Recent Development of Robotics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robotics and Autonomous Systems
Spring 2015 Industry Study Final Report Robotics and Autonomous Systems The Dwight D. Eisenhower School for National Security and Resource Strategy National Defense University Fort McNair, Washington, D.C. 20319-5062 i ROBOTICS AND AUTONOMOUS SYSTEMS 2015 ABSTRACT: The Robotics and Autonomous Systems (RAS) industry plays a critical role producing America’s preferred means of global power projection: unmanned aircraft systems. But in a larger sense, RAS technology has also altered the defense industry’s relationship with DoD, as the defense sector increasingly finds itself following commercial sector innovations. This report outlines the major issues affecting the defense sector of the RAS industry and DoD’s ability to acquire and employ RAS. It then makes recommendations to enable DoD to better capitalize on the technology, strengthen its relationship with the industry and ultimately improve the nation’s warfighting capability. BG Mordechay Baruch, Israeli Defense Force LTC Clinton Cox, US Army Mr. Terry Emmert, Office Secretary Defense COL Daniel Friend, US Army Mr. Riley Jay, National Geospatial Agency Lt Col Linell Letendre, US Air Force Lt Col Robert Masaitis, US Air Force Mr. David Mico, Dept of State Lt Col Kevin Murray, US Marine Corps Lt Col Richard Neitzey, US Marine Corps Dr. Jeffery Paull, Dept of Navy CDR Jerome Smith, US Navy COL Stephanie Tutton, US Army Mr. Thomas Wilson, Veterans Affairs Lt Col Lori Winn, US Air Force CAPT Matthew Pregmon, US Navy, Faculty lead COL David Shugart, US Army, Faculty ii PLACES VISITED Domestic: -
The Robotics Market First Half 2012 Results and Trends
The Robotics Market First Half 2012 Results and Trends This report is based on data supplied to RIA by its member companies. The numbers represent the industrial robot units ordered and shipped, plus the dollar value added to the total robot system. RIA does not include numbers that other countries reporting to the International Federation of Robotics might include as robot units; e.g., RIA does not include four axis chip placement devices in standard electronic assembly machines. Table of Contents 1. First Half News Release 2. First Half 2012 -Application Trends — New Orders • Assembling and Disassembling • Processing • Dispensing • Welding and Soldering (all materials) • Handling Operations/Machine Tending • Other First Half 2012 - Application Trends — Shipments • Assembling and Disassembling • Processing • Dispensing • Welding and Soldering (all materials) • Handling Operations/Machine Tending • Other 3. 2012 vs. 2011 New Orders and Shipments Totals — Units 2012 vs. 2011 New Orders and Shipments Totals — Dollars Robotic Industries Association 900 Victors Way, Suite140 Contact: Jeff Burnstein Ann Arbor, Michigan 48108 USA President Telephone: (734) 994-6088 (734) 994-6088 Fax: (734) 994-3338 [email protected] www.Robotics.org PRESS RELEASE North American Robotics Industry Posts Best Quarter Ever, According to New Statistics from RIA (Ann Arbor, Michigan – July 26, 2012) North American robotics companies sold more industrial robots in the second quarter of 2012 than any previous quarter in history, according to new statistics released by Robotic Industries Association (RIA), the industry’s trade group. A total of 5,556 robots valued at $403.1 million were sold to North American companies, a jump of 14% in units and 28% in dollars over the same quarter in 2011. -
Mobile Robotics: a Tool for Application-Based Integration of Multidisciplinary Undergraduate Concepts and Research
AC 2010-22: MOBILE ROBOTICS: A TOOL FOR APPLICATION-BASED INTEGRATION OF MULTIDISCIPLINARY UNDERGRADUATE CONCEPTS AND RESEARCH Carlotta Berry, Rose-Hulman Institute of Technology Dr. Berry is an assistant professor in the department of electrical and computer engineering at Rose-Hulman Institute of Technology. She is one of the principal investigators on the multidisciplinary educational robotics initiative and the Rose building undergraduate diversity program. Her research areas include the design and evaluation of human-robot interfaces and innovations in engineering education using active learning and mobile robotics. Page 15.877.1 Page © American Society for Engineering Education, 2010 “Mobile Robotics: A tool for application-based integration of multidisciplinary undergraduate concepts and research” Abstract This paper presents the development of a mobile robotics course at the primarily undergraduate engineering school, Rose-Hulman Institute of Technology. This course is one of the final courses in the multidisciplinary educational robotics certificate program. The purpose of this course is to use the robot to provide the students with an appreciation of their discipline and how it applies to other disciplines. It is hypothesized that students will gain a more realistic model of their future workplace demographic while also learning about robotics theory and the open areas of robotics research. Introduction Undergraduate students in science and engineering frequently express a desire to relate the abstract theory presented in class to real-world or practical application. One method that can be used to integrate component theory with system or practical application is robotics. Since robotics theory includes topics such as sensors, controls, mechatronics, kinematics, microcontroller programming, embedded systems and software development; it is an ideal model for multidisciplinary application. -
