Experimental Infections of Broilers with Avian Metapneumovirus Subtype a and B

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Infections of Broilers with Avian Metapneumovirus Subtype a and B Experimental infections of broilers with avian Metapneumovirus subtype A and B Y. H. AUNG1, M. LIMAN1 and S. RAUTENSCHLEIN1* 1Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany. *Corresponding author: [email protected] Avian Metapneumovirus (aMPV) affects both turkeys and chickens. The virus is associated with swollen head syndrome (SHS) in broilers. Most of the studies regarding aMPV have been done in turkeys. Not much is known about the pathogenesis and immune response to aMPV in broilers. Therefore, our objectives were to study the pathogenesis and immune responses of broilers experimentally infected with aMPV subtype A and B. Three groups of 16-day-old commercial broilers were inoculated oculonasally with 104 ciliostatic dose50 (CD50) of turkey isolates aMPV subtype A or aMPV subtype B. Control birds were inoculated with virus free trachea organ culture (TOC) supernatant. Clinical signs started to appear at 4 days post infection (dpi), and reached peak levels at 6-dpi. At 15 and 17 dpi subtype A and B-infected broilers were free of respiratory signs, respectively. Subtype B-infected broilers showed significantly more severe clinical signs than subtype A- infected ones comparing the clinical score index (P < 0.05). The distribution of aMPV in different tissues was investigated by nested RT-PCR. The viral genome was detected in aMPV subtype A infected chickens at 3 and 6-dpi in the upper respiratory tract tissues such as nasal turbinate, Harderian gland and trachea. In subtype B infected chickens the viral genome was detected not only in the upper respiratory tract tissues but also in the lung, spleen and bursa cloacalis. Virus neutralizing antibodies in tracheal washes of infected broilers started to appear at 3 dpi, reached peak levels at 14 dpi and then declined gradually. Serum virus neutralizing antibody titres reached peak levels at 11 dpi, and persisted throughout the experimental period up to 24 dpi. The effect of aMPV-infection on T cell activity was determined. Splenic T cells were stimulated with concanavalin A (ConA), a T cell mitogen, and the ability of T cells to release IFN gamma was detected by ELISA. At 3 and 6 dpi, aMPV-infected birds showed a significant enhanced T cell response following ConA-stimulation in comparison to non-infected broilers (P < 0.05). Overall, our study demonstrates that broilers are susceptible to infection with turkey isolates aMPV subtype A and B, and the upper respiratory tract was the main target tissue for aMPV in broilers. aMPV B was detected in other systemic tissues such as lung, spleen and bursa cloacalis. Both subtypes stimulated not only systemic immunity but also local antibody production in the respiratory tract of broilers. Keywords: Avian Metapneumovirus; pathogenesis; immune response; commercial broilers Introduction Avian Metapneumovirus (aMPV) causes Turkey Rhinotracheitis (TRT) in turkeys. The virus is also associated with swollen head syndrome (SHS) in broilers and broiler breeders. Initially, SHS in broiler was hypothesized to be due to combined infection of coronavirus and Escherichia coli (Morley and Thomson, 1984). Later TRT-like virus was isolated from hens and guinea fowl in France and from broilers in South Africa (Picault et al., 1987, Buys et al., 1989). 2 SHS due to aMPV has been reported in broilers and broiler breeders in United Kingdom (O’ Brien, 1985, Pattison et al., 1989, Jones et al., 1991, Gough et al., 1994), in Israel (Perelman, 1988), in Canada (Zellen, 1988), in Germany (Hafez and Löhren, 1990) in South Africa (Maharaj et al., 1994), in Taiwan (Lu et al., 1994), in Japan (Tanaka et al., 1995, Mase et al., 2003), and in Saudi Arabia (Al- Ankari, 2004). Although SHS in broilers due to aMPV has been reported from many countries, immune mechanism and pathogenesis of aMPV infections in broilers have not been well understood. Therefore, our objectives were to investigate pathogenesis and immune responses to aMPV subtype A and B infections in commercial broilers. Materials and methods Chickens One hundred and twenty one-day-old commercial broilers (Ross type) were kept in the isolation house, Clinic for Poultry, University of Veterinary Medicine Hannover. Viruses A virulent aMPV subtype A strain (BUT 8544) and a virulent Italian subtype B strain (kindly provided by Dr. R. C. Jones, Liverpool, UK), both isolated from turkeys, were propagated and titrated in chicken tracheal organ culture (TOC) (Cook et al., 1976). For virus neutralization (VN) test aMPV subtype A strain BUT 8544 (Wilding et al., 1986), which was adapted to chicken embryo fibroblasts (CEF), was used (Hafez, 1990). Detection of aMPV in tissue samples Detection of aMPV was done by subtyping nested RT-PCR (Cavanagh et al., 1999). Virus neutralization test and ELISA Sera and tracheal washes (TW) were