Intraoral Radiographic Anatomy

Total Page:16

File Type:pdf, Size:1020Kb

Intraoral Radiographic Anatomy It’s time for… Intraoral Radiographic Anatomy Steven R. Singer, DDS 212.305.5674 [email protected] “Alas, poor Yorick!” Radiographic Contrast Radiographic Contrast The difference in densities between adjacent areas of the image Influenced by: ! Subject contrast ! Film contrast ! Beam energy and intensity ! Fog and scatter radiation Radiographic Contrast Radiographic Contrast By adjusting kVp, contrast can be By adjusting kVp, contrast can be varied varied ! High contrast films can enhance ! Low contrast films can enhance detection of lesions where subject contrast detection of subtle findings. between the lesion and healthy tissue is low ! Examples include: ! Examples include: " Calculus " Caries " Soft tissue outlines " Apical lucencies " Small changes in crestal bone 1 Radiographic Density Radiographic Density The overall degree of darkening of the Exposure radiographic image. Three factors ! Determines the # of photons that are which determine radiographic density absorbed by the emulsion are: ! Four exposure factors ! Exposure " kVp " ma ! Subject thickness " Impulses (time) ! Object density " Source to film distance Radiographic Density Radiographic Density Subject thickness Object Density. The denser the object and higher the atomic #, the better the absorption of photons. Radiographic Density Subject Contrast In decreasing order of density: Influenced by: ! Metallic restorations Thickness ! Enamel Density ! Dentin Atomic # ! Bone ! Fat/fluid Relatively differences in Subject ! Air Contrast of oral structures allow the image to be seen 2 Subject Contrast Definitions Radiodensity: The degree to which the subject attenuates the x-ray beam Radiopacity: An area of the image where the beam has been relatively highly attenuated Radiolucency: An area of the image where the beam has been relatively minimally attenuated Radiolucencies Radiopacities Marrow spaces Fossae Bone Teeth Foramina Meati Condyles Enamel Canals (N.B. the Sinuses Eminences Dentin Processes walls of the canal Sutures Cementum Tuberosities are opaque) Dental pulp Fissures Walls of canals Tubercles Ridges Trabeculae The Teeth The Teeth Enamel 90% mineralized Enamel Dentin 75% mineralized Dentin Cementum 50% mineralized Pulp Pulp Soft tissue 3 The Teeth The Teeth Cervical burnout Concavities Supporting Structures of the The Teeth Teeth Trabecular bone Fluting of root surfaces Bone in the Anterior Maxilla Bone in the Posterior Maxilla Trabeculae are thin and numerous Similar pattern to anterior maxilla Small marrow spaces Slightly larger marrow spaces 4 Bone in the Anterior Mandible Bone in the Posterior Mandible Trabeculae are somewhat thicker than in the maxilla Horizontal Plates Plates are in a horizontal pattern Larger marrow spaces than anterior mandible Supporting Structures of the Supporting Structures of the Teeth Teeth Crestal bone Supporting Structures of the Supporting Structures of the Teeth Teeth Lamina dura The joint between Periodontal the tooth and the ligament space bone is a gomphosis. The periodontal ligament allows for movement around a center of rotation. 5 Supporting Structures of the Landmarks Teeth Lamina dura and PDL facial view palatal view Landmarks in the Maxilla f b c f Intermaxillary suture e Nasal Fossa a d e Nose Lateral fossa a = nasal septum e = incisive foramen b = inferior concha f = median palatal c = nasal fossa suture d = anterior nasal spine Landmarks in the Maxilla Pterodactyl gr. pteron, wing Incisive foramen Median palatine suture Pterygoid plates 6 Landmarks in the Maxilla Coronoid Process Anterior nasal spine From the Greek word for “Crow’s Beak” Zygomatic process Pterygoid plates Coronoid process of the mandible Nasolabial fold Maxillary Incisor Landmarks in the Maxilla a Latyeral pterygoid b plate a = nasal septum c b = inferior concha Pterygo-maxillary d c = nasal fossa fissure e d = anterior nasal spine Zygomatico- e = incisive foramen f = intermaxillary suture temporal suture g = soft tissue of nose Zygomatic process f of the maxilla g facial view Landmarks in the Maxilla Intermaxillary suture Soft tissue of the nose Incisive foramen Nasal fossa 7 Landmarks in the Maxilla Landmarks in the Maxilla Soft tissue of the The red arrows nose point to the soft tissue of the nose. The green arrows identify the lip line. Landmarks in the Maxilla Landmarks in the Maxilla Foramina of Nasopalatine canal von Ebner Landmarks in the Maxilla Landmarks in the Maxilla Incisive foramen Incisive foramen 8 Maxillary Canine Landmarks in the Maxilla a b a = floor of nasal fossa c b = maxillary sinus c = lateral fossa d = soft tissue of the nose d Anterior nasal spine facial view Landmarks in the Maxilla Lateral