An Industrial Robotics Course for Manufacturing Engineers
Paper ID #15654 An Industrial Robotics Course for Manufacturing Engineers Dr. Jeffrey L. Newcomer, Western Washington University Dr. Jeffrey L. Newcomer is a Professor of Manufacturing Engineering and Chair of the Engineering and Design Department at Western Washington University. He received his Ph.D. in Mechanical Engineering from Rensselaer Polytechnic Institute. c American Society for Engineering Education, 2016 An Industrial Robotics Course for Manufacturing Engineers For many years the automobile industry was the home to more than half of the robots used in U.S. manufacturing. Recently, however, many other industries have been or are planning to introduce robots into their manufacturing processes.1 In the Pacific Northwest region several companies in aerospace, electronics, apparel, and commercial cookware have either introduced robots or ex- panded their use in recent years. As such, an introduction to robotics in the context of manufac- turing is becoming more important for students pursuing degrees in Manufacturing Engineering. There is, however, always a challenge when teaching robotics to find the correct balance between application and modeling. Many robotics courses taught in Electrical or Mechanical Engineering Departments have a tendency to emphasize modeling over application, but a well-prepared Man- ufacturing Engineer needs to understand where the challenges in robotics applications lie as well as understanding what is going on ‘under the hood’. A quick survey of the 21 ABET accredited Manufacturing Engineering programs indicates that only five have a manufacturing specific ro- botics course, and three of those are special topics courses that are not offered consistently.2 Other programs have robotics integrated into a general automation class, have cross-listed classes with other programs, or have graduate classes on robotics that are available to seniors, so there are not the same opportunities for depth or focus on manufacturing applications. -
Many Faced Robot - Design and Manufacturing of a Parametric, Modular and Open Source Robot Head
Many Faced Robot - Design and Manufacturing of a Parametric, Modular and Open Source Robot Head Metodi Netzev1, Quentin Houbre1, Eetu Airaksinen1, Alexandre Angleraud1 and Roel Pieters1 Abstract— Robots developed for social interaction and care show great promise as a tool to assist people. While the functionality and capability of such robots is crucial in their acceptance, the visual appearance should not be underesti- mated. Current designs of social robots typically can not be altered and remain the same throughout the life-cycle of the robot. Moreover, customization to different end-users is rarely taken into account and often alterations are strictly prohibited due to the closed-source designs of the manufacturer. The current trend of low-cost manufacturing (3D printing) and open-source technology, however, open up new opportunities for third parties to be involved in the design process. In this work, we propose a development platform based on FreeCAD that offers a parametric, modular and open-source design tool specifically aimed at robot heads. Designs can be generated by altering different features in the tool, which automatically Fig. 1. Different end-users of social robots require different features and design. The designs shown here are generated by the parametric and modular reconfigures the head. In addition, we present several design development platform, proposed in this work. Left design shows a robot approaches that can be integrated in the design to achieve head with wooden facial covering. Right design shows a robot head with different functionalities (face and skin aesthetics, component more humanoid characteristics. Both designs can be generated by changing assembly), while still relying on 3D printing technology. -
"Rethink Robotics: Finding a Market". Stanford Casepublisher 204-2013
