Traffic Engineering Techniques in Telecommunications By: Richard Parkinson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Telephone Call Centers: Tutorial, Review, and Research Prospects
University of Pennsylvania ScholarlyCommons Operations, Information and Decisions Papers Wharton Faculty Research 2003 Telephone Call Centers: Tutorial, Review, and Research Prospects Noah Gans University of Pennsylvania Ger Koole Avishai Mandelbaum Follow this and additional works at: https://repository.upenn.edu/oid_papers Part of the Business Administration, Management, and Operations Commons, Growth and Development Commons, Human Resources Management Commons, and the Operations and Supply Chain Management Commons Recommended Citation Gans, N., Koole, G., & Mandelbaum, A. (2003). Telephone Call Centers: Tutorial, Review, and Research Prospects. manufacturing & Service Operations Management, 5 (2), 79-141. http://dx.doi.org/10.1287/ msom.5.2.79.16071 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/oid_papers/136 For more information, please contact [email protected]. Telephone Call Centers: Tutorial, Review, and Research Prospects Abstract Telephone call centers are an integral part of many businesses, and their economic role is significant and growing. They are also fascinating sociotechnical systems in which the behavior of customers and employees is closely intertwined with physical performance measures. In these environments traditional operational models are of great value—and at the same time fundamentally limited—in their ability to characterize system performance. We review the state of research on telephone call centers. We begin with a tutorial on how call centers function and proceed to survey -
Approximating Heavy Traffic with Brownian Motion
APPROXIMATING HEAVY TRAFFIC WITH BROWNIAN MOTION HARVEY BARNHARD Abstract. This expository paper shows how waiting times of certain queuing systems can be approximated by Brownian motion. In particular, when cus- tomers exit a queue at a slightly faster rate than they enter, the waiting time of the nth customer can be approximated by the supremum of reflected Brow- nian motion with negative drift. Along the way, we introduce fundamental concepts of queuing theory and Brownian motion. This paper assumes some familiarity of stochastic processes. Contents 1. Introduction 2 2. Queuing Theory 2 2.1. Continuous-Time Markov Chains 3 2.2. Birth-Death Processes 5 2.3. Queuing Models 6 2.4. Properties of Queuing Models 7 3. Brownian Motion 8 3.1. Random Walks 9 3.2. Brownian Motion, Definition 10 3.3. Brownian Motion, Construction 11 3.3.1. Scaled Random Walks 11 3.3.2. Skorokhod Embedding 12 3.3.3. Strong Approximation 14 3.4. Brownian Motion, Variants 15 4. Heavy Traffic Approximation 17 Acknowledgements 19 References 20 Date: November 21, 2018. 1 2 HARVEY BARNHARD 1. Introduction This paper discusses a Brownian Motion approximation of waiting times in sto- chastic systems known as queues. The paper begins by covering the fundamental concepts of queuing theory, the mathematical study of waiting lines. After waiting times and heavy traffic are introduced, we define and construct Brownian motion. The construction of Brownian motion in this paper will be less thorough than other texts on the subject. We instead emphasize the components of the construction most relevant to the final result—the waiting time of customers in a simple queue can be approximated with Brownian motion. -
Queueing Systems
Queueing Systems Ivo Adan and Jacques Resing Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands March 26, 2015 Contents 1 Introduction7 1.1 Examples....................................7 2 Basic concepts from probability theory 11 2.1 Random variable................................ 11 2.2 Generating function............................... 11 2.3 Laplace-Stieltjes transform........................... 12 2.4 Useful probability distributions........................ 12 2.4.1 Geometric distribution......................... 12 2.4.2 Poisson distribution........................... 13 2.4.3 Exponential distribution........................ 13 2.4.4 Erlang distribution........................... 14 2.4.5 Hyperexponential distribution..................... 15 2.4.6 Phase-type distribution......................... 16 2.5 Fitting distributions.............................. 17 2.6 Poisson process................................. 18 2.7 Exercises..................................... 20 3 Queueing models and some fundamental relations 23 3.1 Queueing models and Kendall's notation................... 23 3.2 Occupation rate................................. 25 3.3 Performance measures............................. 25 3.4 Little's law................................... 26 3.5 PASTA property................................ 27 3.6 Exercises..................................... 28 4 M=M=1 queue 29 4.1 Time-dependent behaviour........................... 29 4.2 Limiting behavior............................... -
Traffic Engineering Techniques in Telecommunications By: Richard Parkinson
