Tranche 2 Action Plans: Volume 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Conservation of Ectomycorrhizal Fungi: Exploring the Linkages Between Functional and Taxonomic Responses to Anthropogenic N Depositionfungal ecology 4 (2011) 174e183 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition E.A. LILLESKOVa,*, E.A. HOBBIEb, T.R. HORTONc aUSDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, Houghton, MI 49931, USA bComplex Systems Research Center, University of New Hampshire, Durham, NH 03833, USA cState University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA article info abstract Article history: Anthropogenic nitrogen (N) deposition alters ectomycorrhizal fungal communities, but the Received 12 April 2010 effect on functional diversity is not clear. In this review we explore whether fungi that Revision received 9 August 2010 respond differently to N deposition also differ in functional traits, including organic N use, Accepted 22 September 2010 hydrophobicity and exploration type (extent and pattern of extraradical hyphae). Corti- Available online 14 January 2011 narius, Tricholoma, Piloderma, and Suillus had the strongest evidence of consistent negative Corresponding editor: Anne Pringle effects of N deposition. Cortinarius, Tricholoma and Piloderma display consistent protein use and produce medium-distance fringe exploration types with hydrophobic mycorrhizas and Keywords: rhizomorphs. Genera that produce long-distance exploration types (mostly Boletales) and Conservation biology contact short-distance exploration types (e.g., Russulaceae, Thelephoraceae, some athe- Ectomycorrhizal fungi lioid genera) vary in sensitivity to N deposition. Members of Bankeraceae have declined in Exploration types Europe but their enzymatic activity and belowground occurrence are largely unknown.
- 
												  High Diversity of Fungi Recovered from the Roots of Mature Tanoak (Lithocarpus Densiflorus) in Northern California1380 High diversity of fungi recovered from the roots of mature tanoak (Lithocarpus densiflorus)in northern California S.E. Bergemann and M. Garbelotto Abstract: We collected mature tanoak (Lithocarpus densiflorus (Hook. & Arn.) Rehder) roots from five stands to charac- terize the relative abundance and taxonomic richness of root-associated fungi. Fungi were identified using polymerase chain reaction (PCR), cloning, and sequencing of internal transcribed spacer (ITS) and 28S rDNA. A total of 382 cloned PCR inserts were successfully sequenced and then classified into 119 taxa. Of these taxa, 82 were basidiomycetes, 33 were ascomycetes, and 4 were zygomycetes. Thirty-one of the ascomycete sequences were identified as Cenococcum geo- philum Fr. with overall richness of 22 ITS types. Other ascomycetes that form mycorrhizal associations were identified in- cluding Wilcoxina and Tuber as well as endophytes such as Lachnum, Cadophora, Phialophora, and Phialocephela. The most abundant mycorrhizal groups were Russulaceae (Lactarius, Macowanites, Russula) and species in the Thelephorales (Bankera, Boletopsis, Hydnellum, Tomentella). Our study demonstrates that tanoak supports a high diversity of ectomycor- rhizal fungi with comparable species richness to that observed in Quercus root communities. Key words: Cenoccocum geophilum, community, dark septate endophytes, ectomycorrhiza, species richness. Re´sume´ : Les auteurs ont pre´leve´ des racines de Lithocarpus densiflorus (Hook. & Arn.) Rehder) dans cinq peuplements, afin de caracte´riser l’abondance relative et la richesse taxonomique des champignons associe´sa` ses racines. On a identifie´ les champignons a` l’aide du PCR, par clonage et se´quenc¸age de l’ITS et du 28S rADN. On a se´quence´ avec succe`s 382 segments clone´s par PCR avant de les classifier en 119 taxons.