tested for aMPV-specific neutralizing antibodies following previously published procedures (Baxter-Jones et al., 1989; Obi et al., 1997). In addition, sera were tested for aMPV-specific antibodies using a commercially available aMPV-ELISA system (ART Ab Test Kit©, BioCheck B.V.). Isolation and in vitro stimulation of splenic leukocytes Leukocytes were isolated by density centrifugation (Archambault et al., 1976) from single cell suspensions of spleens. For in vitro culture, triplicates of 106 spleen cells/well were incubated in 96- well tissue culture plates with 5 µg Concanavalin A (ConA)/ml medium (RPMI 1640 supplemented with 10 % foetal bovine serum, antibiotics and L-glutamine) or medium without ConA. After 48 h of incubation at 41°C and at 5 % CO2, supernatants were harvested and tested for IFN-γ using a commercially available IFN-γ capturing ELISA-system (Cytosets©, BioSource). Samples were diluted 8-fold to obtain OD-values in the linear range of IFN-γ standard dilution series’ regression curve. The IFN-γ-concentrations are expressed in pg/ml. Experimental Trial At 16 days of age, when maternally derived aMPV antibodies of birds had waned, the chickens 4 were divided into three groups (n=40). Group A chickens were inoculated oculonasally with 10 CD50 4 of aMPV subtype A, group B chickens were inoculated with 10 CD50 of aMPV subtype B, group C chickens received virus-free TOC supernatant. Three groups of chickens were maintained in separate isolation units, where feed and drinking water were available ad libitum. Clinical signs in broilers were observed daily up to 24 dpi. The clinical scores were determined according to the scoring system previously described (Jones et al., 1992, Naylor and Jones, 1994): score 0: no clinical signs; score 1: clear nasal exudates; score 2: turbid nasal exudates; and score 3: swollen infraorbital sinus and/or frothy eyes. Five chickens from each group were exsanguinated at 3, 6, 11, 14, 17, 20, and 24 dpi. Spleen, bursa cloacalis, lung, trachea, Harderian gland, and nasal turbinate were collected, and RNA was isolated from each sample. Pools from isolated total RNA were made per organ, per group, and per day and aMPV was detected by subtyping nested RT-PCR. Tracheas were removed carefully, and tracheal washings with 500µl of PBS supplemented with antibiotics were conducted thoroughly. Eight serum samples and 5 tracheal washes per group were 3 investigated for VN and ELISA antibodies against aMPV. Spleens were harvested for ex vivo culture of leukocytes. Statistical analysis Group responses of infected and virus-free birds were analyzed by student’s T-test or analysis of variance (ANOVA). P-values < 0.05 were considered as significant. Results and discussion In this study we compared the pathogenesis of aMPV-A and aMPV-B turkey isolates in broilers. Both infected groups began to develop mild clinical signs such as depression, nasal exudates, swollen infraorbital sinus and frothy eyes at 4 dpi. The peak of clinical signs was seen at 6 dpi, when 15 to 27 % of aMPV A and aMPV Binfected birds showed clinical signs, respectively. Clinical signs ceased at 14 dpi and 16 dpi in group A and B, respectively. Chickens from virus free group did not show any clinical signs throughout the experiment (Figure 1). 50 45 40 35 30 Group A 25 Group B Group C 20 15 10 Percent of birds showing clinical signs 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Days Post Infection Figure 1 Percentage of chickens showing clinical symptom after experimental infection with aMPV 4 Group A: Chickens were inoculated oculonasally with 10 CD50 of aMPV subtype A, Group B: Chickens were inoculated 4 oculonasally with 10 CD50 of aMPV subtype B, Group C: Chickens received TOC media only. aMPV-A infected birds showed less severe clinical signs than aMPV-B infected broilers with a maximum clinical score index of 0.36 and 0.56 at 6 dpi, respectively (data not shown). In comparing the clinical score index throughout the observation period of 24 days aMPV subtype B infected chickens showed significantly more clinical signs than aMPV subtype A inoculated birds (P<0.05). Both aMPV-subtypes induced mild clinical lesions in broilers under experimental conditions, but these were milder than in turkeys as it has been shown with the same virus strains before (Liman et al., 2004). 4 The viral genome of aMPV was detected using a subtyping nested RT-PCR (Table 1). Table 1. Detection of the aMPV viral genome by nested RT-PCR Groups at days post infection Tissue 3 6 11 14 samples A B C A B C A B C A B C Nasal turbinate + + - + + - - - - - - - Harderian gland + + - + + - - - - - - - Trachea - + - + + - - + - - - - Lung - - - - + - - - - ND ND ND Spleen - - - - + - - - - ND ND ND Bursa clocalis - - - - + - - - - ND ND ND 4 + = aMPV positive, - = aMPV negative, ND = Not done, A: Chickens were inoculated oculonasally with 10 CD50 of aMPV 4 subtype A, B: Chickens were inoculated oculonasally with 10 CD50 of aMPV subtype B, C: Chickens received TOC media only.
