Graphical Approach to the Learning of Inter-Conversion of Various
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bits, Data Types, and Operations
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Agenda 1. Data Types 2. Unsigned & Signed Integers 3. Arithmetic Operations Chapter 2 4. Logical Operations 5. Shifting Bits, Data Types, 6. Hexadecimal & Octal Notation and Operations 7. Other Data Types COMPSCI210 S1C 2009 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1. Data Types Computer is a binary digital system. How do we represent data in a computer? Digital system: Binary (base two) system: At the lowest level, a computer is an electronic machine. • finite number of symbols • has two states: 0 and 1 • works by controlling the flow of electrons Easy to recognize two conditions: 1. presence of a voltage – we’ll call this state “1” 2. absence of a voltage – we’ll call this state “0” Basic unit of information is the binary digit, or bit. Values with more than two states require multiple bits. • A collection of two bits has four possible states: Could base state on value of voltage, 00, 01, 10, 11 but control and detection circuits more complex. • A collection of three bits has eight possible states: • compare turning on a light switch to 000, 001, 010, 011, 100, 101, 110, 111 measuring or regulating voltage • A collection of n bits has 2n possible states. COMPSCI210 S1C 2009 3 COMPSCI210 S1C 2009 4 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. -
Introduction to Numerical Computing Number Systems in the Decimal System We Use the 10 Numeric Symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to Represent Numbers
Statistics 580 Introduction to Numerical Computing Number Systems In the decimal system we use the 10 numeric symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. The relative position of each symbol determines the magnitude or the value of the number. Example: 6594 is expressible as 6594 = 6 103 + 5 102 + 9 101 + 4 100 Example: · · · · 436.578 is expressible as 436:578 = 4 102 + 3 101 + 6 100 + 5 10−1 + 7 10−2 + 8 10−3 · · · · · · We call the number 10 the base of the system. In general we can represent numbers in any system in the polynomial form: z = ( akak− a a : b b bm )B · · · 1 · · · 1 0 0 1 · · · · · · where B is the base of the system and the period in the middle is the radix point. In com- puters, numbers are represented in the binary system. In the binary system, the base is 2 and the only numeric symbols we need to represent numbers in binary are 0 and 1. Example: 0100110 is a binary number whose value in the decimal system is calculated as follows: 0 26 + 1 25 + 0 24 + 0 23 + 1 22 + 1 21 + 0 20 = 32 + 4 + 2 · · · · · · · = (38)10 The hexadecimal system is another useful number system in computer work. In this sys- tem, the base is 16 and the 16 numeric and arabic symbols used to represent numbers are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Example: Let 26 be a hexadecimal number. -
1. Understanding Decimal, Binary, Octal and Hexadecimal Numbers
Objectives: 1. Understanding decimal, binary, octal and hexadecimal numbers. 2. Counting in decimal, binary, octal and hexadecimal systems. 3. Convert a number from one number system to another system. 4. Advantage of octal and hexadecimal systems. 1. Understanding decimal, binary, octal and hexadecimal numbers Decimal number systems: Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9 --------10-base system) The decimal system is a "positional-value system" in which the value of a digit depends on its position. Examples: 453→4 hundreds, 5 tens and 3 units. 4 is the most weight called "most significant digit" MSD. 3 carries the last weight called "least significant digit" LSD. number of items that a decimal number represent: 9261= (9× )+(2× )+(6× )+(1× ) The decimal fractions: 3267.317= (3× )+(2× )+(6× )+(7× )+ (3× ) + (6× ) + (1× ) Decimal point used to separate the integer and fractional part of the number. Formal notation→ . Decimal position values of powers of (10). Positional values "weights" 2 7 7 8 3 . 2 3 4 5 MSD LSD Binary numbers: . Base-2 system (0 or 1). We can represent any quantity that can be represented in decimal or other number systems using binary numbers. Binary number is also positional–value system (power of 2). Example: 1101.011 1 1 0 1 . 0 1 1 MSD LSD Notes: . To find the equivalent of binary numbers in decimal system , we simply take the sum of products of each digit value (0,1)and its positional value: Example: = (1× ) + (0× ) + (1× ) + (1× )+ (1× )+ (0× ) +(1× ) = 8 + 0 + 2 + 1 + + 0 + = In general, any number (decimal, binary, octal and hexadecimal) is simply the sum of products of each digit value and its positional value. -
Number Systems and Number Representation Aarti Gupta
