PNAAJ313.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

PNAAJ313.Pdf 4'.,,,. 78 , , 4 4 ~ -';~j~ H 9~944 4444.. 44 .4,, 44'. 4 444, 44 4 ~4~~4444~ 4 7 ~(Iac1ud.ubtbUogaphy: p.25iw2 1) -'.~ r.'.~.- ''. ,,, , - 44'4444 .44 ~. ~44.~>'4 4 "'''-.4, "' " ~ "'~ 4,.,..,> . ,-- -- j 4' ' ~...:..4' 4.4 4 4 . ' '4>44 1)~A35TR~I4IUS)'' h"-' 4 ~ 44444 44 . .4 4~4 4<4 '44'4,444~ 44 ~4. 444~ 44 '44 '4..44..44~.,,4'44."'''..".44'444 , 4 ,'44 -. 4,.,, 4.44 44 ~4#~' .4 4 ,4.'*.44* ,44,., ~4 44444 444~444.~ 4 44u 4 4"~ 44F4" 4. 4 ('44 "'.4...,, 444'4"~'444~'."4"'-'4" .,~4. 4 444'" 44'4 .4 J,>444 4 "4 .444444 H ~~' '-. 44 4 . .4 '4 ~44,'4 44 4,444. 4., 44.'..,,. 4,444/ 4 4 4, 4 <44.. 4 4 1' 4 444444.. Q4.44 4 44 '~-4" 44 ~ 444 4 44 4~4444 ~ 44 ~4. 4 44 4 444 4'4 ''4 4444.444 '444.4.444444 ,, ~, 444~'.4444 4' 4 44 '444 4444.~* 'V.. 4 " .4 4''.4, ~ 444 .... ... 4 4>434 ~ . '.44444444 ~ ~':.~I'4'4i~4 444 S. '. 4444 '.4 .4..4444~.4'44'4. 4.'.. ­ 4. .44,44~>4'..444444444~4444 fr 444 ­ 4 4 4'4 ~ 444..444.~444.4 44 <4 4 .4,444444.,4.4'444,.44'444j4444f44~44444,44~44~4' .4444444 44~ 444~444 444 ~, ~,,444444 -.. 44~..ig'4~.4 .~x~ 4 4 4 4 ~4 4 4 44,,4 444 '.~P~~4 k( ~ 4 444'V 44 44444'. 4~444*4 4.4444 444 4 4.4 4444444444 4444 44. 44~ 44 4'~.44 -44 .. ,~ 444..4444444.>,,44,44144444444444444H.4~4 44.4-4.44444444444 44444 44~',44444 4444 444'44 ~ <'4 444'~ .,>4'>(444.444.4444,44~4444.,444,>~ ' 4 4IU~ ~ .4'44 ~ 4' 4' ,444444~i4 ' 4 4.." - 444 ,4.4'.4'~.., Fea~sibi1tty~ - ' 44444" Socloloy 4 DIR 44 U' TANDAL POLDER FEASIBILITY STUDY PREPARED FOR US. AGENCY FOR INTERNATIONAL DEVELOPMENT NOVEMBER 1978 (O-2MEHILL TANDAL POWER FEASIBILITY STUDY Prepared for U.S. AGENCY FOR INTERNATIONAL DEVELOPMENT November 1978 U CR2N HrILL, Inc. E ACKNOWLEDGEMENTS The investigation of the feasibility of Tandal Polder was less than a 2-montn effort. As such, it could only be com­ pleted with the assistance of many people who are located in Tchad. CH2M HILL appreciates the courtesies extended t* each of our team members and it was only through the hospitality nf these peop!h and their willingness to cooperate that the effort was completed as planned. We are particularly indebted to the people with SODELAC and the other agencies of the Government of Tchad who provided a great deal of background materials; to the engineers and technicians from SCET International who explained the Guini and Berim Projects; to the local officials in Bol and its surrounding villages who received us during our fieldwork; to the people at ORSTOM who provided nimerous scientific publications and counsel; to various people within the Lake Tchad Basin Commission who made their knowledge available; and to people at the Institut National Tchadien des Sciences Humaines who provided input into the sociological studies. Though our stay in Tchad was short, we are appreciative of the services provided by Ambassador Bradford and the staff of the U. S. Embassy. *TABLE OF CONTENTS Pace PART 1 SUMMARY AND RECOMMENDATIONS A. Description of the Project 1 B. Summary Findings 4 C. Recommendations 7 PART 2 PROJECT BACKGROUND