Variation in the Bout Structure of Northern Mockingbird (Mimus Polyglottus) Singing

Total Page:16

File Type:pdf, Size:1020Kb

Variation in the Bout Structure of Northern Mockingbird (Mimus Polyglottus) Singing Bird Behavior, Vol. 13, pp. 93–98, 2000 1056-1383/00 $20.00 + .00 Printed in the USA. All rights reserved Copyright © 2000 Cognizant Comm. Corp. Variation in the Bout Structure of Northern Mockingbird (Mimus polyglottus) Singing NICHOLAS S. THOMPSON,* EMILY ABBEY,* JESSICA WAPNER,* CHERYL LOGAN,† PETER G. MERRITT,‡ AND ALBERT POOTH§ *Departments of Biology and Psychology, Clark University, Worcester, MA †Department of Psychology, University of North Carolina, Greensboro, NC ‡Treasure Coast Regional Planning Council, Stuart, FL §Department of Biology, University of Miami, Miami, FL The highly variable singing of the northern mockingbird (Mimus polyglottus) is distinguishable from that of other sympatric mimids by its organization into bouts: the bird’s tendency to repeat an element several times before proceeding to another. To determine the degree to which this bout structure is a common feature of mockingbird song, 10 samples of singing from widely different populations and circumstances were examined including examples from coastal and central New England, central North Carolina, and the Florida peninsula and examples of day and night and spring and summer song. Measures included note parameters (peak frequency, internote interval, and note duration) and bout parameters (songs per bout and mean values of note parameters). All samples were found to be organized in bouts, but the degree of differentiation of the bouts (i.e., the degree to which the boundaries between bouts were emphasized by the contrast between their songs) varied both within and between samples. Bout differentiation was not maxi- mized: songs of bouts sung in close temporal proximity were more similar than average, and the perfor- mance overall seemed to consist of runs of high and low values of note and/or bout parameters. Whether these variations in the bout structure reflect changes in the state of the singer or in his circumstances or serve to enhance the overall effectiveness of his performance remains to be determined. Mimidae Mockingbird Communication Song variation Song structure Among the primary functions of birds’ singing species, the male’s singing is practically invariant. are the communication of the species and individual Performances vary only subtly across the individuals identity of the singer. If singing is to identify sing- of the species, and each singer repeats the same sound ers both as species members and as individuals, then or, at most, sings one or two variants. The species- at least one property of the performance must be specific properties of such a performance are obvi- consistent across the members of the species, and at ous. In other species, the individual males sing hun- least one property must be variable from species dreds, perhaps thousands, of different sounds, and member to species member but consistent within a performances vary strikingly from individual to indi- species member (Marler, 1960). vidual. For species with such highly variable perfor- Birds differ strikingly in the degree of variation in mances, identification of the species-specific proper- their singing (Catchpole & Slater, 1995). In many ties of the performance may be less straightforward. 93 94 THOMPSON ET AL. One taxonomic group particularly known for the about 100 ms in duration separated in time from variety of its singing is the mimic thrushes. Within neighboring notes by silence. Notes are gathered into this group, three species breed sympatrically and units of repetition called songs. Songs can be classi- during overlapping time periods in the eastern United fied into readily recognized discrete types called States: the gray catbird (Dumetella carolinensis), the song types. During singing, the mockingbird imme- brown thrasher (Toxostoma rufum), and the north- diately repeats songs of one type several times be- ern mockingbird (Mimus polyglottus). All three are fore switching to songs of a different type. These repertoire-singing species with an extraordinary va- sequences of immediate repetition of song types are riety of song elements. Both the catbird and the called “bouts.” Mockingbirds may also produce mockingbird are known to sing hundreds of repeat- songs in temporal clusters called “groups.” Group able vocal elements, and the brown thrasher is boundaries do not necessarily correspond to bout thought to sing thousands (Boughey & Thompson, boundaries (Figs. 1 and 2). 