Recommended publications
  • Metapneumovirus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Erasmus University Digital Repository Metapneumovirus determinants of host range and replication Miranda de Graaf ISBN: 978-90-9023746-6 The research described in this thesis was conducted at the Department of Virology of Erasmus MC, Rotterdam, The Netherlands, with financial support from the framework five grant “Hammocs” from the European Union and MedImmune Vaccines, USA. Printing of this thesis was financially supported by: Vironovative B.V., Viroclinics B.V., Greiner Bio-One. Cover art by Rosanne van der Meer and Miranda de Graaf Cartoons by Dirk-Jan de Graaf (p 61 and 143) Layout design by Aukje van Meeteren Printed by PrintPartners Ipskamp B.V Metapneumovirus determinants of host range and replication Metapneumovirus determinanten van gastheerspecificiteit en replicatie Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op donderdag 15 januari 2009 om 13.30 uur door: Miranda de Graaf geboren te Bergen (N.H.) Promotiecommissie Promotoren: Prof.dr. R.A.M. Fouchier Prof.dr. A.D.M.E. Osterhaus Overige leden: Prof.dr. A. van Belkum Prof.dr. M.P.G. Koopmans Prof.dr. B.K. Rima CONTENTS Page Chapter 1. General Introduction 1 Chapter 2. Recovery of human metapneumovirus genetic lineages A and B from 17 cloned cDNA Journal of Virology, 2004 Chapter 3. An improved plaque reduction virus neutralization assay for human 33 metapneumovirus Journal of Virological Methods, 2007 Chapter 4.
    [Show full text]
  • Human Metapneumovirus
    F1000Research 2018, 7(F1000 Faculty Rev):135 Last updated: 17 JUL 2019 REVIEW Human metapneumovirus - what we know now [version 1; peer review: 2 approved] Nazly Shafagati, John Williams Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA First published: 01 Feb 2018, 7(F1000 Faculty Rev):135 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.12625.1) Latest published: 01 Feb 2018, 7(F1000 Faculty Rev):135 ( https://doi.org/10.12688/f1000research.12625.1) Reviewer Status Abstract Invited Reviewers Human metapneumovirus (HMPV) is a leading cause of acute respiratory 1 2 infection, particularly in children, immunocompromised patients, and the elderly. HMPV, which is closely related to avian metapneumovirus subtype version 1 C, has circulated for at least 65 years, and nearly every child will be infected published with HMPV by the age of 5. However, immunity is incomplete, and 01 Feb 2018 re-infections occur throughout adult life. Symptoms are similar to those of other respiratory viral infections, ranging from mild (cough, rhinorrhea, and fever) to more severe (bronchiolitis and pneumonia). The preferred method F1000 Faculty Reviews are written by members of for diagnosis is reverse transcription-polymerase chain reaction as HMPV the prestigious F1000 Faculty. They are is difficult to culture. Although there have been many advances made in the commissioned and are peer reviewed before past 16 years since its discovery, there are still no US Food and Drug publication to ensure that the final, published version Administration-approved antivirals or vaccines available to treat HMPV. Both small animal and non-human primate models have been established is comprehensive and accessible.