AND DETAILED DESCRIPTION A. Background 9 B. Detailed Description 10 PART 3 PROJECT ANALYSIS A. Technical Analysis 12 I. Water Supply 12 II. Design Alternatives 14 III. Soils 17 IV. Drainage 28 V. Maintenance 28 VI. Transport 29 VII. Cost Estimates 30 VIII. Alternative Projects 31 IX. Implementation 32 B. Environmental Assessment 33 I. Introduction 33 II. Existing Aquatic Conditions 33 III. Project Impacts on 52 Aquatic Conditions IV. Existing Wildlife Conditions 56 V. Impacts on Wildlife 59 C. Economic Analysis 61 I. Introduction 61 II. National Agricultural 62 Situation III. Production, Value and 64 Income IV. Benefits 69 V. Project Feasibility 72 Table of Contents (Continued) Pago D. Socio-Cultural and Socto- 77 Economic Considerations I. Introduction 77 II. The Socio-Cultural Back- 78 ground: Traditional Society and Its Networks III. The Present Situation on 88 the Polder Project IV. The Socio-Demographic 99 Study and Field Surveys at Bol and Around Teodal V. Factors Which Might 102 Facilitate/Impair the Establishment of the Tandal Polder VI. Conclusions and Recommenda- 105 tions for Socio-Cultural System E. Financial Analysis 108 I. Project Costs and Cash 108 Flow II. Sources of Funds 108 III. Distribution of Revenues 110 and Costs IV. Consequences of Plan on 110 Farmers F. Human Health 113 I. Demography 113 II. Public Health Services 114 and Structure III. Endemic Diseases and 116 Relative Importance IV. Relation of Diseases to 126 Environmental Conditions and Culture V. Impact of Project on 128 Human Health VI. Recommendations 130 Table of Contents (Continued) G. Animal Health 135 1. Livestock Situation 135 11. Government Services in 136 Veterinary and Animal Sciences III. Diseases and Their Relative 138 Importance IV. Impact of Tandal Polder 148 Project on Animal Health V. Recommendations 151 H. Plant Ecology and Agriculture 155 I. Present Crops and 155 Associated Iabitats II. Agricultural Services 157 III. Plant Pests and Diseases 157 IV. Pollution Due to Chemicals 174 V. Ecological Impact of 175 Tandal Polder VI. Recommendations 175 ANNEXES 1 CONSTRUCTION COST ESTIMATE 181 2 ENVIRONMENTAL ASSESSMENT 183 3 SOCIO-CULTURAL STUDIES 198 4 ENDEMIC DISEASES 239 5 ANIMAL HEALTH 254 6 BIBLIOGRAPHY 258 U TABLES Table Eo 3A-1 PROBABILITY OF LA LEVELS EXCEEDING A 13 GIVEN ELEVATION 3A-2 ESTIMATED SOIL P'ROPERTIES 23 3A-3 CONSTRUCTION COST ESTIMATE 30 3B-1 PRINCIPAL CHARACTERISTICS OF THE LAKE 36 COMMUNITIES AT A SURFACE ELEVATION OF 281.5M 3B-2 PARTIAL LIST OF BIRD SPECIES REPORTED TO 57 OCCUR NEAR BOL 3C-2 COTTON AND WHEAT PRODUCTION 67 3C-3 VALUE OF PRODUCTION--TANDAL POLDER 68 3C-4 ANNUAL BENEFITS AND COSTS OF OPERATION, 70 TANDAL POLDER 3C-5 CONSTRUCTION COSTS AND TCHADIAN LABOR 73 PRICE ADJUSTMENT 3C-6 COMPARISON OF BENEFITS AND COSTS OF 75 DEVELOPMENT OF TANDAL POLDER 3E-1 CASH FLOW FOR PROJECT CAPITAL REQUIREMENTS 109 FOR CONSTRUCTION AND OPERATION 3E-2 SCHEDULE OF CROP SALES AND PLAN FOR THEIR 112 DISTRIBUTION--TANDAL POLDER 3F-1 CASES OF MAJOR COMMUNICABLE DISEASES IN 118 TCHAD 1966, 1969-1976 3F-2 TEN PRIMARY CAUSES OF DEATH IN TCHAD IN 1976 120 3F-3 FIVE-YEAR MATRIX OF PRIMARY CAUSES OF 121 DEATH, 1972-1976 3F-4 RANKING OF TEN PRIMARY CAUSES OF DEATH IN 123 TCHAD IN RECENT YEARS AND COMPARISONS TO PRIMARY CAUSES OF DISEASE 3F-5 MAIN CAUSES OF RECENT DISEASE IN BOL AREA 124 1975-1977, AVERAGE MONTHLY CASES 3F-6 COMPARISON OF TEN PRIMARY DISEASES IN TCHAD 125 TO BOL IN RECENT YEARS 3G-1 INCIDENCE OF AND TREATMENTS FOR LIVESTOCK 140 DISEASES, BOL SECTOR. 