1976; Kroodsma & Parker, 1977). Furthermore, all Although the bout structure of mockingbird song three species incorporate the vocal elements of other is thought to be a species-identifying property, it is species in their performances. not an invariant one. Bout length varies in a mock- The extraordinary variability of mimic thrush song ingbird performance, and its frequency distribution elements raises questions concerning auditory dis- overlaps with the bout length distributions of the crimination among the three species. In the field, sympatric mimids (Boughey & Thompson, 1976, the three species are traditionally distinguished by 1981) (Fig. 2). In the field, the birds also appear to the number of repetitions of song elements: catbirds vary the salience of the bout structure by varying tend to sing each element only once and brown the distinctiveness of the songs that make up neigh- thrashers once or twice, whereas mockingbirds typi- boring bouts and by varying the duration of pauses cally repeat each song element several times before that occur within and between bouts. going on to the next (Mathews, 1904). Every mock- The purpose of this investigation was to examine ingbird performance has at least three levels of or- variations in the bout structure of northern mock- ganization called notes, songs, and bouts (see ingbird song performances taken from a range of Derrickson & Breitwisch, 1992; Howard, 1974; circumstances and locations to see if patterns of Moody, Kedoux, & Thompson, 1994; Wildenthal, variation therein were consistent with a species iden- 1965; for additional information and song terminol- tification role or if they suggested other communi- ogy). A note is a continuous utterance of sound of cative functions. Figure 1. A typical sequence of mockingbird song with multiple repetition of songs. VARIATION IN MOCKINGBIRD SINGING 95 Figure 2. A sequence of mockingbird song with very short bouts. In this unusual se- quence of mostly one-song bouts, the singer is linking temporal groups by using some part of each previous group in the next. Methods Macintosh Quadra 700 running Sound Designer II (Digidesign, 1992) and converted into spectrograms Ten samples of mockingbird song were obtained in Canary 1.1 or 1.2 (Bioacoustics Research Pro- that were designed to represent widely different lo- gram, 1995). The breeding season samples from cations and recording circumstances (Table 1). The North Carolina were digitized at 22,050 Hz; all other samples were obtained from Massachusetts, North samples were digitized at 44,100 Hz. After being Carolina, and Florida. Some were recorded in the digitized, each sample was separated into blocks of day, some in the night; some were recorded in the approximately 20 s. breeding season, some outside the breeding season. Once converted into spectrograms, samples were With one briefer exception, all samples were ap- measured, note by note, by student technicians. Four proximately 3 min in duration and contained 700– song features were measured for each note using 1100 notes. All samples were digitized on a Canary’s 1.x’s automatic logging feature: frequency Table 1. Sources of the Samples of Mockingbird Song Used in this Study and the Characteristics of the Samples Samplea Region Season Time of Day Mate Status (if known) Sample Length NC-1 Central North Carolina breeding day mated 232 s NC-2 Central North Carolina breeding day unmated 190 s NC-3 Central North Carolina nonbreeding day 239 s MA-1 Central Massachusetts breeding day 162 s MA-2 Coastal Massachusetts breeding night 376 s FL-2a Florida breeding night unmated 206 s FL-2b Florida breeding day unmated 45 s FL-2c Florida breeding night unmated 198 s FL-1a Florida breeding day 277 s FL-1b Florida nonbreeding day 196 s aArabic numerals (NC-1, NC-2, etc.) denote different individuals; a, b, c indicate different recordings from the same individual. 96 THOMPSON ET AL. at peak of amplitude (peak frequency) in Hz, dura- song of the next bout, and (4) the first song of the tion in ms, interval in ms, and peak amplitude (Ca- bout five bouts later in the sound record. The tetrads nary 1.1 and 1.2) (Peak amplitude measurements are provided the basis for three sets of sound similarity valid only for comparisons within sample.) The be- correlations differentiated by the distance apart in ginnings and endings of notes were determined by the sound record: correlations between songs within enlarging spectrograms and playing them at 1/8 the the same bout, between songs from neighboring normal speed. The reliability of each technician in bouts, and between songs five bouts apart in the per- determining where a note began and ended was formance. achieved by using an explicit measurement proto- col and was confirmed by correlating his or her Results measurements of the notes of a standard selection done by all previous technicians. The 10 samples exhibited the variability and volu- After samples had been measured, the place of bility characteristic of northern mockingbird sing- each note was identified in the bout/song/note struc- ing. All singers added new note and song types as ture. Song boundaries were determined by the be- their performances progressed and bouts of old types ginning and ending of a repeated sequence of notes, were seldom repeated. bout boundaries in a change in the sequence of songs that were repeated. These distinctions were straight- Variation Between Samples forward in most cases. Difficult cases were notes Every variable we examined varied significantly not obviously elements of songs. Single notes that between samples (one-way ANOVA for sample, were repeated were treated as a bout of one-note df =9, p< 0.0001).