S TANFORD U NIVERSITY 2 0 1 3 - 2 0 4 - 1 S CHOOL OF E NGINEERING C ASEP UBLISHER Rev. June 3, 2013 Duhamel et al. “Rethink Robotics - Finding a Market” Stanford CasePublisher 204-2013-1. 20 May 2013. RETHINK ROBOTICS - FINDING A MARKET T ABLE OF C ONTENTS Introduction 1. Industry Overview 2. History of Rethink Robotics 3. Management 4. Technology 5. Financing 6. Rethink Corporate Strategy 7. Future Trends 8. References 9. Exhibits 10. Authors Professors Micah Siegel (Stanford University) and Fred Gibbons (Stanford University) guided the de- velopment of this case using the CasePublisher service as the basis for class discussion rather than to i$us- trate either e%ective or ine%ective handling of a business situation. S TANFORD 204-2013-01 Rethink Robotics Introduction !Since 1980, millions of manufacturing jobs have been outsourced to reduce labor costs in order to maintain competitiveness in the evolving global market for products. "1] While reducing cost, this has reduced the number of middle-income jobs in developed na- tions. Furthermore, outsourcing has created problems for firms that now operate in politi- cally and/or economically unstable regions. "2] Rethink Robotics hopes that its automated manufacturing robot, Baxter, will enable domestic firms to competitively insource manufac- turing jobs and thus improve e%ciency. Rethink Robotics was founded by Rodney Brooks in 2008 to build a low-cost, adaptive manufacturing robot. The original name, Heartland Robotics, reflects the company's ambi- tions to combat outsourcing. "3] In a 2012 press release, Brooks stated, “Rethink Robot- ics…will do for manufacturing workers what the PC did for o%ce workers & increase their productivity by giving them direct access to technological tools.” "4] Their distinctive ro- botic workforce is marketed as simpler, safer, smarter, and cheaper than traditional indus- trial robots. -
Using a Single Cell to Create an Entire Organ
Message from the LARS/SBR 2016 General and Program Chairs The 13th Latin American Robotics Symposium (LARS 2016) and the 4th Brazilian Symposium on Robotics (SBR 2016) aims to promote a comprehensive scientific meeting in the area of intelligent robotics, bringing together researchers and undergraduate and graduate students studying computer science, electrical engineering, mechatronics engineering, mechanical engineering, and related areas. LARS/SBR 2016 can be considered the most important Latin American robotics symposium. LARS/SBR 2016 was the major scientific/academic event of Robotica 2016. There were some co-located events: the 15th Latin American Robotics Competition (LARC 2016), 14th Brazilian Robotics Competition (CBR 2016—14th Competição Brasileira de Robótica), Brazilian Robotics Olympiad (OBR 2016—Olimpíada Brasileira de Robótica), Mostra Nacional de Robótica (MNR 2016), 7th Workshop of Robotics in Education (WRE 2016), and Workshop on Thesis and Dissertations (WTDR 2016). These events were the result of a joint action of the Brazilian Computer Society (SBC), the IEEE Latin American Robotics Council, and the IEEE Robotics and Automation Society Chapter of Brazil. The joint conferences were held October 8–12, 2016, in Recife, PE, Brazil. The papers accepted for presentation at the symposium covered a large spectrum of topics, including active sensory processing and control; aerial vehicles; autonomous vehicles; bio- inspired robotics; CAD-based robotics; computing architectures; education issues in robotics; human/robot interaction; -
An Inchworm-Inspired Motion Strategy for Robotic Swarms
This article has been published in a revised form in Robotica [https://www.doi.org/10.1017/S0263574721000321]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press. An Inchworm-Inspired Motion Strategy for Robotic Swarms Kasra Eshaghi*ψ, Zendai Kashinoψ, Hyun Joong Yoonϕ, Goldie Nejatψ, Beno Benhabibψ ψ Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada. Φ School of Mechanical and Automotive Engineering, Daegu Catholic University, Hayang, Gyeongsan, Gyeongbuk 712-702, Republic of Korea E-mails: [email protected], [email protected], [email protected], [email protected], [email protected] (Accepted __, First published online: __) SUMMARY Effective motion planning and localization are necessary tasks for swarm robotic systems to maintain a desired formation while maneuvering. Herein, we present an inchworm-inspired strategy that addresses both these tasks concurrently by using anchor robots. The proposed strategy is novel as, by dynamically and optimally selecting the anchor robots, it allows the swarm to maximize its localization performance while also considering secondary objectives, such as the swarm’s speed. A complementary novel method for swarm localization, that fuses inter-robot proximity measurements and motion commands, is also presented. Numerous simulated and physical experimental examples are included to illustrate -
Robot Umanoidi E Tecniche Di Interazione Naturale Per Servizi Di Accoglienza Ed Informazioni