1977 3G-2 INCIDENCE OF AND TREATMENTS FOR LIVESTOCK 141 DISEASES, NORTH-WEST CIRCONSCRIPTION. 1976 3G-3 INCIDENCE OF EPIZOOTIC DISEASES OF LIVESTOCK 142 IN TCHAD 1976 3G-4 ACTIONS AGAINST LIVESTOCK DISEASES IN TCHAD 143 3H-1 POTENTIAL INSECT PESTS OF BOL PO)LDER CROPS 162 3H-2 PLANT DISEASES OF NIGERIA 164 3H-3 CROP PATHOGENS OF SOUTH-WEST TCHAD 170 3H-4 PROTECTIVE MEASURES AGAINST CROP DISEASE 179 I FIGURES Figure Page 1A-I LOCATION OF BOL IN TCHAD 2 IA-2 TANDASj POLDER-DEVELOPMENT 3 3B-I MAJOR ECOLOGICAL ZONES IN LAKE TCHAD AT 38 DIFFERENT DEPTHS 3B-2 BIOTOPE LOCATIONS IN LAKE TCHAD 40 31,-3 LAKE LEVEL AND DEPTH AT BOL SINCE 1956 46 3B-4 VOLUME, SURFACE AREA, DEPTH AT BOL, AND 47 BLEVATION OF THE SURFhCE IN LAKE TCHAD 3B-5 AREAS OF OPEN WATER IN TANDAL POLDER IN 50 MAY 1978 3B-6 SCHEIATIC SHOWING AREA AFFECTED BY PROJECT 55 WATER USE 3D-i THE PRFFECTURE DU LAC AREA 79 3D-2 AD.IINISTRATIVE DIVISION FOR THE SOL PREFECTURE 80 3F-1 DIAGRAM OF HEALTH SERVICES FOR THE BOL AREA 115 3F-2 TRENDS IN LEPROSY AND GONORRHEA IN TCHAD 119 1966 AND 1969-1976 3F-3 TRENDS IN INTESTINAL SCHISTOSOMIASIS AND 119 AMEBIASIS IN TCHAD 1966 AND 1969-1976 3-1 14AP SHOWING THE ETHNOGRAPHIC DISTRIBUTION 199 FOR THE EASTERN SHORE OF LAKE TCHAD 3-2 SKETCH OF THE BOL MARKET 201 3-3 GENERAL AREA MAP--BOL AND THE POLDERS 216 TANDAL BASIN 3-4 POPULATION DENSITY MAP 219 CURRENCY Currency Unit - CFAF Franc U. S. $1 - CFAF 230 WEIGHTS AND MEASURES I Kilometer (kn) - 0.6215 miles I Centimeter (cm) - 0.033 feet I Meter (m) - 3.3 feet 1 Hectare (ha) - 2.47 acres 1 Liter (1) - .264 gallon I Kilogram (kg) - 2.207 lbs 1 ton (vwtric) - 2,207 lbs ABBREVIATIONS FAO Food and Agriculture Organization of United Nations GOT Government of Tchad LCBC Lake Chad Basin Commission ORSTOM Office de la Recherche Scientifique et Tech. ue Outre-mer SCET Socidt4 Centrale pour 1'Equipement du Territoire- International SODELAC Soci~t4 de Dgveloppement do Lac EPart 1A DESCRIPTION OF THE PROJECT In cooperation with a multidonor program for tho Lac Region of Tchad, USAID is proposing to finance the construction of an irrigation development of the Tandal Polder near Bol (Figure 1A-i). The project consists of empoldering (diking) an area of approximately 800 hectares of Lake Tchad, providing facilities to irrigate the land by gravity and irrigation, and provide drainage facilities to ensure that the project continues to function as designed. The physical facilities include two intake structures with pumping facilities sufficient to assure a constant water supply during most years, a system of drainage canals and pumps to control seepage and surface runoff (Figure 1A-2).