Recommended publications
  • Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
    Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A.
    [Show full text]
  • Predation on Vertebrates by Neotropical Passerine Birds Leonardo E
    Lundiana 6(1):57-66, 2005 © 2005 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Predation on vertebrates by Neotropical passerine birds Leonardo E. Lopes1,2, Alexandre M. Fernandes1,3 & Miguel Â. Marini1,4 1 Depto. de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-910, Belo Horizonte, MG, Brazil. 2 Current address: Lab. de Ornitologia, Depto. de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-910, Belo Horizonte, MG, Brazil. E-mail: [email protected]. 3 Current address: Coleções Zoológicas, Aves, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, INPA II, 69083-000, Manaus, AM, Brazil. E-mail: [email protected]. 4 Current address: Lab. de Ornitologia, Depto. de Zoologia, Instituto de Biologia, Universidade de Brasília, 70910-900, Brasília, DF, Brazil. E-mail: [email protected] Abstract We investigated if passerine birds act as important predators of small vertebrates within the Neotropics. We surveyed published studies on bird diets, and information on labels of museum specimens, compiling data on the contents of 5,221 stomachs. Eighteen samples (0.3%) presented evidence of predation on vertebrates. Our bibliographic survey also provided records of 203 passerine species preying upon vertebrates, mainly frogs and lizards. Our data suggest that vertebrate predation by passerines is relatively uncommon in the Neotropics and not characteristic of any family. On the other hand, although rare, the ability to prey on vertebrates seems to be widely distributed among Neotropical passerines, which may respond opportunistically to the stimulus of a potential food item.
    [Show full text]
  • Artificial Water Catchments Influence Wildlife Distribution in the Mojave
    The Journal of Wildlife Management; DOI: 10.1002/jwmg.21654 Research Article Artificial Water Catchments Influence Wildlife Distribution in the Mojave Desert LINDSEY N. RICH,1,2 Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA STEVEN R. BEISSINGER, Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA JUSTIN S. BRASHARES, Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA BRETT J. FURNAS, Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA 95670, USA ABSTRACT Water often limits the distribution and productivity of wildlife in arid environments. Consequently, resource managers have constructed artificial water catchments (AWCs) in deserts of the southwestern United States, assuming that additional free water benefits wildlife. We tested this assumption by using data from acoustic and camera trap surveys to determine whether AWCs influenced the distributions of terrestrial mammals (>0.5 kg), birds, and bats in the Mojave Desert, California, USA. We sampled 200 sites in 2016–2017 using camera traps and acoustic recording units, 52 of which had AWCs. We identified detections to the species-level, and modeled occupancy for each of the 44 species of wildlife photographed or recorded. Artificial water catchments explained spatial variation in occupancy for 8 terrestrial mammals, 4 bats, and 18 bird species. Occupancy of 18 species was strongly and positively associated with AWCs, whereas 1 species (i.e., horned lark [Eremophila alpestris]) was negatively associated. Access to an AWC had a larger influence on species’ distributions than precipitation and slope and was nearly as influential as temperature.