Number Systems and Number Representation Aarti Gupta 1 For Your Amusement Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com 2 Goals of this Lecture Help you learn (or refresh your memory) about: • The binary, hexadecimal, and octal number systems • Finite representation of unsigned integers • Finite representation of signed integers • Finite representation of rational numbers (if time) Why? • A power programmer must know number systems and data representation to fully understand C’s primitive data types Primitive values and the operations on them 3 Agenda Number Systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational numbers (if time) 4 The Decimal Number System Name • “decem” (Latin) => ten Characteristics • Ten symbols • 0 1 2 3 4 5 6 7 8 9 • Positional • 2945 ≠ 2495 • 2945 = (2*103) + (9*102) + (4*101) + (5*100) (Most) people use the decimal number system Why? 5 The Binary Number System Name • “binarius” (Latin) => two Characteristics • Two symbols • 0 1 • Positional • 1010B ≠ 1100B Most (digital) computers use the binary number system Why? Terminology • Bit: a binary digit • Byte: (typically) 8 bits 6 Decimal-Binary Equivalence Decimal Binary Decimal Binary 0 0 16 10000 1 1 17 10001 2 10 18 10010 3 11 19 10011 4 100 20 10100 5 101 21 10101 6 110 22 10110 7 111 23 10111 8 1000 24 11000 9 1001 25 11001 10 1010 26 11010 11 1011 27 11011 12 1100 28 11100 13 1101 29 11101 14 1110 30 11110 15 1111 31 11111 .. -
1 Evolution and Base Conversion
Indian Institute of Information Technology Design and Manufacturing, Kancheepuram logo.png Chennai { 600 127, India Instructor An Autonomous Institute under MHRD, Govt of India N.Sadagopan http://www.iiitdm.ac.in Computational Engineering Objectives: • To learn to work with machines (computers, ATMs, Coffee vending machines). • To understand how machines think and work. • To design instructions which machines can understand so that a computational task can be performed. • To learn a language which machines can understand so that human-machine interaction can take place. • To understand the limitations of machines: what can be computed and what can not be computed using machines. Outcome: To program a computer for a given computational task involving one or more of arithmetic, algebraic, logical, relational operations. 1 Evolution and Base Conversion Why Machines ? We shall now discuss the importance of automation; human-centric approach (manual) versus machines. Although machines are designed by humans, for many practical reasons, machines are superior to humans as far as problem solving is concerned. We shall highlight below commonly observed features that make machines powerful. • Reliable, accurate and efficient. • Can do parallel tasks if trained. • Efficient while peforming computations with large numbers. If designed correctly, then there is no scope for error. • Good at micro-level analysis with precision. • Consistent It is important to highlight that not all problems can be solved using machines (computers). For example, (i) whether a person is happy (ii) whether a person is lying (not speaking the truth) (iii) reciting the natural number set (iv) singing a song in a particular raga. Computer: A computational machine In this lecture, we shall discuss a computational machine called computer. -
Data Representation in Computer Systems
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION There are 10 kinds of people in the world—those who understand binary and those who don’t. © Jones & Bartlett Learning, LLC © Jones—Anonymous & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER Data Representation © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE 2OR DISTRIBUTIONin ComputerNOT FOR Systems SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 2.1 INTRODUCTION he organization of any computer depends considerably on how it represents T numbers, characters, and control information. The converse is also true: Stan- © Jones & Bartlettdards Learning, and conventions LLC established over the years© Jones have determined& Bartlett certain Learning, aspects LLC of computer organization. This chapter describes the various ways in which com- NOT FOR SALE putersOR DISTRIBUTION can store and manipulate numbers andNOT characters. FOR SALE The ideas OR presented DISTRIBUTION in the following sections form the basis for understanding the organization and func- tion of all types of digital systems. The most basic unit of information in a digital computer is called a bit, which is a contraction of binary digit. In the concrete sense, a bit is nothing more than © Jones & Bartlett Learning, aLLC state of “on” or “off ” (or “high”© Jones and “low”)& Bartlett within Learning, a computer LLCcircuit. In 1964, NOT FOR SALE OR DISTRIBUTIONthe designers of the IBM System/360NOT FOR mainframe SALE OR computer DISTRIBUTION established a conven- tion of using groups of 8 bits as the basic unit of addressable computer storage. -
Number Systems
