Characterization of the Autoignition of Single Droplets of Fischer-Tropsch Fuels and Development of Surrogates
Total Page:16
File Type:pdf, Size:1020Kb
Characterization of the Autoignition of Single Droplets of Fischer-Tropsch Fuels and Development of Surrogates Vom Fachbereich Produktionstechnik der UNIVERSITÄT BREMEN zur Erlangung des Grades Doktor-Ingenieur genehmigte Dissertation von Dipl. Ing. Manfredo Reimert Gutachter: Prof. Dr.-Ing. Hans J. Rath Prof. Dr.-Ing. Friedrich Dinkelacker Tag der mündlichen Prüfung: 9. März, 2012 Abstract The autoignition behavior of single droplets of synthetic fuels produced by the Fischer- Tropsch process, such as GTL-Diesel and GTL-Kerosene, is the main focus of this study. For this, experiments are carried out under microgravity and normal gravity conditions with single droplets with an initial diameter of 0,7 mm in a high-temperature high-pressure chamber. Ignition delay times are determined for ambient pressures between 0,1 MPa < p < 1 MPa and ambient temperatures between 550 K < T < 950 K with the aid of a Michelson interferometer setup. The experimental data is fitted with two-term Arrhenius-type functions that represent the two main reaction mechanisms, the cool and hot flame. Furthermore the development of suitable surrogate fuels for these fuels is performed and the selection and formulation procedure for the components is shown. Surrogate fuels enable numerical calculations with detailed chemical reaction kinetics. The obtained data on the characterization of the aforementioned fuels is compared with data of related fuels, such as their mineral variants and other surrogates. Zusammenfassung Der Schwerpunkt dieser Arbeit ist die Charakterisierung des Selbstzündverhaltens von Einzeltropfen synthetischer Kraftstoffe, die mit dem Fischer-Tropsch Prozess hergestellt werden, in diesem Fall GTL-Diesel und GTL-Kerosin. Dafür werden Experimente mit Einzeltropfen unter normaler und kompensierter Gravitationsumgebung mit einem Anfangsdurchmesser von 0,7 mm in einer Druckkammer durchgeführt. Zündverzugszeiten werden für Umgebungsdrücke zwischen 0,1-1,0 MPa und Umgebungstemperaturen zwischen 550-950 K mit Hilfe eines Michelson Interferometers bestimmt. Zu den experimentellen Messdaten werden Zweiterm-Arrhenius-Fitfunktionen, die die zweistufigen Reaktionsmechanismen (Cool und Hot Flame) nachbilden, ermittelt. Außerdem werden geeignete Ersatzkraftstoffe entwickelt und die Selektionsprozedur vorgestellt. Ersatzkraftstoffe erlauben numerische Simulationen mit detaillierten chemischen Reaktionsmechanismen. Die gewonnen Experimentdaten der vorhergenannten Kraftstoffe werden Daten ähnlicher Kraftstoffe, wie Mineralölvarianten, gegenübergestellt und verglichen. 2 Acknowledgements This study was performed at ZARM Uni-Bremen. I want to thank Prof. Dr.-Ing. Hans J. Rath for being my main supervisor of this dissertation and for giving me the opportunity of writing my thesis at ZARM. I also want to thank Prof. Dinkelacker for being the second corrector and for his interest in my work. I want to specially thank Christian Eigenbrod for his continuous support and for providing me with a very good working atmosphere. I want to thank also Peter Rickmers for the rich discussions and suggestions, and of course, for proofreading this thesis. I am greatly thankful to Günther Marks, who helped me to conduct many of the experimental campaigns and for keeping the apparatus in good shape. I want also thank my students Sebastian Wagner and Chris Nordmann for their work and helping hands. I want to express my gratitude to the ZARM-FAB Team for their competence, support and patience and for helping us to carry out many experimental campaigns successfully. I want to thank my family, Nicola Plathner, Eva Striebeck and Katrin Stöver for their love and support. This work is dedicated to my family. This work originated as part of the CPS (Combustion Properties of Partially Premixed Spray Systems) project funded by ESA and the BioSpray (Bestimmung der Selbstzündeigenschaften von Tropfen eines aus Biomasse durch Fischer-Tropsch Synthese gewonnenen Diesel- Brennstoffes durch Mikrogravitationsexperimente und Entwicklung einer Spray- Zündsimulation) project funded by DLR. The GTL-Diesel and GTL-Kerosene fuel samples were provided by Shell Co. 3 Table of Contents 1. Introduction and Motivation ............................................................................................... 7 1.1. State of the Art / Motivation ......................................................................................... 15 1.2. Objectives and Outline .................................................................................................. 16 2. Theoretical Background .................................................................................................... 