Traffic Engineering Techniques in Telecommunications by: Richard Parkinson Introduction: The use of mathematical modeling to predict line, equipment, and staff capacities for telephone systems is an accepted technique for fine-tuning existing systems, as well as designing new ones. Through sensitivity analysis, such predictions can also provide a comprehensive overview of a particular design. Most available literature on traffic engineering either concentrates on obscure and complicated calculations, or alludes to formulas, but does not include them. This paper defines relevant terms, and discusses the most commonly used formulas and their applications. A knowledge of secondary school mathematics is sufficient to do the calculations in this paper. Traffic engineering techniques are used most often to determine: • Line and trunk quantities required for a PBX or computer • Number of DTMF (Dual Tone Multi-frequency) registers, conference trunks, RAN (Recorded Announcement Route) trunks, etc. required • Traffic capacity of a PBX, given the number of speech paths (simultaneous conversations) available • Quantities, service levels, and usage of such special service trunks as foreign exchange (FX), discounted toll trunks, and tie trunks (leased lines between PBXs • Operator staffing levels and performance predictions as well as the impact of system change on staff quantities • Automatic call distributor (ACD) staffing and service levels Terminology: The terms used in traffic engineering are standard telecommunications usage. The following brief glossary lists those terms needed to understand the formulas presented in this paper. © Copyright INFOTEL SYSTEMS CORP.. 1 Arrival Rate: - The arrival rate is the number of calls that will arrive at a facility during a finite time period. The Greek letter lambda () is generally used to represent arrival rate. -
Inferring Queueing Network Models from High-Precision Location Tracking Data
University of London Imperial College of Science, Technology and Medicine Department of Computing Inferring Queueing Network Models from High-precision Location Tracking Data Tzu-Ching Horng Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Computing of the University of London and the Diploma of Imperial College, May 2013 Abstract Stochastic performance models are widely used to analyse the performance and reliability of systems that involve the flow and processing of customers. However, traditional methods of constructing a performance model are typically manual, time-consuming, intrusive and labour- intensive. The limited amount and low quality of manually-collected data often lead to an inaccurate picture of customer flows and poor estimates of model parameters. Driven by ad- vances in wireless sensor technologies, recent real-time location systems (RTLSs) enable the automatic, continuous and unintrusive collection of high-precision location tracking data, in both indoor and outdoor environment. This high-quality data provides an ideal basis for the construction of high-fidelity performance models. This thesis presents a four-stage data processing pipeline which takes as input high-precision location tracking data and automatically constructs a queueing network performance model approximating the underlying system. The first two stages transform raw location traces into high-level “event logs” recording when and for how long a customer entity requests service from a server entity. The third stage infers the customer flow structure and extracts samples of time delays involved in the system; including service time, customer interarrival time and customer travelling time. The fourth stage parameterises the service process and customer arrival process of the final output queueing network model. -
Markovian Queueing Networks
Richard J. Boucherie Markovian queueing networks Lecture notes LNMB course MQSN September 5, 2020 Springer Contents Part I Solution concepts for Markovian networks of queues 1 Preliminaries .................................................. 3 1.1 Basic results for Markov chains . .3 1.2 Three solution concepts . 11 1.2.1 Reversibility . 12 1.2.2 Partial balance . 13 1.2.3 Kelly’s lemma . 13 2 Reversibility, Poisson flows and feedforward networks. 15 2.1 The birth-death process. 15 2.2 Detailed balance . 18 2.3 Erlang loss networks . 21 2.4 Reversibility . 23 2.5 Burke’s theorem and feedforward networks of MjMj1 queues . 25 2.6 Literature . 28 3 Partial balance and networks with Markovian routing . 29 3.1 Networks of MjMj1 queues . 29 3.2 Kelly-Whittle networks. 35 3.3 Partial balance . 39 3.4 State-dependent routing and blocking protocols . 44 3.5 Literature . 50 4 Kelly’s lemma and networks with fixed routes ..................... 51 4.1 The time-reversed process and Kelly’s Lemma . 51 4.2 Queue disciplines . 53 4.3 Networks with customer types and fixed routes . 59 4.4 Quasi-reversibility . 62 4.5 Networks of quasi-reversible queues with fixed routes . 68 4.6 Literature . 70 v Part I Solution concepts for Markovian networks of queues Chapter 1 Preliminaries This chapter reviews and discusses the basic assumptions and techniques that will be used in this monograph. Proofs of results given in this chapter are omitted, but can be found in standard textbooks on Markov chains and queueing theory, e.g. [?, ?, ?, ?, ?, ?, ?]. Results from these references are used in this chapter without reference except for cases where a specific result (e.g. -
