary involvement in Crohn’s disease (CD) results may mimic other granulomatous lung diseas- is relatively rare and can be difficult to diagnose.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation
    Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation Dr Rohit Bazaz National Aspergillosis Centre, UK Manchester University NHS Foundation Trust/University of Manchester ~ ABPA -a41'1 Severe asthma wl'th funga I Siens itisat i on Subacute IA Chronic pulmonary aspergillosjs Simp 1Ie a:spe rgmoma As r§i · bronchitis I ram une dysfu net Ion Lun· damage Immu11e hypce ractivitv Figure 1 In t@rarctfo n of Aspergillus Vliith host. ABP A, aHerg tc broncho pu~ mo na my as µe rgi ~fos lis; IA, i nvas we as ?@rgiH os 5. MANCHl·.'>I ER J:-\2 I Kosmidis, Denning . Thorax 2015;70:270–277. doi:10.1136/thoraxjnl-2014-206291 Allergic Fungal Airway Disease Phenotypes I[ Asthma AAFS SAFS ABPA-S AAFS-asthma associated with fu ngaIsensitization SAFS-severe asthma with funga l sensitization ABPA-S-seropositive a llergic bronchopulmonary aspergi ll osis AB PA-CB-all ergic bronchopulmonary aspergi ll osis with central bronchiectasis Agarwal R, CurrAlfergy Asthma Rep 2011;11:403 Woolnough K et a l, Curr Opin Pulm Med 2015;21:39 9 Stanford Lucile Packard ~ Children's. Health Children's. Hospital CJ Scanford l MEDICINE Stanford MANCHl·.'>I ER J:-\2 I Aspergi 11 us Sensitisation • Skin testing/specific lgE • Surface hydroph,obins - RodA • 30% of patients with asthma • 13% p.atients with COPD • 65% patients with CF MANCHl·.'>I ER J:-\2 I Alternar1a• ABPA •· .ABPA is an exagg·erated response ofthe imm1une system1 to AspergUlus • Com1pUcatio n of asthm1a and cystic f ibrosis (rarell·y TH2 driven COPD o r no identif ied p1 rior resp1 iratory d isease) • ABPA as a comp1 Ucation of asth ma affects around 2.5% of adullts.
    [Show full text]
  • Fungal Infection in the Lung
    CHAPTER Fungal Infection in the Lung 52 Udas Chandra Ghosh, Kaushik Hazra INTRODUCTION The following risk factors may predispose to develop Pneumonia is the leading infectious cause of death in fungal infections in the lungs 6 1, 2 developed countries . Though the fungal cause of 1. Acute leukemia or lymphoma during myeloablative pneumonia occupies a minor portion in the immune- chemotherapy competent patients, but it causes a major role in immune- deficient populations. 2. Bone marrow or peripheral blood stem cell transplantation Fungi may colonize body sites without producing disease or they may be a true pathogen, generating a broad variety 3. Solid organ transplantation on immunosuppressive of clinical syndromes. treatment Fungal infections of the lung are less common than 4. Prolonged corticosteroid therapy bacterial and viral infections and very difficult for 5. Acquired immunodeficiency syndrome diagnosis and treatment purposes. Their virulence varies from causing no symptoms to death. Out of more than 1 6. Prolonged neutropenia from various causes lakh species only few fungi cause human infection and 7. Congenital immune deficiency syndromes the most vulnerable organs are skin and lungs3, 4. 8. Postsplenectomy state RISK FACTORS 9. Genetic predisposition Workers or farmers with heavy exposure to bird, bat, or rodent droppings or other animal excreta in endemic EPIDEMIOLOGY OF FUNGAL PNEUMONIA areas are predisposed to any of the endemic fungal The incidences of invasive fungal infections have pneumonias, such as histoplasmosis, in which the increased during recent decades, largely because of the environmental exposure to avian or bat feces encourages increasing size of the population at risk. This population the growth of the organism.
    [Show full text]
  • Neurosarcoidosis
    CHAPTER 11 Neurosarcoidosis E. Hoitsma*,#, O.P. Sharma} *Dept of Neurology and #Sarcoidosis Management Centre, University Hospital Maastricht, Maastricht, The Netherlands, and }Dept of Pulmonary and Critical Care Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Correspondence: O.P. Sharma, Room 11-900, LACzUSC Medical Center, 1200 North State Street, Los Angeles, CA 90033, USA. Fax: 1 3232262728; E-mail: [email protected] Sarcoidosis is an inflammatory multisystemic disorder. Its cause is not known. The disease may involve any part of the nervous system. The incidence of clinical involvement of the nervous system in a sarcoidosis population is estimated to be y5–15% [1, 2]. However, the incidence of subclinical neurosarcoidosis may be much higher [3, 4]. Necropsy studies suggest that ante mortem diagnosis is made in only 50% of patients with nervous system involvement [5]. As neurosarcoidosis may manifest itself in many different ways, diagnosis may be complicated [2, 3, 6–10]. It may appear in an acute explosive fashion or as a slow chronic illness. Furthermore, any part of the nervous system can be attacked by sarcoidosis, but the cranial nerves, hypothalamus and pituitary gland are more commonly involved [1]. Sarcoid granulomas can affect the meninges, parenchyma of the brain, hypothalamus, brainstem, subependymal layer of the ventricular system, choroid plexuses and peripheral nerves, and also the blood vessels supplying the nervous structures [11, 12]. One-third of neurosarcoidosis patients show multiple neurological lesions. If neurological syndromes develop in a patient with biopsy- proven active systemic sarcoidosis, the diagnosis is usually easy. However, without biopsy evidence of sarcoidosis at other sites, nervous system sarcoidosis remains a difficult diagnosis [13].