fossa Lateral fossa. The radiolucency results from a depression above and posterior to the lateral incisor. To help rule out pathoses, look for an intact lamina dura surrounding the adjacent teeth. Maxillary Premolar Landmarks in the Maxilla a b c Nasal Fossa a = zygomatic process of maxilla b = sinus septum c = sinus recess d = floor of the maxillary sinus e = maxillary sinus d e 9 Maxillary Premolar facial view a b c b b c d c d a = zygomatic a a process of maxilla b = sinus septum c = sinus recess d = floor of the maxillary sinus e = maxillary sinus a = zygomatic process b = sinus recess d e c = sinus septum d = floor of the maxillary sinus Maxillary Molar Landmarks in the Maxilla Nasolabial fold a = maxillary tuberosity e f b = coronoid process c = hamular process d d = pterygoid plates c e = zygoma b a f = maxillary sinus Landmarks in the Maxilla Landmarks in the Maxilla Zygomatic Process and Maxillary Sinus Zygomatic Process and Maxillary Sinus 10 Pneumatization. From the Latin “filled with air” Expansion of sinus wall into surrounding bone, usually in areas where teeth have been lost prematurely. Increases with age. Mucositis Halo effect Landmarks in the Maxilla Landmarks in the Maxilla Maxillary tuberosity Hamular process Coronoid process of the mandible Hamular process Tuberosity Hamular process Hamular process Tuberosity Coronoid Process facial view Landmarks in the Mandible Mental ridges Mental foramen Mental fossa Maxillary Tuberosity. The rounded elevation located at the posterior aspect of both sides of the maxilla. 11 Mandibular Incisor The Thinker Auguste Rodin, 1881 a. lingual foramen b. genial tubercles c. mental ridge d. mental fossa d a bc Landmarks in the Mandible Landmarks in the Mandible Mental foramen Mylohyoid (Internal Inferior alveolar oblique) ridge (Mandibular) Submandibular canal gland fossa Inferior border of the mandible Landmarks in the Mandible Landmarks in the Mandible External oblique Genial tubercles ridge Mental Ridge Inferior border of the mandible 12 lingual view lingual view facial view Lingual view Facial view Landmarks in the Mandible d c b a a b a a = lingual foramen c = mental ridge a = Lingual foramen b = Mental ridge b = genial tubercles d = mental fossa facial view Mandibular Canine a = mental ridge c b = genial tubercles/ lingual foramen c = mental foramen Mental fossa. This represents a depression on the b labial aspect of the mandible overlying the roots of the a incisors. The resulting radiolucency may be mistaken for pathosis. facial view lingual view lingual view dbb2 da dc db1 Lingual foramen/ genial tubercles. a = mental ridge b1 = genial tubercles c = mental foramen b2 = lingual foramen 13 facial view Landmarks in the Mandible Inferior border of the mandible The red arrows identify the mandibular canal and the blue arrow points to the mental foramen. Mandibular Premolar Landmarks in the Mandible Submandibular gland fossa a = mylohyoid ridge b = mandibular canal c = submandibular gland fossa d = mental foramen Mandibular Molar Landmarks in the Mandible Mental Foramen and Inferior Alveolar Canal a = external oblique ridge b = mylohyoid ridge c = mandibular canal d = submandibular gland fossa 14 facial view Landmarks in the Mandible a bb External oblique ridge Internal oblique ridge (a.k.a mylohyoid ridge) c d a = external oblique ridge b = mylohyoid ridge c = mandibular canal d = submandibular gland fossa lingual view b a d c Mylohyoid (internal oblique) ridge. This radiopaque ridge is the attachment for the mylohyoid a = external oblique ridge muscle. The ridge runs downward and forward from the b = mylohyoid ridge third molar region to the area of the premolars. c = mandibular canal (inferior border) d = submandibular gland fossa facial view External oblique ridge. A continuation of the anterior border of the ramus, passing downward and forward on The mandibular canal (red arrows identify inferior border of the buccal side of the mandible. It appears as a distinct canal) usually runs very close to the roots of the molars, radiopaque line which usually ends anteriorly in the area especially the third molar. of the first molar. Serves as an attachment of the buccinator muscle. (The red arrows point to the mylohyoid ridge). 15 Restorations Restorations Gold Metallic Restorations Amalgam Bases and liners Titanium Stainless Steel Gutta Percha Porcelain Composites Cements and Liners Restorations Restorations Implant restorations Stainless steel post Root-end amalgam Restorations Restorations Porcelain Composites: Radiolucent and Radiopaque Gold Gutta percha Stainless steel 16 Restorations Acknowledgement Posterior composites Thanks to OSU College of Dentistry for the use of some of the slides, diagrams, and radiographs. Questions Thank you! Thanks! 17.