Recommended publications
  • Ecology and Field Biology of the Sorghum Chafer, Pachnoda Interrupta (Olivier) (Coleoptera: Scarabaeidae) in Ethiopia
    Vol. 5(5), pp. 64-69, August 2013 DOI: 10.5897/JEN2012.0059 ISSN 2006-9855 ©2013 Academic Journals Journal of Entomology and Nematology http://www.academicjournals.org/JEN Full Length Research Paper Ecology and field biology of the sorghum chafer, Pachnoda interrupta (Olivier) (Coleoptera: Scarabaeidae) in Ethiopia Asmare Dejen1* and Yeshitila Merene2 1Wollo University, College of Agriculture, P.O.Box 1145, Dessie, Ethiopia. 2Amhara Regional Agricultural Research Institute, P.O.Box 08 Bahir Dar, Ethiopia. Accepted 4 June 2013 Studies on sorghum chafer (Pachnoda interrupta) were conducted under field conditions for two consecutive years (2005 to 2006) to determine the biology and ecology of the beetle. On average, oviposition rate by a single female was 1.28 eggs per day over a period of 11 days. In general, eggs hatched within 4 to 22 days with a mean of 15.7 days, after which larval and pupal stages lasted a mean of 59.8 and 18.3 days, respectively. The highest rate of oviposition was recorded during the first four days after mating and none after the eleventh day. A total of 156 and 236 sites or samples were investigated from nine habitats (under trees in a forest, under trees in a crop field, in crop fields, border of crop field, grazing land, riverside, manure heaps, termite mound and cattle dung in homesteads) to identify breeding and hibernating areas of the beetles. Fertile humus and moist light soil under the shade of various tree species in the forest and along the riverside were found to be the potential breeding and hibernating areas of the beetles.
    [Show full text]
  • Methane Production in Terrestrial Arthropods (Methanogens/Symbiouis/Anaerobic Protsts/Evolution/Atmospheric Methane) JOHANNES H
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5441-5445, June 1994 Microbiology Methane production in terrestrial arthropods (methanogens/symbiouis/anaerobic protsts/evolution/atmospheric methane) JOHANNES H. P. HACKSTEIN AND CLAUDIUS K. STUMM Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nimegen, The Netherlands Communicated by Lynn Margulis, February 1, 1994 (receivedfor review June 22, 1993) ABSTRACT We have screened more than 110 represen- stoppers. For 2-12 hr the arthropods (0.5-50 g fresh weight, tatives of the different taxa of terrsrial arthropods for depending on size and availability of specimens) were incu- methane production in order to obtain additional information bated at room temperature (210C). The detection limit for about the origins of biogenic methane. Methanogenic bacteria methane was in the nmol range, guaranteeing that any occur in the hindguts of nearly all tropical representatives significant methane emission could be detected by gas chro- of millipedes (Diplopoda), cockroaches (Blattaria), termites matography ofgas samples taken at the end ofthe incubation (Isoptera), and scarab beetles (Scarabaeidae), while such meth- period. Under these conditions, all methane-emitting species anogens are absent from 66 other arthropod species investi- produced >100 nmol of methane during the incubation pe- gated. Three types of symbiosis were found: in the first type, riod. All nonproducers failed to produce methane concen- the arthropod's hindgut is colonized by free methanogenic trations higher than the background level (maximum, 10-20 bacteria; in the second type, methanogens are closely associated nmol), even if the incubation time was prolonged and higher with chitinous structures formed by the host's hindgut; the numbers of arthropods were incubated.
    [Show full text]
  • Coleoptera: Scarabaeidae: Cetoniinae): Larval Descriptions, Biological Notes and Phylogenetic Placement
    Eur. J. Entomol. 106: 95–106, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1431 ISSN 1210-5759 (print), 1802-8829 (online) Afromontane Coelocorynus (Coleoptera: Scarabaeidae: Cetoniinae): Larval descriptions, biological notes and phylogenetic placement PETR ŠÍPEK1, BRUCE D. GILL2 and VASILY V. GREBENNIKOV 2 1Department of Zoology, Faculty of Science, Charles University in Prague, Viniþná 7, CZ-128 44 Praha 2, Czech Republic; e-mail: [email protected] 2Entomology Research Laboratory, Ottawa Plant and Seed Laboratories, Canadian Food Inspection Agency, K.W. Neatby Bldg., 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada; e-mails: [email protected]; [email protected] Key words. Coleoptera, Scarabaeoidea, Cetoniinae, Valgini, Trichiini, Cryptodontina, Coelocorynus, larvae, morphology, phylogeny, Africa, Cameroon, Mt. Oku Abstract. This paper reports the collecting of adult beetles and third-instar larvae of Coelocorynus desfontainei Antoine, 1999 in Cameroon and provides new data on the biology of this high-altitude Afromontane genus. It also presents the first diagnosis of this genus based on larval characters and examination of its systematic position in a phylogenetic context using 78 parsimony informa- tive larval and adult characters. Based on the results of our analysis we (1) support the hypothesis that the tribe Trichiini is paraphy- letic with respect to both Valgini and the rest of the Cetoniinae, and (2) propose that the Trichiini subtribe Cryptodontina, represented by Coelocorynus, is a sister group of the Valgini: Valgina, represented by Valgus. The larvae-only analyses were about twofold better than the adults-only analyses in providing a phylogenetic resolution consistent with the larvae + adults analyses.