    [Show full text]
  • Biodiversity and Ecological Potential of Plum Island, New York
    Biodiversity and ecological potential of Plum Island, New York New York Natural Heritage Program i New York Natural Heritage Program The New York Natural Heritage Program The NY Natural Heritage Program is a partnership NY Natural Heritage has developed two notable between the NYS Department of Environmental online resources: Conservation Guides include the Conservation (NYS DEC) and The Nature Conservancy. biology, identification, habitat, and management of many Our mission is to facilitate conservation of rare animals, of New York’s rare species and natural community rare plants, and significant ecosystems. We accomplish this types; and NY Nature Explorer lists species and mission by combining thorough field inventories, scientific communities in a specified area of interest. analyses, expert interpretation, and the most comprehensive NY Natural Heritage also houses iMapInvasives, an database on New York's distinctive biodiversity to deliver online tool for invasive species reporting and data the highest quality information for natural resource management. planning, protection, and management. In 1990, NY Natural Heritage published Ecological NY Natural Heritage was established in 1985 and is a Communities of New York State, an all inclusive contract unit housed within NYS DEC’s Division of classification of natural and human-influenced Fish, Wildlife & Marine Resources. The program is communities. From 40,000-acre beech-maple mesic staffed by more than 25 scientists and specialists with forests to 40-acre maritime beech forests, sea-level salt expertise in ecology, zoology, botany, information marshes to alpine meadows, our classification quickly management, and geographic information systems. became the primary source for natural community NY Natural Heritage maintains New York’s most classification in New York and a fundamental reference comprehensive database on the status and location of for natural community classifications in the northeastern rare species and natural communities.
    [Show full text]
  • Mimus Gilvus (Tropical Mockingbird) Family: Mimidae (Mockingbirds) Order: Passeriformes (Perching Birds) Class: Aves (Birds)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Mimus gilvus (Tropical Mockingbird) Family: Mimidae (Mockingbirds) Order: Passeriformes (Perching Birds) Class: Aves (Birds) Fig. 1. Tropical mockingbird, Mimus gilvus. [http://asawright.org/wp-content/uploads/2012/07/Tropical-Mockingbird.jpg, downloaded 16 November 2014] TRAITS. The tropical mockingbird is a songbird that can be identified by its ashy colour; grey body upperparts and white underparts. It has long legs, blackish wings with white bars and a long blackish tail with white edges. The juvenile is duller and browner than adults with a chest slightly spotted brown. The average length and weight of the bird is 23-25cm and 54g respectively (Hoyo Calduch et al., 2005). It has yellow eyes and a short, slender, slightly curved black bill. There is no apparent sexual dimorphism (Soberanes-González et al., 2010). It is the neotropical counterpart to the northern mockingbird (Mimus polyglottos), with its main difference being that the tropical mockingbird has less white in its wings and primaries (flight feathers). ECOLOGY. Mimus gilvus is found in open habitats ranging from savanna or farmland to human habitation. These birds are geographically distributed from southern Mexico to northern South America to coastal Eastern Brazil and the Southern Lesser Antilles, including Trinidad and Tobago (Coelho et al., 2011). The tropical mockingbird may have been introduced into Trinidad UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour and Panama, but these are now resident populations. It builds its cup-like nest in thick bushes or shrubbery with sticks and roots about 2-3m off the ground (Hoyo Calduch et al., 2005).
    [Show full text]
  • Northern Mockingbird (Mimus Polyglottos) Deaver D
    Northern Mockingbird (Mimus polyglottos) Deaver D. Armstrong Goose Island State Park, TX 4/7/2006 © John Van Orman (Click to view a comparison of Atlas I to II) The Northern Mockingbird’s incredible ability Distribution The Northern Mockingbird was first listed in to not only imitate but also remember up to 200 Michigan by Sager (1839). Barrows (1912) different “songs” is well known (Kroodsma called it a rare summer visitor to southern 2005). This remarkable bird uses songs of other Michigan and attributed at least some of the bird species and non-bird species and even reports to escaped caged birds. Wood (1951) copies sounds of mechanical devices like mentioned a total of seven nest records between telephones and sirens. Historically, the bird was 1910 and 1934, all in the SLP in counties which captured and caged for this very ability and have records in both Atlases and most other many early records in Michigan were historical accounts (Zimmerman and Van Tyne discounted as being attributed to escaped pets 1959, Payne 1983). Zimmerman and Van Tyne (Sprunt 1948, Barrows 1912). (1959) added records from Clare and Cheboygan Counties in the NLP. Payne (1983) The Northern Mockingbird regularly breeds as added 16 more counties to the list of those far north as the southern part of the eastern reporting Northern Mockingbirds in the provinces of Canada west to Ontario and then breeding season. Most of these newly added only casually north of a line drawn west across counties were in the NLP and the western UP. the U.S. from the southern half of Michigan.