Recommended publications
  • Assessment of Position of Mandibular and Genial Foramen in North Indian
    Rathi S et al. Position of Mandibular and Genial Foramen. Journal of Advanced Medical and Dental Sciences Research @Society of Scientific Research and Studies Journal home page: www.jamdsr.comdoi: 10.21276/jamdsr (e) ISSN Online: 2321-9599; (p) ISSN Print: 2348-6805 Original Article Assessment of Position of Mandibu lar and Genial Foramen in North Indian Human Mandibles Sunita Rathi, Kumar Vaibhaw 1Assistant Professor, Department Of Anatomy, 2Assistant Professor, Department Of Pathology, Rama Medical College Hospital & Research Centre, Hapur, U.P. ABSTRACT: Introduction: The mandibular foramen is a prominent foramen and its knowledge is of paramount importance during dental procedures of lower jaw. Most common of the accessory foramina are the foramina present on the internal aspect of the bone. They are named as lingual foramina if the foramina are present in the midline, superior, or within the genial tubercle. The present study was undertaken to examine the incidence of the Mandibular Foramen and lingual (genial) foramen and their morphological variants by examining adult north Indian human mandibles from anthropology museum. Material and Methods: The present study was carried on 500 adult north Indian human mandibles from anthropology museum,. They were carefully examined and the incidence of the Mandibular Foramen and lingual (genial) foramen and their morphological variants was observed and noted after visual examination. Data obtained was studied and tabulated. Results: The position of mandibular foramen was more common below the midpoint, 451 cases (90.2%) while it was less common at the midpoint, 49 (9.8%) cases. In none of the mandibles examined, the position of the mandibular foramen was found above the midpoint.
    [Show full text]
  • The Appearance of Foramen in the Internal Aspect of the Mental
    Okajimas Folia Anat. Jpn., 82(3): 83–88, November, 2005 The Appearance of Foramen in the Internal Aspect of the Mental Region of Mandible from Japanese Cadavers and Dry Skulls Under Macroscopic Observation and Three-dimensional CT Images By Shunji YOSHIDA1),TaisukeKAWAI2),KoichiroOKUTSU2), Takashi YOSUE2), Hitoshi TAKAMORI3), Masataka SUNOHARA and Iwao SATO1) 1Department of Anatomy, 2Department of Oral and Maxillofacial Radiology School of Dentistry at Tokyo, 3Oral Implant Clinic, Nippon Dental University at Tokyo, Tokyo, Japan – Received for Publication, June 28, 2005 – Key Words: Lingual foramen, CT, Mandible Summary: The lingual canal with foramen displays different appearances on the internal surfaces of mandible as con- firmed by macroscopic observation and computerized tomography (CT). The lingual canal was observed in the inside of mental region run to the outside of lingual foramen, which is extend internally from mandibular canal in right and left sides of the mandible in cadavers (13 sides out of 88 sides) and in dry skulls (43 out of 94 sides) examined. The spinal foramen connected with mental canal occurred at the midline of mandible in 6 cases (6 out of 47 cases) in dry skulls. In this small foramen, the inferior alveolar artery give some branches to the inside of mental region at the anterior man- dible and which may be run pass through the lingual canal to the lingual foramen, where they emerge to enter the mylohyoid or anterior belly of digastric muscles. The observations of these are important considerations for surgical placement of dental implants in the region in the mandible. The anatomical location, course and arrange- treatments.