    [Show full text]
  • WORLD LIST of EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1
    WORLD LIST OF EDIBLE INSECTS 2015 (Yde Jongema) WAGENINGEN UNIVERSITY PAGE 1 Genus Species Family Order Common names Faunar Distribution & References Remarks life Epeira syn nigra Vinson Nephilidae Araneae Afregion Madagascar (Decary, 1937) Nephilia inaurata stages (Walck.) Nephila inaurata (Walckenaer) Nephilidae Araneae Afr Madagascar (Decary, 1937) Epeira nigra Vinson syn Nephila madagscariensis Vinson Nephilidae Araneae Afr Madagascar (Decary, 1937) Araneae gen. Araneae Afr South Africa Gambia (Bodenheimer 1951) Bostrichidae gen. Bostrichidae Col Afr Congo (DeFoliart 2002) larva Chrysobothris fatalis Harold Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Lampetis wellmani (Kerremans) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) syn Psiloptera larva wellmani Lampetis sp. Buprestidae Col jewel beetle Afr Togo (Tchibozo 2015) as Psiloptera in Tchibozo but this is Neotropical Psiloptera syn wellmani Kerremans Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) Psiloptera is larva Neotropicalsee Lampetis wellmani (Kerremans) Steraspis amplipennis (Fahr.) Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) larva Sternocera castanea (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Burkina Faso (Tchinbozo 2015) Sternocera feldspathica White Buprestidae Col jewel beetle Afr Angola (DeFoliart 2002) adult Sternocera funebris Boheman syn Buprestidae Col jewel beetle Afr Zimbabwe (Chavanduka, 1976; Gelfand, 1971) see S. orissa adult Sternocera interrupta (Olivier) Buprestidae Col jewel beetle Afr Benin (Riggi et al 2013) Cameroun (Seignobos et al., 1996) Burkina Faso (Tchimbozo 2015) Sternocera orissa Buquet Buprestidae Col jewel beetle Afr Botswana (Nonaka, 1996), South Africa (Bodenheimer, 1951; syn S. funebris adult Quin, 1959), Zimbabwe (Chavanduka, 1976; Gelfand, 1971; Dube et al 2013) Scarites sp. Carabidae Col ground beetle Afr Angola (Bergier, 1941), Madagascar (Decary, 1937) larva Acanthophorus confinis Laporte de Cast.
    [Show full text]
  • Structure and Frictional Properties of the Leg Joint of the Beetle Pachnoda Marginata (Scarabaeidae, Cetoniinae) As an Inspiration for Technical Joints
    biomimetics Article Structure and Frictional Properties of the Leg Joint of the Beetle Pachnoda marginata (Scarabaeidae, Cetoniinae) as an Inspiration for Technical Joints Steffen Vagts 1,* , Josef Schlattmann 1, Alexander Kovalev 2 and Stanislav N. Gorb 2 1 Department of System Technologies and Engineering Design Methodology, Hamburg University of Technology, Denickestr. 22, D-21079 Hamburg, Germany; [email protected] 2 Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 9, D-24118 Kiel, Germany; [email protected] (A.K.); [email protected] (S.N.G.) * Correspondence: steff[email protected]; Tel.:+49-40-428-784-422 Received: 21 February 2020; Accepted: 15 April 2020; Published: 20 April 2020 Abstract: The efficient locomotion of insects is not only inspiring for control algorithms but also promises innovations for the reduction of friction in joints. After previous analysis of the leg kinematics and the topological characterization of the contacting joint surfaces in the beetle Pachnoda marginata, in the present paper, we report on the measurement of the coefficient of friction within the leg joints exhibiting an anisotropic frictional behavior in different sliding directions. In addition, the simulation of the mechanical behavior of a single microstructural element helped us to understand the interactions between the contact parts of this tribological system. These findings were partly transferred to a technical contact pair which is typical for such an application as joint connectors in the automotive field. This innovation helped to reduce the coefficient of friction under dry sliding conditions up to 17%. Keywords: locomotion; walking; leg; joints; insects; Arthropoda; friction; coefficient of friction; biotribology; biomimetics 1.