- 
												  Blood MushroomBleeding-Tooth Fungus Hydnellum Peckii Genus: Hydnellum Family: Bankeraceae Also known as: Strawberries and Cream Fungus, Bleeding Hydnellum, Red-Juice Tooth, or Devil’s Tooth. If you occasionally enjoy an unusual or weird sight in nature, we have one for you. Bleeding-Tooth Fungus fits this description with its strange colors and textures. This fungus is not toxic, but it is considered inedible because of its extremely bitter taste. Hydnoid species of fungus produce their spores on spines or “teeth”; these are reproductive structures. This fungus “bleeds” bright red droplets down the spines, so that it looks a little like blood against the whitish fungus. This liquid actually has an anticoagulant property similar to the medicine heparin; it keeps human or animal blood from clotting. This fungus turns brown with age. Bloody-Tooth Fungus establishes a relationship with the roots of certain trees, so you will find it lower down on the tree’s trunk. The fungus exchanges the minerals and amino acids it has extracted from the soil with its enzymes, for oxygen and carbon within the host tree that allow the fungus to flourish. It’s a great partnership that benefits both, called symbiosis. The picture above was taken at Kings Corner at the pine trees on the west side of the property. It was taken in early to mid-autumn. This part of the woods is moist enough to grow some really beautiful mushrooms and fungi. Come and see—but don’t touch or destroy. Fungi should be respected for the role they play in the woods ecology.
- 
												  Have You Seen This Fungus?HAVE YOU SEEN THIS FUNGUS? © Jon Hudson © Sam Bosanquet . • Are you a woodland manager or contractor? Do you have areas of undisturbed hazel woods/scrub? Then the Carmarthenshire Biodiversity Partnership would like your help. • We are looking for records for the rare Hypocreopsis rhododendri Hazel Gloves fungus. It has recently been found at two sites in the county and more records would be welcome. • H. rhododendri is usually found in the UK on standing dead stems of hazel, but has also been recorded on living and cut hazel branches and living and dead branches of blackthorn, willow and wild rose. Its pale tan, bracket-like appearance with extending finger-like lobes make it very distinctive. • The scientific name of the fungus (Hypocreopsis rhododendri) stems from the fact that it was once found growing on Rhododendron maximum in the USA: it is not found on rhododendron in the UK. • The best time to look for hazel gloves is between August and March, although fruit bodies may still be visible into the summer. • If you find this fungus please get in touch. If possible take a photo and record the grid reference. (UK Grid Reference Finder - http://gridreferencefinder.com can help you do this). Contact: Biodiversity Officer, 01558 825390, [email protected] A YDYCH WEDI GWELD Y FFWNG HWN? © Jon Hudson © Sam Bosanquet . • A ydych yn rheolwr ar goetir neu'n gontractwr coetiroedd? A oes gennych lecynnau lle mae prysgwydd/coed cyll wedi cael llonydd i dyfu ers tro? Yna hoffai Partneriaeth Bioamrywiaeth Sir Gaerfyrddin gael cymorth gennych. • Rydym yn chwilio am gofnodion o ffwng prin sef menyg cyll (Hypocreopsis rhododendri).
- 
												  Lichenicolous Biota (Nos 201–230)ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2015 Band/Volume: 80 Autor(en)/Author(s): Hafellner Josef Artikel/Article: Lichenicolous Biota (Nos 201-230) 21-41 - 21 - Lichenicolous Biota (Nos 201–230) Josef HAFELLNER* HAFELLNER Josef 2015: Lichenicolous Biota (Nos 201–230). – Frit- schiana (Graz) 80: 21–41. - ISSN 1024-0306. Abstract: The 9th fascicle (30 numbers) of the exsiccata 'Lichenicolous Biota' is published. The issue contains ma- terial of 20 non-lichenized fungal taxa (14 teleomorphs of ascomycetes, 4 anamorphic states of ascomycetes, 2 an- amorphic states of basidiomycetes) and 9 lichenized as- comycetes, including paratype material of Dimelaena li- chenicola K.Knudsen et al. (no 223), Miriquidica invadens Hafellner et al. (no 226, 227), and Stigmidium xantho- parmeliarum Hafellner (no 210). Furthermore, collections of the type species of the following genera are distributed: Illosporiopsis (I. christiansenii), Illosporium (I. carneum), Marchandiomyces (M. corallinus), Marchandiobasidium (M. aurantiacum, sub Erythricium aurantiacum), Micro- calicium (M. disseminatum), Nigropuncta (N. rugulosa), Paralecanographa (P. grumulosa), Phaeopyxis (P. punc- tum), Placocarpus (P. schaereri), Rhagadostoma (R. li- chenicola), and Stigmidium (S. schaereri). *Institut für Pflanzenwissenschaften, NAWI Graz, Karl-Franzens-Universität, Holteigasse 6, 8010 Graz, AUSTRIA e-mail: [email protected] Introduction The exsiccata 'Lichenicolous Biota' is continued with fascicle 9, containing 30 numbers. The exsiccata covers all lichenicolous biota, i.e., it is open not only to non- lichenized and lichenized fungi, but also to myxomycetes, bacteria, and even animals, whenever they cause a characteristic symptom on their host (e.g. discoloration or galls).