    [Show full text]
  • Branches of the Maxillary Artery of the Domestic
    Table 4.2: Branches of the Maxillary Artery of the Domestic Pig, Sus scrofa Artery Origin Course Distribution Departs superficial aspect of MA immediately distal to the caudal auricular. Course is typical, with a conserved branching pattern for major distributing tributaries: the Facial and masseteric regions via Superficial masseteric and transverse facial arteries originate low in the the masseteric and transverse facial MA Temporal Artery course of the STA. The remainder of the vessel is straight and arteries; temporalis muscle; largely unbranching-- most of the smaller rami are anterior auricle. concentrated in the proximal portion of the vessel. The STA terminates in the anterior wall of the auricle. Originates from the lateral surface of the proximal STA posterior to the condylar process. Hooks around mandibular Transverse Facial Parotid gland, caudal border of the STA ramus and parotid gland to distribute across the masseter Artery masseter muscle. muscle. Relative to the TFA of Camelids, the suid TFA has a truncated distribution. From ventral surface of MA, numerous pterygoid branches Pterygoid Branches MA Pterygoideus muscles. supply medial and lateral pterygoideus muscles. Caudal Deep MA Arises from superior surface of MA; gives off masseteric a. Deep surface of temporalis muscle. Temporal Artery Short course deep to zygomatic arch. Contacts the deep Caudal Deep Deep surface of the masseteric Masseteric Artery surface of the masseter between the coronoid and condylar Temporal Artery muscle. processes of the mandible. Artery Origin Course Distribution Compensates for distribution of facial artery. It should be noted that One of the larger tributaries of the MA. Originates in the this vessel does not terminate as sphenopalatine fossa as almost a terminal bifurcation of the mandibular and maxillary labial MA; lateral branch continuing as buccal and medial branch arteries.
    [Show full text]
  • Anatomical Characteristics and Visibility of Mental Foramen and Accessory Mental Foramen: Panoramic Radiography Vs
    Med Oral Patol Oral Cir Bucal. 2015 Nov 1;20 (6):e707-14. Radiographic study of the mental foramen variations Journal section: Oral Surgery doi:10.4317/medoral.20585 Publication Types: Research http://dx.doi.org/doi:10.4317/medoral.20585 Anatomical characteristics and visibility of mental foramen and accessory mental foramen: Panoramic radiography vs. cone beam CT Juan Muinelo-Lorenzo 1, Juan-Antonio Suárez-Quintanilla 2, Ana Fernández-Alonso 1, Jesús Varela-Mallou 3, María-Mercedes Suárez-Cunqueiro 4 1 PhD Student, Department of Stomatology, Medicine and Dentistry School, University of Santiago de Compostela, Spain 2 Associate Professor, Department of Anatomy, Medicine and Dentistry School, University of Santiago de Compostela, Spain 3 Professor and Chairman. Department of Social Psychology, Basic Psychology and Methodology, Psychology School, University of Santiago de Compostela, Spain 4 Associate Professor, Department of Stomatology, Medicine and Dentistry School, University of Santiago de Compostela, Spain Correspondence: Stomatology Department Medicine and Dentistry School University of Santiago de Compostela C/ Entrerrios S/N 15872 Muinelo-Lorenzo J, Suárez-Quintanilla JA, Fernández-Alonso A, Va- Santiago de Compostela, Spain rela-Mallou J, Suárez-Cunqueiro MM. Anatomical characteristics and [email protected] visibility of mental foramen and accessory mental foramen: Panoramic radiography vs. cone beam CT. Med Oral Patol Oral Cir Bucal. 2015 Nov 1;20 (6):e707-14. http://www.medicinaoral.com/medoralfree01/v20i6/medoralv20i6p707.pdf Received: 05/01/2015 Accepted: 05/05/2015 Article Number: 20585 http://www.medicinaoral.com/ © Medicina Oral S. L. C.I.F. B 96689336 - pISSN 1698-4447 - eISSN: 1698-6946 eMail: [email protected] Indexed in: Science Citation Index Expanded Journal Citation Reports Index Medicus, MEDLINE, PubMed Scopus, Embase and Emcare Indice Médico Español Abstract Background.