1 Number Systems The study of number systems is important from the viewpoint of understanding how data are represented before they can be processed by any digital system including a digital computer. It is one of the most basic topics in digital electronics. In this chapter we will discuss different number systems commonly used to represent data. We will begin the discussion with the decimal number system. Although it is not important from the viewpoint of digital electronics, a brief outline of this will be given to explain some of the underlying concepts used in other number systems. This will then be followed by the more commonly used number systems such as the binary, octal and hexadecimal number systems. 1.1 Analogue Versus Digital There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue,isto express the numerical value of the quantity as a continuous range of values between the two expected extreme values. For example, the temperature of an oven settable anywhere from 0 to 100 °C may be measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so on, depending upon the accuracy of the measuring instrument. Similarly, voltage across a certain component in an electronic circuit may be measured as 6.5 V or 6.49 V or 6.487 V or 6.4869 V. The underlying concept in this mode of representation is that variation in the numerical value of the quantity is continuous and could have any of the infinite theoretically possible values between the two extremes. -
Conversion from Decimal There Is a Simple Method That Allows Conversions from the Decimal to a Target Number System
APPENDICES A Number Systems This appendix introduces background material on various number systems and representations. We start the appendix with a discussion of various number systems, including the binary and hexadecimal systems. When we use multiple number systems, we need to convert numbers from system to another We present details on how such number conversions are done. We then give details on integer representations. We cover both unsigned and signed integer representations. We close the appendix with a discussion of the floating-point numbers. Positional Number Systems The number systems that we discuss here are based on positional number systems. The decimal number system that we are already familiar with is an example of a positional number system. In contrast, the Roman numeral system is not a positional number system. Every positional number system has a radix or base, and an alphabet. The base is a positive number. For example, the decimal system is a base-10 system. The number of symbols in the alphabet is equal to the base of the number system. The alphabet of the decimal system is 0 through 9, a total of 10 symbols or digits. In this appendix, we discuss four number systems that are relevant in the context of computer systems and programming. These are the decimal (base-10), binary (base-2), octal (base-8), and hexadecimal (base-16) number systems. Our intention in including the familiar decimal system is to use it to explain some fundamental concepts of positional number systems. Computers internally use the binary system. The remaining two number systems—octal and hexadecimal—are used mainly for convenience to write a binary number even though they are number systems on their own. -
V : Number Systems and Set Theory
V : Number systems and set theory Any reasonable framework for mathematics should include the fundamental number systems which arise in the subject: 1. The natural numbers N (also known as the nonnegative integers). 2. The (signed) integers Z obtained by adjoining negative numbers to N. 3. The rational numbers Q obtained by adjoining reciprocals of nonzero integers to Z. 4. The real numbers R, which should include fundamental constructions like nth roots of positive rational numbers for an arbitrary integer n > 1, and also –1 –2 –k ⋅ ⋅ ⋅ all “infinite decimals” of the form b1 10 + b2 10 + … + bk 10 + … where each bi belongs to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Up to this point we have tacitly assumed that such number systems are at our disposal. However, in both the naïve and axiomatic approaches to set theory it is eventually necessary to say more about them. The naïve approach. In naïve set theory it is necessary to do two things. First, one must describe the properties that the set – theoretic versions of these number systems should satisfy. Second, something should be said to justify our describing such systems as THE natural numbers, THE integers, THE rational numbers, and THE real numbers. This usage suggests that we have completely unambiguous descriptions of the number systems in terms of their algebraic and other properties. One way of stating this is that any system satisfying all the conditions for one of the standard systems N, Z, Q or R should be the same as N, Z, Q or R for all mathematical purposes, with some explicit means for mechanical translation from the given system to the appropriate standard model. -
Floating Point