    [Show full text]
  • REPORT 2017 METAMORPHOSIS CEO and CHAIRMAN LETTER for 2017
    ANNUAL REPORT 2017 METAMORPHOSIS CEO AND CHAIRMAN LETTER for 2017 wenty-two years ago, Butterfly Pavilion was a crazy dream of a visionary scientist who understood that all people—especially children—need to have a safe, inspiring place to connect with the Tlittle creatures that fly from flower to flower in our gardens, ultimately responsible for a third of the food we eat each day. Two decades later, that dream has taken shape in the form of the world’s only Association of Zoos and Aquariums (AZA)-accredited, stand-alone invertebrate zoo, housing over 5,000 animals as well as research and environmental education programs that reach and impact children and adults all over the globe. In 2017, Butterfly Pavilion took the next all-important step along this journey, announcing plans for a new $33M, 60,000-square-foot, state- of-the-art invertebrate zoo and research center which will be the jewel of the global invertebrate community, inspiring a new way of connecting to environmental conservation. This facility will anchor the 1,200-acre Baseline neighborhood in Broomfield, Colorado, which will evolve as a sort of “Science City.” We will share a campus with a K-12 STEM school habitat; and began the process as one of the first Colorado organizations in the Adams 12 district, and together we will create the first-of-its-kind to be certified in the Service Enterprise Initiative—a national change Pollinator District. management program led by Points of Light—which helps organizations better meet their missions through the power of volunteers. The vision for Butterfly Pavilion’s metamorphosis includes converting to a guest-centric model, building credibility as a respected scientific As we undergo this transformation, Butterfly Pavilion will continue organization, continuing to build our regional presence, running a to drive conservation efforts and shape the perceptions of the next sustainable business and doing things no other organization of our kind generations of scientists, ecologists, educators and decision makers.
    [Show full text]
  • Insect Fauna Associated with Anacardium Occidentale (Sapindales: Anacardiaceae) in Benin, West Africa C
    Journal of Insect Science RESEARCH Insect Fauna Associated With Anacardium occidentale (Sapindales: Anacardiaceae) in Benin, West Africa C. Agboton,1,2,3 A. Onzo,1,4 F. I. Ouessou,1,4 G. Goergen,1 S. Vidal,2 and M. Tamo` 1 1International Institute of Tropical Agriculture (Benin Station), 08 BP 0932 Tri Postal, Cotonou, Be´nin 2Georg August University Department of Crop Sciences/Agricultural Entomology, Grisebachstrasse, 6-D370777 Goettingen, Germany 3Corresponding author, e-mail: [email protected] 4Universite´de Parakou, Faculte´d’Agronomie, BP 123 Parakou, Be´nin Subject Editors: Henry Hagedorn and Marc De Meyer J. Insect Sci. 14(229): 2014; DOI: 10.1093/jisesa/ieu091 ABSTRACT. Cashew, Anacardium occidentale L. (Sapindales: Anacardiaceae), is an important cash crop in Benin. However, its production is threatened by several biotic factors, especially insects. In Benin, very few studies have focused on insects and just listed species commonly found on cashew worldwide. The present investigation fills this gap by presenting an exhaustive inventory of insect species associated Downloaded from with this crop in the country. The survey was carried out from September 2009 to August 2010 in 22 cashew orchards (5 young and 17 ma- ture) distributed over three major agroecological zones where cashew is most produced in the country. Insects were collected using chem- ical knock-down technique and visual observation followed by capture with sweep net. In addition, infested plant organs were sampled and incubated to collect emerging insects. In total, 262 insect species were recorded and identified. Among them, the wood borer Apate terebrans Pallas, the leafminer Eteoryctis gemoniella Stainton, and the mirid bugs Helopeltis schoutedeni Reuter., and Helopeltis anacardii Miller., appeared as the most important insect species attacking cashew in Benin.