    [Show full text]
  • Metapneumovirus Determinants of Host Range and Replication
    Metapneumovirus determinants of host range and replication Miranda de Graaf ISBN: 978-90-9023746-6 The research described in this thesis was conducted at the Department of Virology of Erasmus MC, Rotterdam, The Netherlands, with financial support from the framework five grant “Hammocs” from the European Union and MedImmune Vaccines, USA. Printing of this thesis was financially supported by: Vironovative B.V., Viroclinics B.V., Greiner Bio-One. Cover art by Rosanne van der Meer and Miranda de Graaf Cartoons by Dirk-Jan de Graaf (p 61 and 143) Layout design by Aukje van Meeteren Printed by PrintPartners Ipskamp B.V Metapneumovirus determinants of host range and replication Metapneumovirus determinanten van gastheerspecificiteit en replicatie Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op donderdag 15 januari 2009 om 13.30 uur door: Miranda de Graaf geboren te Bergen (N.H.) Promotiecommissie Promotoren: Prof.dr. R.A.M. Fouchier Prof.dr. A.D.M.E. Osterhaus Overige leden: Prof.dr. A. van Belkum Prof.dr. M.P.G. Koopmans Prof.dr. B.K. Rima CONTENTS Page Chapter 1. General Introduction 1 Chapter 2. Recovery of human metapneumovirus genetic lineages A and B from 17 cloned cDNA Journal of Virology, 2004 Chapter 3. An improved plaque reduction virus neutralization assay for human 33 metapneumovirus Journal of Virological Methods, 2007 Chapter 4. Generation of temperature-sensitive human metapneumovirus strains 45 that provide protective immunity in hamsters Journal of General Virology, 2008 Chapter 5.
    [Show full text]
  • Bruce Stewart Seal 2. Mailing Address: 19550 Sugar Mill Loop Bend, OR
    A. PERSONAL DATA 1. Full name: Bruce Stewart Seal 2. Mailing Address: 19550 Sugar Mill Loop Bend, OR 97702 Mobile Telephone: 1 (706) 540-4936 Email: [email protected] or [email protected] 3. Faculty rank: Adjunct and Instructor, Biology Program; Honors College Faculty Oregon State University, Cascades 1500 SW Chandler Avenue Bend, Oregon 97702 http://osucascades.edu/people/bruce-seal http://osucascades.edu/academics/biology Adjunct Graduate Faculty appointment (1996 – 2016) Department of Infectious Diseases College of Veterinary Medicine University of Georgia, Athens http://www.vet.uga.edu/ID B. SCHOLARLY COMPETENCE 1. Education: 1986 University of Nevada, Reno Ph.D. in Biochemistry Minor in Microbiology 1978 University of Nevada, Reno M.S. in Animal Physiology Minor in Biochemistry 1974 University of Nevada, Reno B.S. in Zoology 2. M.S. thesis title: The effect of boron in drinking water on the laboratory rat. 3. PhD dissertation title: Biochemical studies of bovine herpesvirus 1 DNA: Chromatin structure of infected cells, restriction endonuclease analysis of virus DNA and nucleic acid homology among isolates. 4. Academic and professional positions held: Dec 2014-present Adjunct and part-time Instructor, Biology Program and Honors College Faculty, Oregon State University Cascades campus, Bend OR 97701 USA 2004-2014 Supervisory Microbiologist/Research Leader, Poultry Microbiological Safety Research Unit, Russell Research Center, ARS, USDA, Athens, GA USA; NOTE: Personal Safety Level 2 (PSL2) Security Clearance for persons in
    [Show full text]
  • Serological Aspects of Avian Metapneumovirus Infection in Kazakhstan
    VETERINARY MEDICINE SEROLOGICAL ASPECTS OF AVIAN METAPNEUMOVIRUS INFECTION IN KAZAKHSTAN Assylbek Mussoyev1, Nygmet Assanov1, Galiya Mussina2, Abylai Sansyzbai1, Anda Valdovska3 1Kazakh National Agrarian University 2UNIVET LLP, Kazakhstan 3Latvia University of Agriculture [email protected] Abstract Avian metapneumovirus (AMPV), formerly known as avian pneumovirus (APV) is epizootic agent of turkey rhinotracheitis (TRT) and swollen head syndrome (SHS) in turkeys and chickens. The infection primarily affects the upper respiratory tract of young birds (broilers), while also decreases egg production of adult hens. Thus, the development of infection in susceptible birds of any age can cause serious economic losses. The purpose of this study is to test serums from broilers and hens for the presence of antibodies against the avian metapneumovirus. In this series of studies 317 serum samples taken from one 1 day to 75 weeks old birds were tested. Thus, on the basis of serological tests of blood serum and of chicken flocks and broilers, we had a preliminary diagnosis on the presence of avian metapneumovirus infection. Serological studies of unvaccinated against avian metapneumovirus infection bird flocks using the ELISA method showed antibody titers on average at 22 859 ± 4133. Avian metapneumovirus infection in birds was accompanied by a decrease in egg production of chicken flocks by 8.0 - 12.8%. Key words: Rhinotracheitis of turkeys, swollen head syndrome, bird’s metapneumovirus, seropositivity, antibodies. Introduction France (Bäyon-Auboyer et al., 2000). Avian metapneumovirus (AMPV), formerly The problem of antigenic structure of the known as avian pneumovirus (APV) is epizootic metapneumovirus besides the big theoretical value agent of turkey rhinotracheitis (TRT) and swollen now represents also essential practical interest in the head syndrome (SHS) in turkeys and chickens.