Agner Krarup Erlang (1878 − 1929)
Agner Krarup Erlang (1878 − 1929) © 1997−2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non−commercial use. For other uses, including electronic redistribution, please contact us. May 1997 Features Agner Krarup Erlang (1878 − 1929) A.K. Erlang was the first person to study the problem of telephone networks. By studying a village telephone exchange he worked out a formula, now known as Erlang's formula, to calculate the fraction of callers attempting to call someone outside the village that must wait because all of the lines are in use. Although Erlang's model is a simple one, the mathematics underlying today's complex telephone networks is still based on his work. He was born at Lønborg, in Jutland, Denmark. His father, Hans Nielsen Erlang, was the village schoolmaster and parish clerk. His mother was Magdalene Krarup from an ecclesiastical family and had a well known Danish mathematician, Thomas Fincke, amongst her ancestors. He had a brother, Frederik, who was two years older and two younger sisters, Marie and Ingeborg. Agner spent his early school days with them at his father's schoolhouse. Evenings were often spent reading a book with Frederik, who would read it in the conventional way and Agner would sit on the opposite side and read it upside down. At this time one of his favourite subjects was astronomy and he liked to write poems on astronomical subjects. When he had finished his elementary education at the school he was given further private tuition and succeeded in passing the Præliminæreksamen (an examination held at the University of Copenhagen) with distinction. -
An Introduction to Erlang B and Erlang C
6 Telemanagement #187 that actually works — uses mathematical An Introduction to formulas that form the basis of the disci- pline called “traffi c engineering.” Some Erlang B and Erlang C of them are easy for anyone to use; others require expert support, or at least special- If you make decisions about networks, PBXs, ized software. If you make confi guration or call centres, you must understand these concepts decisions about networks, PBXs, or call centres, you must understand the basic IAN ANGUS concepts involved, whether or not you plan to do the calculations yourself. “Hey, it’s simple arithmetic! We get 3,200 calls And then they will bunch up during that Basic Concepts a day. That’s 400 calls an hour. Each call lasts hour, leading to times when the phones Until recently, anyone using traffi c engi- three minutes, so each person can handle 20 are going crazy and times when many neering techniques had to either master calls an hour. So we’ll need 20 incoming lines lines are free. the mathematics, or learn to use thick and 20 people to answer the phones.” Then you have to take into consid- books of tables based on them. Personal Does that sound familiar? eration the fact that no one can handle computers changed all that, fi rst by Many telephone and call centre deci- 20 three-minute calls every hour without making traffi c programs widely afford- sions are made using just that logic. It’s burning out, and that there is usually post- able, and now by making them available simple, and it’s clear — and it’s absolutely call work to do in addition to talking to on the Internet. -
A Generalized Erlang-C Model for the Enhanced Living Environment As a Service (Eleaas)
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 3 Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2016-0037 A Generalized Erlang-C Model for the Enhanced Living Environment as a Service (ELEaaS) Seferin T. Mirtchev1, Rossitza I. Goleva1, Dimitar K. Atamian1, Mirtcho J. Mirtchev1, Ivan Ganchev2, Rumen Stainov3 1Technical University of Sofia, 1000 Sofia, Bulgaria 2University of Limerick, Limerick, Ireland 3University of Fulda, Fulda, Germany Emails: [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Abstract: In this article, a full-access waiting multi-server queue with a state- dependent arrival and departure processes is investigated and suggested for use as a generic traffic model of the novel concept of the Enhanced Living Environment as a Service (ELEaaS). The generalized arrival and service flows with nonlinear state dependence intensities are used. The idea is based on the analytical continuation of the Poisson arrival process and Bernoulli service process, and the classic M/M/n queuing system. Birth and death processes and state-dependent rates are applied. The suggested new queuing system is of a M(g)/M(g)/n/k type (in Kendal notation) with a generalized arrival and departure processes M(g). The input and output intensities depend nonlinearly on the system state with defined parameters – the so- called “peaked factors”. The state probabilities of the system are obtained using the general solution of the birth and death processes. The influence of the peaked factors on the queuing behavior is evaluated showing that state-dependent arrival and service rates may change significantly the characteristics of the queuing system. -
Introduction to Queueing Theory and Stochastic Teletraffic Models