    [Show full text]
  • Insects of the Lolldaiga Hills Conservation Landscape¹
    Insects of the Lolldaiga Hills Conservation Landscape¹ Family and scientific name² Common name² N³ L E J Threat Comments ODONATA DAMSELFLIES & DRAGONFLIES Aeshinidae Hawkers Anax imperator Blue emperor √ Gomphidae Clubtails Ictinogomphus ferox Common tigertail √ Libellulidea Perchers / Skimmers Brachythemis impartita Northern banded groundling √ Crocothemis erythraea Broad scarlet √ Orthetrum caffrum Two-striped skimmer √ Pantala flavescens Wandering glider √ MANTODEA MANTIDS Hymenopodidae Flower Mantids Phyllocrania paradoxa. Leaf mantid √ Pseudocreobotra wahlbergi Eyed-flower mantid √ Mantidae Common Mantids Sphodromantis gastrica Common green mantid / Giant mantid √ Tarachodes sp. Bark mantid √ Thespidae Hoplocoryphella sp. √ Empusidae Cone-headed Mantids Hemiempusa capensis Giant cone-headed mantid √ ORTHOPTERA GRASSHOPPERS & CRICKETS Gryllatalpidae Mole Crickets Gryllotalpa africana Mole cricket √ 1 Pyrgomorphidae Foam & Lubber Grasshoppers Phymateus viridipes Green milkweed locust √ Acrididae Short-horned Grasshoppers Acanthacris ruficornis Garden locust √ PHASMATODEA STICK INSECTS Phasmatidae Leptinia graminea Grass stick insect √ HEMIPTERA BUGS Pyrrhocoridae Cotton Stainers Dysdercus nigrofasciatus Cotton stainer √ AUCHENORRHYNCHA Cicadidae Cicadas Platypleura haglundi Orange-wing √ NEUROPTERA LACEWINGS & ANTLIONS Myrmeleontidae Antlions Cymothales spectabilis Tree-hole antlion √ Palpares sp. Dotted antlion √ COLEOPTERA BEETLES Carabidae Ground Beetles Cypholoba tenuicollis √ Tefflus kilimanus √ Staphylinidae Rove Beetles Paederus
    [Show full text]
  • Friction Properties of the Head Articulation in the Beetle Pachnoda Marginata T (Coleoptera, Scarabaeidae) ⁎ N
    Biotribology 17 (2019) 30–39 Contents lists available at ScienceDirect Biotribology journal homepage: www.elsevier.com/locate/biotri Friction properties of the head articulation in the beetle Pachnoda marginata T (Coleoptera, Scarabaeidae) ⁎ N. Barbakadzea,e, S. Endersb,e, E. Arztc,e, S.N. Gorbd,e, a Fraunhofer-Geselschaft, Hansastraße 27c, München 80686, Germany b Doane College, Department of Physics, 1014 Boswell Ave., Crete, NE 68333, USA c INM- Leibniz Institute for New Materials, Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken 66123, Germany d Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, Kiel 24118, Germany e Formerly at Max Planck Institute for Metals Research (now Max Planck Institute for Intelligent Systems), Heisenbergstraße 3, Stuttgart 70569, Germany ARTICLE INFO ABSTRACT Keywords: The head articulation of the beetle Pachnoda marginata is a micro-tribological system which consists of the Biotribology ventral convex structure called gula and the corresponding concave surface of the prothorax. The surfaces of both Friction parts are in contact and are expected to be optimised for friction reduction. The relationship between structure, Joint mechanical properties of the cuticle material and friction properties of this micro-tribological system are in- Insect vestigated. The surface and material structure of the gula and its prothoracic counterpart were studied in frac- Surface tured pieces of the cuticle using scanning electron microscopy (SEM). Friction force measurements and contact Cuticle area estimations between the gula and a glass plate were carried out for different normal loads (0.1–10.0 mN) using two different microtribometers. The tribological behavior ofthe gula cuticle was studied on the (1) fresh, (2) dry, and (3) dry chemically (chloroform-methanol) treated samples.