    [Show full text]
  • Seroprevalence of Avian Metapneumovirus Infection in Broiler and Broiler Breeder Chickens in Iran
    Veterinarni Medicina, 56, 2011 (8): 395–399 Original Paper Seroprevalence of avian metapneumovirus infection in broiler and broiler breeder chickens in Iran M. Rahimi Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran ABSTRACT: Avian metapneumovirus causes an acute highly contagious upper respiratory tract infection pri- marily of turkeys and chickens. The disease can cause significant economic losses in turkey and chicken flocks, particularly when exacerbated by secondary pathogens. The purpose of this study was to determine the prevalence of avian metapneumovirus antibodies in broiler and broiler breeder flocks in Kermanshah province, west of Iran. All the flocks had not been vaccinated against avian metapneumovirus. The province were divided into four geo- graphic areas; southwest, southeast, northwest, and northeast. Flocks in each area, and 14–15 birds in each flock, were randomly sampled. The blood samples were taken regardless of the presence of any signs of respiratory or any other clinical disease in the flocks. A total of 435 blood samples were collected from 30 commercial chicken flocks (24 broiler flocks, aged between six and eight weeks, and six broiler breeder flocks, aged between 56 and 72 weeks). The presence of antibodies against avian metapneumovirus in each serum sample was tested twice by enzyme-linked immunosorbent assay using a commercial kit which was able to determine antibodies against A, B and C subtypes of avian metapneumovirus. Out of 347 serum samples obtained from broiler chickens, 167 (48.1%) were positive to avian metapneumovirus antibodies, which represented 20 (83.3%) of 24 examined broiler flocks. Out of 88 samples obtained from broiler breeder chickens, 82 (93.2%) were positive to avian metapneumovirus antibodies, which belonged to six (100%) of examined broiler breeder flocks.
    [Show full text]
  • Avian Metapneumovirus Studies Using Reverse Genetics
    Avian metapneumovirus studies using Reverse Genetics Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy By MARCO FALCHIERI SEPTEMBER 2012 Brisa strazér i marón! 1 | P a g e TABLE OF CONTENT Page Table of content....…………………………………………………………………2 Abstract……………………………………………………………………………...3 Introduction.………………………………………………………………………..5 1. AVIAN METAPNEUMOVIRUS LITERATURE REVIEW……………10 2. AVIAN METAPNEUMOVIRUS RT-NESTED PCR: A NOVEL FALSE POSITIVE REDUCING INACTIVATED CONTROL VIRUS WITH POTENTIAL APPLICATIONS TO OTHER RNA VIRUSES AND REAL TIME METHODS………………………..….……..………...….…30 3. AN INVESTIGATION INTO VECTORING PROPERTIES OF AVIAN METAPNEUMOVIRUS …………………………………………………45 4. AVIAN METAPNEUMOVIRUSES EXPRESSING INFECTIOUS BRONCHITIS VIRUS GENES ARE STABLE AND INDUCE PARTIAL PROTECTION ……............………………………………....68 5. ATTEMPT TO DEVELOP A REVERSE GENETIC SYSTEM FOR AVIAN METAPNEUMOVIRUS SUBTYPE B …….....................................…....90 6 GENERAL DISCUSSION AND CONCLUSION……………………106 References……...…………………………………………...………………......113 Acknowledgment………………………………………………………………130 2 | P a g e ABSTRACT Avian metapneumovirus (AMPV) is an enveloped negative sense single stranded RNA virus which is a major endemic respiratory pathogen of global domestic poultry. Since reverse genetic (RG) techniques have been applied to this pathogen several reports have investigated the effects of single and multiple genomic mutations and gene deletions or insertions on viral biology. The aim of this study was to gain a better understanding of the viral capacity to accept and in some cases express homologous and heterologous extra sequences. Initially an AMPV subtype A was modified to introduce a homologous 200 bp sequence within the G gene and this recombinant was suggested to be used as a positive control for validating all stages of a previously established RT-nested PCR.