POLITECNICO DI TORINO Corso di Laurea Magistrale in Ingegneria Informatica Tesi di Laurea Magistrale Robot umanoidi e tecniche di interazione naturale per servizi di accoglienza ed informazioni Relatori Prof. Fabrizio Lamberti Ing. Federica Bazzano Candidato Simon Dario Mezzomo Dicembre 2017 Quest’opera è stata rilasciata con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale. Per leggere una copia della licenza visita il sito web http://creativecommons.org/licenses/by-nc-nd/4.0/ o spedisci una lettera a Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Ringraziamenti Grazie a tutti quelli che mi sono stati vicino durante questo lungo percorso che mi ha portato al tanto atteso traguardo della laurea. A tutta la famiglia che mi ha sempre sostenuto anche nei momenti più difficili. Agli amici di casa e di università Andrea, Hervé, Jacopo, Maurizio, Didier, Marco, Matteo, Luca, Thomas, Nicola, Simone che hanno condiviso numerose esperienze. A tutti i colleghi di lavoro Edoardo, Francesco, Emanuele, Gianluca, Gabriele, Nicolas, Rebecca, Chiara, Allegra. E a tutti quelli di cui mi sarò sicuramente scordato. iii Sommario L’obiettivo di questo lavoro di tesi è quello di esplorare l’uso di robot umanoidi nel- l’ambito della robotica di servizio per applicazioni che possono essere utili all’uomo e di analizzarne l’effettiva utilità. In particolare, è stata analizzata l’interazione con un robot umanoide (generalmente chiamato receptionist) che accoglie gli utenti e fornisce loro, su richiesta, delle indicazioni per raggiungere il luogo in cui questi si vogliono recare. L’innovazione rispetto allo stato dell’arte in materia consiste nell’integrare le in- dicazioni vocali fornite all’utente con delle indicazioni che mostrano il percorso da seguire su una mappa posta di fronte al robot. -
The Dialectics of Virtuosity: Dance in the People's Republic of China
The Dialectics of Virtuosity: Dance in the People’s Republic of China, 1949-2009 by Emily Elissa Wilcox A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with the University of California, San Francisco in Medical Anthropology of the University of California, Berkeley Committee in charge: Professor Xin Liu, Chair Professor Vincanne Adams Professor Alexei Yurchak Professor Michael Nylan Professor Shannon Jackson Spring 2011 Abstract The Dialectics of Virtuosity: Dance in the People’s Republic of China, 1949-2009 by Emily Elissa Wilcox Joint Doctor of Philosophy with the University of California, San Francisco in Medical Anthropology University of California, Berkeley Professor Xin Liu, Chair Under state socialism in the People’s Republic of China, dancers’ bodies became important sites for the ongoing negotiation of two paradoxes at the heart of the socialist project, both in China and globally. The first is the valorization of physical labor as a path to positive social reform and personal enlightenment. The second is a dialectical approach to epistemology, in which world-knowing is connected to world-making. In both cases, dancers in China found themselves, their bodies, and their work at the center of conflicting ideals, often in which the state upheld, through its policies and standards, what seemed to be conflicting points of view and directions of action. Since they occupy the unusual position of being cultural workers who labor with their bodies, dancers were successively the heroes and the victims in an ever unresolved national debate over the value of mental versus physical labor. -
Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions. -
Call for Papers Important Dates: July, 1: Paper Submission August, 1: Notification to Authors
I Workshop on MSc Dissertation and PhD Thesis in Robotic (WTDR-2012) I Best MSc Dissertation and PhD Thesis Contest in Robotic (CTDR-2012) Call for Papers Important Dates: July, 1: paper submission August, 1: notification to authors About WTDR WTDR-2012 is satellite event of the Latin American Robotics Symposium / Brazilian Robotics Symposium 2012 of the Joint Conference 2012, , which will be held in UNIFOR, University of Fortaleza at Fortaleza, Ceará, Brazil, on October 15-21. WTDR provides an opportunity for PhD and MSc students in Brazil to present their ongoing and/or recently concluded research with a panel of established researchers in Robotic. The workshop has the following objectives: to provide a setting for mutual feedback on participants' current research and guidance on future research directions; to develop a supportive community of scholars and a spirit of collaborative research; to contribute to the conference goals through interaction of graduate students with other researchers as well as participation in conference events; to increase the visibility of ongoing work for the academic and industrial community. About CTDR CTDR-2012 will take place in parallel to WTDR-2012. The main goals of CTDR are to divulge and award the best academic work in Robotics concluded in Brazilian Universities from June 2010 to June 2012. CTDIA expects papers with concluded work, with evaluation and results. The selected works will be presented and judged during the SBR-2012. Notice that in the submission phase, the main object of judgment is the paper; while in the second one (during the conference), the main object of judgment is the full thesis or dissertation (to be submitted if the paper was accepted).