Contents Articles Floating point 1 Positional notation 22 References Article Sources and Contributors 32 Image Sources, Licenses and Contributors 33 Article Licenses License 34 Floating point 1 Floating point In computing, floating point describes a method of representing an approximation of a real number in a way that can support a wide range of values. The numbers are, in general, represented approximately to a fixed number of significant digits (the significand) and scaled using an exponent. The base for the scaling is normally 2, 10 or 16. The typical number that can be represented exactly is of the form: Significant digits × baseexponent The idea of floating-point representation over intrinsically integer fixed-point numbers, which consist purely of significand, is that An early electromechanical programmable computer, expanding it with the exponent component achieves greater range. the Z3, included floating-point arithmetic (replica on display at Deutsches Museum in Munich). For instance, to represent large values, e.g. distances between galaxies, there is no need to keep all 39 decimal places down to femtometre-resolution (employed in particle physics). Assuming that the best resolution is in light years, only the 9 most significant decimal digits matter, whereas the remaining 30 digits carry pure noise, and thus can be safely dropped. This represents a savings of 100 bits of computer data storage. Instead of these 100 bits, much fewer are used to represent the scale (the exponent), e.g. 8 bits or 2 A diagram showing a representation of a decimal decimal digits. Given that one number can encode both astronomic floating-point number using a mantissa and an and subatomic distances with the same nine digits of accuracy, but exponent. -
Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero
Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero Berenice Rojo-Garibaldia, Costanza Rangonib, Diego L. Gonz´alezb;c, and Julyan H. E. Cartwrightd;e a Posgrado en Ciencias del Mar y Limnolog´ıa, Universidad Nacional Aut´onomade M´exico, Av. Universidad 3000, Col. Copilco, Del. Coyoac´an,Cd.Mx. 04510, M´exico b Istituto per la Microelettronica e i Microsistemi, Area della Ricerca CNR di Bologna, 40129 Bologna, Italy c Dipartimento di Scienze Statistiche \Paolo Fortunati", Universit`adi Bologna, 40126 Bologna, Italy d Instituto Andaluz de Ciencias de la Tierra, CSIC{Universidad de Granada, 18100 Armilla, Granada, Spain e Instituto Carlos I de F´ısicaTe´oricay Computacional, Universidad de Granada, 18071 Granada, Spain Keywords: Zero | Maya | Pre-Columbian Mesoamerica | Number rep- resentation systems | Bijective numeration Abstract Pre-Columbian Mesoamerica was a fertile crescent for the development of number systems. A form of vigesimal system seems to have been present from the first Olmec civilization onwards, to which succeeding peoples made contributions. We discuss the Maya use of the representational redundancy present in their Long Count calendar, a non-power positional number representation system with multipliers 1, 20, 18× 20, :::, 18× arXiv:2005.10207v2 [math.HO] 23 Mar 2021 20n. We demonstrate that the Mesoamericans did not need to invent positional notation and discover zero at the same time because they were not afraid of using a number system in which the same number can be written in different ways. A Long Count number system with digits from 0 to 20 is seen later to pass to one using digits 0 to 19, which leads us to propose that even earlier there may have been an initial zeroless bijective numeration system whose digits ran from 1 to 20. -
A Tutorial on Data Representation - Integers, Floating-Point Numbers, and Characters 2/26/13 8:22 PM
A Tutorial on Data Representation - Integers, Floating-point numbers, and characters 2/26/13 8:22 PM A Tutorial on Data Representation 1. Number Systems Human beings use decimal (base 10) and duodecimal (base 12) number systems for counting and measurements (probably because we have 10 fingers and two big toes). Computers use binary (base 2) number system, as they are made from binary digital components (known as transistors) operating in two states - on and off. In computing, we also use hexadecimal (base 16) or octal (base 8) number systems, as a compact form for represent binary numbers. 1.1 Decimal (Base 10) Number System Decimal number system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, called digits. It uses positional notation. That is, the least-significant digit (right-most digit) is of the or- der of 10^0 (units or ones), the second right-most digit is of the order of 10^1 (tens), the third right-most digit is of the order of 10^2 (hundreds), and so on. For example, 735 = 7×10^2 + 3×10^1 + 5×10^0 We shall denote a decimal number with an optional suffix D if ambiguity arises. 1.2 Binary (Base 2) Number System Binary number system has two symbols: 0 and 1, called bits. It is also a positional nota- tion, for example, 10110B = 1×2^4 + 0×2^3 + 1×2^2 + 1×2^1 + 0×2^0 We shall denote a binary number with a suffix B. Some programming languages de- note binary numbers with prefix 0b (e.g., 0b1001000), or prefix b with the bits quot- ed (e.g., b'10001111').