- 
												  G. Gulden & E.W. Hanssen Distribution and Ecology of Stipitate Hydnaceous Fungi in Norway, with Special Reference to TheDOI: 10.2478/som-1992-0001 sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 sommerfeltia~ J is owned and edited by the Botanical Garden and Museum, University of Oslo. SOMMERFELTIA is named in honour of the eminent Norwegian botanist and clergyman S0ren Christian Sommerfelt (1794-1838). The generic name Sommerfeltia has been used in (1) the lichens by Florke 1827, now Solorina, (2) Fabaceae by Schumacher 1827, now Drepanocarpus, and (3) Asteraceae by Lessing 1832, nom. cons. SOMMERFELTIA is a series of monographs in plant taxonomy, phytogeo graphy, phytosociology, plant ecology, plant morphology, and evolutionary botany. Most papers are by Norwegian authors. Authors not on the staff of the Botanical Garden and Museum in Oslo pay a page charge of NOK 30.00. SOMMERFEL TIA appears at irregular intervals, normally one article per volume. Editor: Rune Halvorsen 0kland. Editorial Board: Scientific staff of the Botanical Garden and Museum. Address: SOMMERFELTIA, Botanical Garden and Museum, University of Oslo, Trondheimsveien 23B, N-0562 Oslo 5, Norway. Order: On a standing order (payment on receipt of each volume) SOMMER FELTIA is supplied at 30 % discount. Separate volumes are supplied at the prices indicated on back cover. sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 ISBN 82-7420-014-4 ISSN 0800-6865 Gulden, G. and Hanssen, E.W. 1992. Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline.
- 
												  Czech Mycol. 57(3-4): 279-297, 2005CZECH MYCOL. 57(3-4): 279-297, 2005 Bankeraceae in Central Europe. 2. P e t r H r o u d a Department o f Botany, Faculty of Science, Masaryk University Kotlářská 2, CZ-61137 Brno, Czech Republic svata@sci. muni, cz Hrouda P. (2005): Bankeraceae in Central Europe. 2. - Czech. Mycol. 57(3-4): 279-297. The paper presents the second part o f a study of the genera Bankera, Phellodon, HydneUum, Sarcodon and Boletopsis in selected herbaria of Central Europe (Poland and northern Germany in this part). For each species, its occurrence and distribution is described. Historical changes of the occur rence of hydnaceous fungi in the Central European area are discussed at the end of the study Key words: Bankeraceae, distribution, Central Europe. Hrouda P. (2005): Bankeraceae ve střední Evropě. 2. - Czech. Mycol. 57(3-4): 279-297. Práce představuje druhou část výsledků studia rodů Bankera, Phellodon, Hydnellum, Sarcodon a Boletopsis ve vybraných herbářích střední Evropy (tato část je zaměřena na Polsko a severní Němec ko). U jednotlivých druhů je popsán výskyt a rozšíření a závěrem jsou pak diskutovány historické změ ny ve výskytu lošáků v prostoru střední Evropy. I ntroduction The presented study follows the previous article summarising the knowledge of the genera Bankera, Phellodon, Hydnellum, Sarcodon and Boletopsis in the southern part of Central Europe (Hrouda 2005). This article represents the second part of the study, which describes the ecology, occurrence and distribution of Bankeraceae in Poland and northern and central Germany (all lands except Ba varia and Baden-Württemberg), and is completed with a summary of the historical and recent occurrence of this group in Central Europe.