    [Show full text]
  • Aspergillomas in the Lung Cavities
    ASPERGILLOMAS IN THE LUNG CAVITIES Eastern Journal of Medicine 3 (1): 7-9, 1998. Aspergillomas in the lung cavities SAKARYA M.E.1, ÖZBAY B.2, YALÇINKAYA İ.3, ARSLAN H.1, UZUN K.2, POYRAZ N.1 Departments of Radiology1and Chest Diseases2,Chest Surgery3 School of Medicine, Yüzüncü Yıl University, Van Objective Pulmonary aspergilloma usually arise from All patients showed cavitary lesions due to healed colonization of aspergillus in preexisting lung cavities. tuberculosis except one. Hemoptisis was the most In this study, we aimed to evaluate computed common complaint. Six patients underwent tomograpy (CT) findings in patients with pulmonary thoracotomy. One patient developed empyema after the aspergilloma. operation. Method We have reviewed 9 patients with aspergilloma, Conclusion CT of the chest in the patients with who referred to the hospital between 1991 and 1996, on aspergilloma is an important diagnostic tool in the their tomographic findings. diagnosis of pulmonary aspergilloma. Results The most common involvement site was upper Key words Pulmonary aspergilloma, computed lobe, which suggested the etiology of tuberculosis. tomography. strongly suggested by a positive precipitin test. CT Introduction clearly demonstrated pulmonary aspergilloma The first description of aspergillosis in man was findings. made by Bennett in 1842. The term aspergilloma was first used by Dave almost a century later to describe a Results discrete lesion that classically colonizes the cavities The most common underlying disease was healed of healed pulmonary tuberculosis and other fibrotic pulmonary tuberculosis. The CT appearance in all lung diseases (1). Pulmonary involvement with was consistent with a diagnosis of aspergilloma. Aspergillus fumigatus is varied and largely dependent In two patients with aspergilloma (22%) the on the patient’s underlying pulmonary and immune lesions were bilateral; in two patients, there were status.
    [Show full text]
  • Clinical and Laboratory Profile of Chronic Pulmonary Aspergillosis
    Original article 109 Clinical and laboratory profile of chronic pulmonary aspergillosis: a retrospective study Ramakrishna Pai Jakribettua, Thomas Georgeb, Soniya Abrahamb, Farhan Fazalc, Shreevidya Kinilad, Manjeshwar Shrinath Baligab Introduction Chronic pulmonary aspergillosis (CPA) is a type differential leukocyte count, and erythrocyte sedimentation of semi-invasive aspergillosis seen mainly in rate. In all the four dead patients, the cause of death was immunocompetent individuals. These are slow, progressive, respiratory failure and all patients were previously treated for and not involved in angio-invasion compared with invasive pulmonary tuberculosis. pulmonary aspergillosis. The predisposing factors being Conclusion When a patient with pre-existing lung disease compromised lung parenchyma owing to chronic obstructive like chronic obstructive pulmonary disease or old tuberculosis pulmonary disease and previous pulmonary tuberculosis. As cavity presents with cough with expectoration, not many studies have been conducted in CPA with respect to breathlessness, and hemoptysis, CPA should be considered clinical and laboratory profile, the study was undertaken to as the first differential diagnosis. examine the profile in our population. Egypt J Bronchol 2019 13:109–113 Patients and methods This was a retrospective study. All © 2019 Egyptian Journal of Bronchology patients older than 18 years, who had evidence of pulmonary Egyptian Journal of Bronchology 2019 13:109–113 fungal infection on chest radiography or computed tomographic scan, from whom the Aspergillus sp. was Keywords: chronic pulmonary aspergillosis, immunocompetent, laboratory isolated from respiratory sample (broncho-alveolar wash, parameters bronchoscopic sample, etc.) and diagnosed with CPA from aDepartment of Microbiology, Father Muller Medical College Hospital, 2008 to 2016, were included in the study.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis: a Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2
    Review Allergy Asthma Immunol Res. 2016 July;8(4):282-297. http://dx.doi.org/10.4168/aair.2016.8.4.282 pISSN 2092-7355 • eISSN 2092-7363 Allergic Bronchopulmonary Aspergillosis: A Perplexing Clinical Entity Ashok Shah,1* Chandramani Panjabi2 1Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India 2Department of Respiratory Medicine, Mata Chanan Devi Hospital, New Delhi, India This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. In susceptible individuals, inhalation of Aspergillus spores can affect the respiratory tract in many ways. These spores get trapped in the viscid spu- tum of asthmatic subjects which triggers a cascade of inflammatory reactions that can result in Aspergillus-induced asthma, allergic bronchopulmo- nary aspergillosis (ABPA), and allergic Aspergillus sinusitis (AAS). An immunologically mediated disease, ABPA, occurs predominantly in patients with asthma and cystic fibrosis (CF). A set of criteria, which is still evolving, is required for diagnosis. Imaging plays a compelling role in the diagno- sis and monitoring of the disease. Demonstration of central bronchiectasis with normal tapering bronchi is still considered pathognomonic in pa- tients without CF. Elevated serum IgE levels and Aspergillus-specific IgE and/or IgG are also vital for the diagnosis. Mucoid impaction occurring in the paranasal sinuses results in AAS, which also requires a set of diagnostic criteria. Demonstration of fungal elements in sinus material is the hall- mark of AAS.
    [Show full text]