    [Show full text]
  • Anatomy of Maxillary and Mandibular Local Anesthesia
    Anatomy of Mandibular and Maxillary Local Anesthesia Patricia L. Blanton, Ph.D., D.D.S. Professor Emeritus, Department of Anatomy, Baylor College of Dentistry – TAMUS and Private Practice in Periodontics Dallas, Texas Anatomy of Mandibular and Maxillary Local Anesthesia I. Introduction A. The anatomical basis of local anesthesia 1. Infiltration anesthesia 2. Block or trunk anesthesia II. Review of the Trigeminal Nerve (Cranial n. V) – the major sensory nerve of the head A. Ophthalmic Division 1. Course a. Superior orbital fissure – root of orbit – supraorbital foramen 2. Branches – sensory B. Maxillary Division 1. Course a. Foramen rotundum – pterygopalatine fossa – inferior orbital fissure – floor of orbit – infraorbital 2. Branches - sensory a. Zygomatic nerve b. Pterygopalatine nerves [nasal (nasopalatine), orbital, palatal (greater and lesser palatine), pharyngeal] c. Posterior superior alveolar nerves d. Infraorbital nerve (middle superior alveolar nerve, anterior superior nerve) C. Mandibular Division 1. Course a. Foramen ovale – infratemporal fossa – mandibular foramen, Canal -> mental foramen 2. Branches a. Sensory (1) Long buccal nerve (2) Lingual nerve (3) Inferior alveolar nerve -> mental nerve (4) Auriculotemporal nerve b. Motor (1) Pterygoid nerves (2) Temporal nerves (3) Masseteric nerves (4) Nerve to tensor tympani (5) Nerve to tensor veli palatine (6) Nerve to mylohyoid (7) Nerve to anterior belly of digastric c. Both motor and sensory (1) Mylohyoid nerve III. Usual Routes of innervation A. Maxilla 1. Teeth a. Molars – Posterior superior alveolar nerve b. Premolars – Middle superior alveolar nerve c. Incisors and cuspids – Anterior superior alveolar nerve 2. Gingiva a. Facial/buccal – Superior alveolar nerves b. Palatal – Anterior – Nasopalatine nerve; Posterior – Greater palatine nerves B.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
    ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA.
    [Show full text]
  • A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
    www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail.
    [Show full text]
  • Inferior Alveolar Nerve Trajectory, Mental Foramen Location and Incidence of Mental Nerve Anterior Loop
    Med Oral Patol Oral Cir Bucal. 2017 Sep 1;22 (5):e630-5. CBCT anatomy of the inferior alveolar nerve Journal section: Oral Surgery doi:10.4317/medoral.21905 Publication Types: Research http://dx.doi.org/doi:10.4317/medoral.21905 Inferior alveolar nerve trajectory, mental foramen location and incidence of mental nerve anterior loop Miguel Velasco-Torres 1, Miguel Padial-Molina 1, Gustavo Avila-Ortiz 2, Raúl García-Delgado 3, Andrés Ca- tena 4, Pablo Galindo-Moreno 1 1 DDS, PhD, Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain 2 DDS, MS, PhD, Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, USA 3 Specialist in Dental and Maxillofacial Radiology. Private Practice. Granada, Spain 4 PhD, Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain Correspondence: School of Dentistry, University of Granada 18071 - Granada, Spain [email protected] Velasco-Torres M, Padial-Molina M, Avila-Ortiz G, García-Delgado R, Catena A, Galindo-Moreno P. Inferior alveolar nerve trajectory, mental foramen location and incidence of mental nerve anterior loop. Med Oral Received: 07/03/2017 Accepted: 21/06/2017 Patol Oral Cir Bucal. 2017 Sep 1;22 (5):e630-5. http://www.medicinaoral.com/medoralfree01/v22i5/medoralv22i5p630.pdf Article Number: 21905 http://www.medicinaoral.com/ © Medicina Oral S. L. C.I.F. B 96689336 - pISSN 1698-4447 - eISSN: 1698-6946 eMail: [email protected] Indexed in: Science Citation Index Expanded Journal Citation Reports Index Medicus, MEDLINE, PubMed Scopus, Embase and Emcare Indice Médico Español Abstract Background: Injury of the inferior alveolar nerve (IAN) is a serious intraoperative complication that may occur during routine surgical procedures, such as dental implant placement or extraction of impacted teeth.