- 
												  Die Gattung Aspicilia, Ihre Ableitungen NebstActa Botánica Malacitana, 16(1): 133-140 Malaga, 1991 DIE GAUG ASPICILIA, IE AEIUGE ES EMEKUGE OE CYOECAOIE ASCOCAOGAISAIO EI AEE GENERA E LECANORALES (ASCOMYCEES ICEISAI Josef HAFELLNER SUMMARY: Some evolutionary lines are shown within Aspicilia coll, and the taxonomical and nomenclatural consequences for species commonly classified in Sphaerothallia Nees are discussed. The generic rank (Lobothallia (Clauzade & Roux) Hafellner) is proposed for the Aspicilia radiosa group and the following new combinations are introduced: Lobothallia alphoplaca (Wahlenb. in Ach.)Haf., Lobothallia melanaspis (Ach.)Haf., Lobothallia praeradiosa (Nyl.)Haf. and Lobothallia radiosa (Hoffm.)Haf. Key words: Lichenized Ascomycetes, Aspicilia, Lobothallia, taxonomy. ZUSAMMENFASSUNG: Innerhalb der Gattung Aspicilia coll. werden einige Evolutionslinien aufgezeigt und taxonomische wie nomenklatorische Konsequenzen für gewtihnlich als Sphaerothallia Nees bezeichnete Arten werden diskutiert. Lobothallia (Clauzade & Roux) Hafellner wird in den Gattungsrang erhoben und folgende neue Kombinationen werden vorgeschlagen: Lobythallia alphoplaca (Wahlenb. in Ach) Haf., Lobothallia melanaspis (Ach) Haf., Lobothallia praeradiosa (NYL.) Haf. und Lobothallia radiosa (Hoffm.)Haf. Schltisselwórter: Licheniscerte Ascomyceten, Aspiclia, Lobothallia, Taxonomie. EINLEITUNG Der schon von Massalongo (1852) beschriebenen Gattung Aspicilia war emn wechselvolles Schicksal beschieden. Ober lange Zeit in Lecanora eingeschlossen und oft in dieser als Subgenus bewertet (z.B. Magnusson 1939, Poelt 1958, Eigler 1969), hat sich erst in jtingerer Zeit die Erkenntnis allgemein durchgesetzt, daB Aspicilia mit Lecanora nicht ndher verwandt ist (Poelt 1974, Roux 1977, Hawksworth & al. 1980, Santesson 1984, Clauzade & Roux 1984, 1987, Hafellner 1984, Esnault 1985), obwohl einige Autoren schon früh die Selbstdndigkeit betont hatten (z.B. Kürber 1855, Hue 1910, Choisy 1929). Poelt (1974) hat sogar die neue Familie Aspiciliaceae vorgeschlagen, urn die taxonomische Distanz zwischen Aspicilia und Lecanora augenfdllig zu machen.
- 
												  New Records of Crustose Teloschistaceae (Lichens, Ascomycota) from the Murmansk Region of Russiavol. 37, no. 3, pp. 421–434, 2016 doi: 10.1515/popore-2016-0022 New records of crustose Teloschistaceae (lichens, Ascomycota) from the Murmansk region of Russia Ivan FROLOV1* and Liudmila KONOREVA2,3 1 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-37005, Czech Republic 2 Laboratory of Flora and Vegetations, The Polar-Alpine Botanical Garden and Institute KSC RAS, Kirovsk, Murmansk region, 184209, Russia 3 Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, St. Petersburg, 197376, Russia * corresponding author <[email protected]> Abstract: Twenty-three species of crustose Teloschistaceae were collected from the northwest of the Murmansk region of Russia during field trips in 2013 and 2015. Blas- tenia scabrosa is a new combination supported by molecular data. Blastenia scabrosa, Caloplaca fuscorufa and Flavoplaca havaasii are new to Russia. Blastenia scabrosa is also new to the Caucasus Mts and Sweden. Detailed morphological measurements of the Russian specimens of these species are provided. Caloplaca exsecuta, C. grimmiae and C. sorocarpa are new to the Murmansk region. The taxonomic position of C. alcarum is briefly discussed. Key words: Arctic, Rybachy Peninsula, Caloplaca s. lat., Blastenia scabrosa. Introduction Although the Murmansk region is one of the best studied regions of Russia in terms of lichen diversity, there are numerous reports in recent literature of new discoveries there (e.g. Fadeeva et al. 2013; Konoreva 2015; Melechin 2015; Urbanavichus 2015). Several localities in the northwest of the Murmansk region, mainly on the Pechenga Tundra Mountains and the Rybachy Peninsula, were visited in 2013 and 2015.
- 
												  1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey CMolecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
- 
												  Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, AlaskaAN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
- 
												  Lichens and Associated Fungi from Glacier Bay National Park, AlaskaThe Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.