    [Show full text]
  • Morphology of the Antennal Sensilla of Two Species of Hoplopyga Thomson, 1880 (Coleoptera, Scarabaeidae, Cetoniinae)
    Revista Brasileira de Entomologia 65(1):e20200078, 2021 Morphology of the antennal sensilla of two species of Hoplopyga Thomson, 1880 (Coleoptera, Scarabaeidae, Cetoniinae) Cleicimar Gomes Costa1, Sérgio Roberto Rodrigues1* , Juares Fuhrmann2 1Universidade Estadual de Mato Grosso do Sul, Cassilândia, MS, Brasil. 2Universidade de São Paulo, Museu de Zoologia, São Paulo, SP, Brasil. ARTICLE INFO ABSTRACT Article history: Antennal sensilla are important functional elements of sensory systems in insects. This study aimed to determine Received 07 August 2020 the morphology and structure of the sensilla of two species of the genus Hoplopyga. Adults of Hoplopyga liturata Accepted 17 February 2021 (Olivier, 1789) were collected in traps with sugarcane juice as an attractant. Thereafter, larvae of Hoplopyga Available online 22 March 2021 albiventris (Gory and Percheron, 1833) were collected in mounds of termites (Cornitermes cumulans (Kollar, Associate Editor: Adriana Marvaldi 1832) Isoptera). Then, they were reared in the laboratory for adult observations. Antennae of H. liturata and H. albiventris have sensilla chaetica, trichodea, placodea (type I and II), coeloconica (type I and II), and ampullacea (or pore). Females of H. liturata have a total of about 10657 sensilla and males have about 12512, whereas females Keywords: of H. albiventris have about 16490 sensilla and the males 24565 sensilla. Sensilla placodea are predominant in Chemical communication the antenna of males and females of both species. Gymnetini Isoptera Neotropical Sexual dimorphism Introduction The genus Hoplopyga Thomson, 1880 (Coleoptera, Scarabaeidae, gustative organs (Schneider, 1964; Hansson and Stensmyr, 2011). Cetoniinae, Gymnetini) includes 20 species distributed from Mexico Antennal sensilla are responsible for reception of semiochemicals (or to Argentina, of which 11 were registered in Brazil (Shaughney and infochemicals), such as sexual or aggregative pheromones, and of other Ratcliffe, 2015), namely: H.
    [Show full text]
  • Edible Insects
    1.04cm spine for 208pg on 90g eco paper ISSN 0258-6150 FAO 171 FORESTRY 171 PAPER FAO FORESTRY PAPER 171 Edible insects Edible insects Future prospects for food and feed security Future prospects for food and feed security Edible insects have always been a part of human diets, but in some societies there remains a degree of disdain Edible insects: future prospects for food and feed security and disgust for their consumption. Although the majority of consumed insects are gathered in forest habitats, mass-rearing systems are being developed in many countries. Insects offer a significant opportunity to merge traditional knowledge and modern science to improve human food security worldwide. This publication describes the contribution of insects to food security and examines future prospects for raising insects at a commercial scale to improve food and feed production, diversify diets, and support livelihoods in both developing and developed countries. It shows the many traditional and potential new uses of insects for direct human consumption and the opportunities for and constraints to farming them for food and feed. It examines the body of research on issues such as insect nutrition and food safety, the use of insects as animal feed, and the processing and preservation of insects and their products. It highlights the need to develop a regulatory framework to govern the use of insects for food security. And it presents case studies and examples from around the world. Edible insects are a promising alternative to the conventional production of meat, either for direct human consumption or for indirect use as feedstock.
    [Show full text]
  • GABA Immunostaining in the Central Complex of Dicondylian Insects
    Published in "Journal of Comparative Neurology 526 (14): 2301–2318, 2018" which should be cited to refer to this work. GABA immunostaining in the central complex of dicondylian insects Uwe Homberg | Tim-Henning Humberg* | Jutta Seyfarth | Katharina Bode | Manuel Quintero Pérez Faculty of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Abstract Philipps-Universität Marburg, Marburg, The central complex is a group of midline-crossing neuropils in the insect brain involved in head Germany direction coding, sky compass navigation, and spatial visual memory. To compare the neuroarch- Correspondence itecture and neurochemistry of the central complex in insects that differ in locomotion, ways of Uwe Homberg, Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, D- orientation, time of activity (diurnal, nocturnal), and evolutionary history, we studied the distri- 35032 Marburg, Germany. bution of γ-aminobutyric acid (GABA) immunostaining in the central complex of 29 species, Email: [email protected] ranging from Zygentoma to Diptera. In all species, the lower division of the central body was Present address densely innervated by GABA-immunoreactive tangential neurons. These neurons had additional *Department of Biology, University of arborizations in the bulb, a distinct region of synaptic complexes in the lateral complex, and Fribourg, CH-1700 Fribourg, Switzerland somata in a cell cluster mediodorsally to the antennal lobe. Differences in the appearance of Funding information Deutsche Forschungsgemeinschaft, Grant/ GABA immunostaining in the lower division of the central body corresponded to differences in Award Number: HO 950/24-1 neuropil architecture, such as transformation of the lower division into a toroid in certain Dip- tera and Heteroptera.
    [Show full text]