    [Show full text]
  • Common Respiratory Diseases of Poultry in Bangladesh: a Review
    SAARC J. Agric., 18(1): 1-13 (2020) DOI: https://doi.org/10.3329/sja.v18i1.48377 Review COMMON RESPIRATORY DISEASES OF POULTRY IN BANGLADESH: A REVIEW M.Z. Ali* Animal Health Research Division, Bangladesh Livestock Research Institute Savar, Dhaka 1341, Bangladesh ABSTRACT Now-a-days, the poultry production in Bangladesh has become a sustainable and profitable industry. The poultry sectors are contributing to meet the national demand of proteins as well as implementing food security along with employment generation. The poultry industries are frequently affected by respiratory diseases. There are five viral respiratory diseases associated with respiratory systems such as Avian influenza (AI), Newcastle disease (ND), Infectious bronchitis (IB), Infectious laryngotracheitis (ILT), and Avian metapneumovirus (AE). Among them, AI outbreaks have been occurring regularly with changing genetic characters since 2007 and atotal of 556 AI outbreaks have been reported yet in Bangladesh that placed in most AI reporter countries. Bacterial diseases like Mycoplasmosis, Ornithobacterium rhinotracheale, Fowl cholera, and Infectious coryza are mostly prevalent respiratory diseases in Bangladesh. Mycoplasmosis is become a major threat for poultry industry especially Sonali (a cross-bred) type chickens due to poor biosecurity and breeding management. With respect to fungal diseases, Aspergillosis or brooder pneumonia is a highly prevalent respiratory disease in Bangladesh with causing pneumonia in young chickens. However, respiratory diseases are prevalent in higher rates and cause outbreaks frequently. Keywords: Respiratory pathogen, Poultry, Avian influenza, Infectious bronchitis, Mycoplasmosis INTRODUCTION The avian respiratory system begins with nostril and ends with lungs and air sacs. It is divided into the upper and lower respiratory system (Tully, 1995).
    [Show full text]
  • Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds
    viruses Article Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds Marta Canuti 1,* , Ashley N. K. Kroyer 1, Davor Ojkic 2, Hugh G. Whitney 1, Gregory J. Robertson 3 and Andrew S. Lang 1,* 1 Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada 2 Animal Health Laboratory, Laboratory Services Division, University of Guelph, 419 Gordon St., Guelph, ON N1H 6R8, Canada 3 Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3, Canada * Correspondence: [email protected] (M.C.); [email protected] (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.) Received: 15 July 2019; Accepted: 18 August 2019; Published: 21 August 2019 Abstract: Wild birds are recognized viral reservoirs but our understanding about avian viral diversity is limited. We describe here three novel RNA viruses that we identified in oropharyngeal/cloacal swabs collected from wild birds. The complete genome of a novel gull metapneumovirus (GuMPV B29) was determined. Phylogenetic analyses indicated that this virus could represent a novel avian metapneumovirus (AMPV) sub-group, intermediate between AMPV-C and the subgroup of the other AMPVs. This virus was detected in an American herring (1/24, 4.2%) and great black-backed (4/26, 15.4%) gulls. A novel gull coronavirus (GuCoV B29) was detected in great black-backed (3/26, 11.5%) and American herring (2/24, 8.3%) gulls. Phylogenetic analyses of GuCoV B29 suggested that this virus could represent a novel species within the genus Gammacoronavirus, close to other recently identified potential novel avian coronaviral species.