19 2.1. Liquid Hydrocarbon Fuels ............................................................................................ 19 2.1.1. General Properties of Liquid Hydrocarbon Fuels .................................................. 19 2.1.2. Fossil Diesel and Bio-Diesel .................................................................................. 27 2.1.3. Kerosene and Aviation Fuels ................................................................................. 30 2.1.4. Second-Generation Biofuels and the Fischer-Tropsch Process ............................. 32 2.1.5. Surrogate Fuels, Selection Criteria and Determination Methods ........................... 36 2.2. Single Droplet Autoignition Phenomenology ............................................................... 44 2.2.1. Staged Ignition of a Single Fuel Droplet ................................................................ 44 2.2.2. Autoignition and General Combustion Behavior of Single Droplets in Microgravity ..................................................................................................................... 49 3. Experimental Studies on the Autoignition of Fischer-Tropsch synthesized fuels and proposed surrogates ............................................................................................................... 53 3.1. Microgravity and Drop Tower Experimental Hardware ............................................... 53 3.2. Experiment Setup and Diagnostics ............................................................................... 54 3.2.1. Pressure Chamber and Furnace .............................................................................. 55 3.2.2. Droplet Generation and Fuel Supply System ......................................................... 56 3.2.3. Optics and Laser Diagnostics ................................................................................. 58 3.2.4. Experiment Control and Data Acquisition and Processing .................................... 59 3.2.5. Procedures for Normal and Microgravity Experiments ......................................... 60 3.3. Droplet Characterization and Determination of Ignition Delay Times ......................... 61 3.4. Experimental Error Estimation ...................................................................................... 63 3.5. Experimental Characterization of the Autoignition Behavior of GTL-Diesel and Determination of a suitable Surrogate Fuel .......................................................................... 64 3.5.1. Normal Gravity Autoignition Experiments ............................................................ 64 3.5.2. Microgravity Autoignition Experiments ................................................................ 78 3.5.3. Comparison of Normal-g and Microgravity Experiments ..................................... 85 3.5.4. Determination of a suitable Surrogate Fuel for GTL-Diesel .................................. 89 3.5.5. Evaporation Experiments ..................................................................................... 103 3.6. Experimental Characterization of the Autoignition Behavior of GTL-Kerosene and Determination of a suitable Surrogate Fuel ........................................................................ 108 3.6.1. Normal Gravity Autoignition Experiments .......................................................... 109 3.6.2. Microgravity Autoignition Experiments .............................................................. 121 3.6.3. Comparison of Normal-g and Microgravity Experiments ................................... 128 3.6.4. Determination of a suitable Surrogate Fuel for GTL-Kerosene ........................... 133 3.6.5. Evaporation Experiments ..................................................................................... 147 3.7. Comparison of the Autoignition Behavior of GTL-Diesel and related Fuels ............. 151 3.8. Comparison of the Autoignition Behavior of GTL-Kerosene and related Fuels ........ 158 4. Calculations and Modeling .............................................................................................. 163 4.1. Description of the Physical Model .............................................................................. 163 4.2. Chemical Reaction Kinetics ........................................................................................ 166 4.3. Comparison of Experimental Data and preliminary Numerical Simulations ............. 169 5. Conclusions and Outlook ................................................................................................. 174 6. References ......................................................................................................................... 176 4 Abbreviations, Nomenclature and Symbols Abbreviations AMN Alphamethylnaphthalene or 1-Methylnaphthalene BCH Bicyclohexyl Bio-SNG Bio-Synthetic