    [Show full text]
  • Subacromial Decompression in the Shoulder
    Subacromial Decompression Geoffrey S. Van Thiel, Matthew T. Provencher, Shane J. Nho, and Anthony A. Romeo PROCEDURE 2 22 Indications P ITFALLS ■ Impingement symptoms refractory to at least • There are numerous possible 3 months of nonoperative management causes of shoulder pain that can ■ In conjunction with arthroscopic treatment of a mimic impingement symptoms. All potential causes should be rotator cuff tear thoroughly evaluated prior to ■ Relative indication: type II or III acromion with undertaking operative treatment clinical fi ndings of impingement of isolated impingement syndrome. Examination/Imaging Subacromial Decompression PHYSICAL EXAMINATION ■ Assess the patient for Controversies • Complete shoulder examination with range of • Subacromial decompression in motion and strength the treatment of rotator cuff • Tenderness with palpation over anterolateral pathology has been continually acromion and supraspinatus debated. Prospective studies • Classic Neer sign with anterolateral shoulder have suggested that there is no difference in outcomes with and pain on forward elevation above 90° when without subacromial the greater tuberosity impacts the anterior decompression. acromion (and made worse with internal rotation) • Subacromial decompression • Positive Hawkins sign: pain with internal rotation, performed in association with a forward elevation to 90°, and adduction, which superior labrum anterior- causes impingement against the coracoacromial posterior (SLAP) repair can potentially increase ligament postoperative stiffness. ■ The impingement test is positive if the patient experiences pain relief with a subacromial injection of lidocaine. ■ Be certain to evaluate for acromioclavicular (AC) joint pathology, and keep in mind that there are several causes of shoulder pain that can mimic impingement syndrome. P ITFALLS IMAGING • Ensure that an axillary lateral ■ Standard radiographs should be ordered, view is obtained to rule out an os acromiale.
    [Show full text]
  • Download Download
    1 Contribution of dental private practitioners to 2 publications on anatomical variations using 3 cone beam computed tomography. 4 5 Authors: 6 Hebda A1,*MS, 7 Theys S2 DDS, 8 De Roissart J3 MD, 9 Perez E4 DDS, 10 Olszewski R1,3 DDS,MD,PhD,DrSc 11 Affiliations: 12 1 Oral and maxillofacial surgery research Lab, NMSK, IREC, SSS, UCLouvain, 13 Brussels, Belgium 14 2 Department of pediatric dentistry and special care, Cliniques universitaires saint 15 Luc, UCLouvain, Brussels, Belgium 16 3 Department of oral and maxillofacial surgery, Cliniques universitaires saint Luc, 17 UCLouvain, Brussels, Belgium 18 4 Department of orthodontics, Cliniques universitaires saint Luc, UCLouvain, 19 Brussels, Belgium 20 *Corresponding author: Hebda A, Oral and maxillofacial surgery research Lab, 21 NMSK, IREC, SSS, UCLouvain, Brussels, Belgium, ORCID Id 0000-0001-5111- 22 0021 1 2 [Nemesis] Titre de l’article (PUL - En- tête paire) 23 Disclaimer: the views expressed in the submitted article are our own and not an 24 official position of the institution or funder. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 [Nemesis] Titre de l’article (PUL - En- tête impaire) 3 61 Abstract 62 Objective: To investigate the participation of citizens-dental private practitioner in 63 scientific articles about anatomical variations on dentomaxillofacial CBCT. Our null 64 hypothesis was that private practice practitioners are not involved in publications on 65 anatomical variations using cone beam computed tomography.
    [Show full text]
  • Chapter 2 Implants and Oral Anatomy
    Chapter 2 Implants and oral anatomy Associate Professor of Maxillofacial Anatomy Section, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tatsuo Terashima In recent years, the development of new materials and improvements in the operative methods used for implants have led to remarkable progress in the field of dental surgery. These methods have been applied widely in clinical practice. The development of computerized medical imaging technologies such as X-ray computed tomography have allowed detailed 3D-analysis of medical conditions, resulting in a dramatic improvement in the success rates of operative intervention. For treatment with a dental implant to be successful, it is however critical to have full knowledge and understanding of the fundamental anatomical structures of the oral and maxillofacial regions. In addition, it is necessary to understand variations in the topographic and anatomical structures among individuals, with age, and with pathological conditions. This chapter will discuss the basic structure of the oral cavity in relation to implant treatment. I. Osteology of the oral area The oral cavity is composed of the maxilla that is in contact with the cranial bone, palatine bone, the mobile mandible, and the hyoid bone. The maxilla and the palatine bones articulate with the cranial bone. The mandible articulates with the temporal bone through the temporomandibular joint (TMJ). The hyoid bone is suspended from the cranium and the mandible by the suprahyoid and infrahyoid muscles. The formation of the basis of the oral cavity by these bones and the associated muscles makes it possible for the oral cavity to perform its various functions.
    [Show full text]