Introduction to Queueing Theory and Stochastic Teletraffic Models Moshe Zukerman EE Department City University of Hong Kong email: [email protected] Copyright M. Zukerman c 2000–2020. This book can be used for educational and research purposes under the condition that it (including this first page) is not modified in any way. Preface The aim of this textbook is to provide students with basic knowledge of stochastic models with a special focus on queueing models, that may apply to telecommunications topics, such as traffic modelling, performance evaluation, resource provisioning and traffic management. These topics are included in a field called teletraffic. This book assumes prior knowledge of a programming language and mathematics normally taught in an electrical engineering bachelor program. The book aims to enhance intuitive and physical understanding of the theoretical concepts it introduces. The famous mathematician Pierre-Simon Laplace is quoted to say that “Probability is common sense reduced to calculation” [18]; as the content of this book falls under the field of applied probability, Laplace’s quote very much applies. Accordingly, the book aims to link intuition and common sense to the mathematical models and techniques it uses. It mainly focuses on steady-state analyses and avoids discussions of time-dependent analyses. arXiv:1307.2968v23 [math.PR] 21 Feb 2020 A unique feature of this book is the considerable attention given to guided homework assign- ments involving computer simulations and analyzes. By successfully completing these assign- ments, students learn to simulate and analyze stochastic models, such as queueing systems and networks, and by interpreting the results, they gain insight into the queueing performance effects and principles of telecommunications systems modelling. -
27 Apr 2013 Reversibility in Queueing Models
Reversibility in Queueing Models Masakiyo Miyazawa Tokyo University of Science April 23, 2013, R1 corrected 1 Introduction Stochastic models for queues and their networks are usually described by stochastic pro- cesses, in which random events evolve in time. Here, time is continuous or discrete. We can view such evolution in backward for each stochastic model. A process for this back- ward evolution is referred to as a time reversed process. It also is called a reversed time process or simply a reversed process. We refer to the original process as a time forward process when it is required to distinguish from the time reversed process. It is often greatly helpful to view a stochastic model from two different time directions. In particular, if some property is invariant under change of the time directions, that is, under time reversal, then we may better understand that property. A concept of reversibility is invented for this invariance. A successful story about the reversibility in queueing networks and related models is presented in the book of Kelly [10]. The reversibility there is used in the sense that the time reversed process is stochastically identical with the time forward process, but there are many discussions about stochastic models whose time reversal have the same modeling features. In this article, we give a unified view to them using the broader concept of the arXiv:1212.0398v3 [math.PR] 27 Apr 2013 reversibility. We first consider some examples. (i) Stationary Markov process (continuous or discrete time) is again a stationary Markov process under time reversal if it has a stationary distribution. -
Usage of Erlang Formula in IP Networks
Communications and Network, 2011, 3, 161-167 doi:10.4236/cn.2011.33020 Published Online August 2011 (http://www.SciRP.org/journal/cn) Usage of Erlang Formula in IP Networks Erik Chromy, Jan Suran, Matus Kovacik, Matej Kavacky Institute of Telecommunications, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovak Republic E-mail: {chromy, kovaci, kavacky}@ut.fei.stuba.sk, [email protected] Received May 29, 2011; revised July 5, 2011; accepted July 12, 2011 Abstract This paper is concerning of Erlang formulas practical approval and their usage with video flow transfer in IP networks. Erlang formulas were simulated in MATLAB program. Practical verification was realized in de- fined environment by using of designed video source. The result is comparison of loss calculated by MAT- LAB and loss of real video data transfer. Keywords: Erlang Formula, QoS, VBR Video 1. Introduction works that have bandwidth, delay and availability guar- anteed. IP networks were not designed for providing multimedia Most important parameters are: services at the beginning. These networks were intended Availability—service reliability during whole con- for data transfer without predefined paths so that in case nection time. of breakdown of one of the routers, other path could be Delay—packet transfer time between two reference chosen [1]. Path of packet can change and so can change points. transfer parameters. Jitter—represents changes in delay. If we want to use IP networks for voice, video and Throughput—data transferred per time unit. multimedia transmission, we have to define transfer pa- Packet loss—allowed packet loss tolerance per time rameters.