    [Show full text]
  • Avian Metapneumovirus Subtype B Around Europe: a Phylodynamic
    Franzo et al. Vet Res (2020) 51:88 https://doi.org/10.1186/s13567-020-00817-6 RESEARCH ARTICLE Open Access Avian Metapneumovirus subtype B around Europe: a phylodynamic reconstruction Giovanni Franzo1* , Matteo Legnardi1, Giulia Mescolini2, Claudia Maria Tucciarone1, Caterina Lupini2, Giulia Quaglia2, Elena Catelli2 and Mattia Cecchinato1 Abstract Avian Metapneumovirus (aMPV) has been recognized as a respiratory pathogen of turkey and chickens for a long time. Recently, a crescent awareness of aMPV, especially subtype B, clinical and economic impact has risen among European researchers and veterinarians. Nevertheless, the knowledge of its epidemiology and evolution is still limited. In the present study, the broadest available collection of partial G gene sequences obtained from European aMPV-B strains was analyzed using diferent phylodynamic and biostatistical approaches to reconstruct the viral spreading over time and the role of diferent hosts on its evolution. After aMPV-B introduction, approximatively in 1985 in France, the infection spread was relatively quick, involving the Western and Mediterranean Europe until the end of the 1990s, and then spreading westwards at the beginning of the new millennium, in parallel with an increase of viral popula- tion size. In the following period, a wider mixing among aMPV-B strains detected in eastern and western countries could be observed. Most of the within-country genetic heterogeneity was ascribable to single or few introduction events, followed by local circulation. This, combined with the high evolutionary rate herein demonstrated, led to the establishment of genetically and phenotypically diferent clusters among countries, which could afect the efcacy of natural or vaccine-induced immunity and should be accounted for when planning control measure implementation.
    [Show full text]
  • A Minor Field Study on Avian Metapneumovirus
    Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Department of Biomedical Science and Veterinary Public Health A Minor Field Study on Avian Metapneumovirus Degree project within the Veterinary Medicine Program Clara Atterby Uppsala 2012 ISSN 1652-8697 Examensarbete 2012:36 2 SLU Sveriges lantbruksuniversitet A Minor Field Study on Avian Metapneumovirus Clara Atterby Supervisor: Mikael Berg, Department of Biomedical Science and Veterinary Public Health, SLU Assistant Supervisors: Paulo E. Brandão, Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo Siamak Zohari, Department of Biomedical Science and Veterinary Public Health, SLU Examiner: Tommy Linné, Department of Biomedical Science and Veterinary Public Health, SLU Degree Project within the Veterinary Medicine Program Faculty of Veterinary Medicine and Animal Science Department of Biomedical Science and Veterinary Public Health Course number: EX0234, Advanced Level, 30hp Keywords: AMPV, Pneumovirus, Poultry, Brazil Online publication of this work: http://epsilon.slu.se ISSN 1652-8697 Examensarbete 2012:36 3 1. Abstract ............................................................................................................ 6 2. Introduction ...................................................................................................... 7 2.1 Scope of the study ..................................................................................... 7 3. Literature review
    [Show full text]
  • Isolation and Characterization of a Subtype C Avian Metapneumovirus
    Sun et al. Veterinary Research 2014, 45:74 http://www.veterinaryresearch.org/content/45/1/74 VETERINARY RESEARCH RESEARCH Open Access Isolation and characterization of a subtype C avian metapneumovirus circulating in Muscovy ducks in China Shikai Sun1†, Feng Chen2†, Sheng Cao1, Jiajia Liu2, Wen Lei1, Guangwei Li2, Yongfeng Song1, Junpeng Lu1, Chuang Liu1, Jianping Qin1 and Haiyan Li1* Abstract Subtype C avian metapneumovirus (aMPV-C), is an important pathogen that can cause egg-drop and acute respiratory diseases in poultry. To date, aMPV-C infection has not been documented in Muscovy ducks in China. Here, we isolated and characterized an aMPV-C, designated S-01, which has caused severe respiratory disease and noticeable egg drop in Muscovy duck flocks in south China since 2010. Electron microscopy showed that the isolate was an enveloped virus exhibiting multiple morphologies with a diameter of 20–500 nm. The S-01 strain was able to produce a typical cytopathic effect (CPE) on Vero cells and cause death in 10- to 11-day-old Muscovy duck embryos. In vivo infection of layer Muscovy ducks with the isolate resulted in typical clinical signs and pathological lesions similar to those seen in the original infected cases. We report the first complete genomic sequence of aMPV-C from Muscovy ducks. A phylogenetic analysis strongly suggested that the S-01 virus belongs to the aMPV-C family, sharing 92.3%-94.3% of nucleotide identity with that of aMPV-C, and was most closely related to the aMPV-C strains isolated from Muscovy ducks in France. The deduced eight main proteins (N, P, M, F, M2, SH, G and L) of the novel isolate shared higher identity with hMPV than with other aMPV (subtypes A, B and D).
    [Show full text]