    [Show full text]
  • Breeding Season Diet of the Floreana Mockingbird (Mimus Trifasciatus), a Micro-Endemic Species from the Galápagos Islands, Ecuador
    196 Notornis, 2014, Vol. 61: 196-199 0029-4470 © The Ornithological Society of New Zealand Inc. Breeding season diet of the Floreana mockingbird (Mimus trifasciatus), a micro-endemic species from the Galápagos Islands, Ecuador LUIS ORTIZ-CATEDRAL Ecology and Conservation Group, Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand Abstract I conducted observations on the diet of the Floreana mockingbird (Mimus trifasciatus) during its breeding season in February and March 2011. The Floreana mockingbird is a critically endangered species restricted to Gardner and Champion Islets off the coast of Floreana Island, in the Galápagos Islands, Ecuador. During 11 days, 172 feeding bouts of adult and nestling mockingbirds were observed. The majority of feeding bouts of adults (31%; 19 feeding bouts) involved the consumption of nectar and pollen of Opuntia megasperma. Another important food item consisted of Lepidopteran caterpillars (27%; 17 feeding bouts). The majority of food items fed to nestlings consisted of Lepidopteran caterpillars (26%; 29 observations), followed by adult spiders (19%; 21 observations). The reintroduction of the species to its historical range on Floreana Island is currently being planned with an emphasis on the control or eradication of invasive cats and rats. To identify key areas for reintroduction, a study on the year-round diet of the species as well as availability and variability of food items is recommended. Nectar and pollen of Opuntia megasperma was an important dietary item for the species during its breeding season. This slow-growing plant species was widespread on the lowlands of Floreana Island but introduced grazers removed Opuntia from most of its range.
    [Show full text]
  • 2020-2021 NEBRASKA BIRD LIST See Science Olympiad General Rules, Eye Protection & Other Policies on As They Apply to Every Event
    2020-2021 NEBRASKA BIRD LIST See Science Olympiad General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event Kingdom – ANIMALIA ORDER: Pelecaniformes ORDER: Gruiformes Pelicans (Pelecanidae) Rails, Gallinules, and Coots (Rallidae) Phylum – CHORDATA American White Pelican Pelecanus Clapper Rail Rallus longirostris Subphylum – VERTEBRATA erythrorhynchos Sora Bitterns, Herons, and Allies Purple Gallinule Class - AVES (Ardeidae) American Coot Family Group (Family Name) American Bittern Cranes (Gruidae) Common Name Great Blue Heron Ardea herodias Sandhill Crane Antigone canadensis [Scientific name is in italics] Snowy Egret Egretta thula Whooping Crane Grus americana Green Heron ORDER: Anseriformes Black-crowned Night-heron ORDER: Charadriiformes Ducks, Geese, and Swans (Anatidae) Ibises and Spoonbills Lapwings and Plovers (Charadriidae) Black-bellied Whistling-duck (Threskiornithidae) American Golden-Plover Snow Goose Roseate Spoonbill Platalea ajaja Piping Plover Charadrius melodus Canada Goose Branta canadensis Killdeer Charadrius vociferus Trumpeter Swan ORDER: Suliformes Oystercatchers (Haematopodidae) Wood Duck Aix sponsa Cormorants (Phalacrocoracidae) American Oystercatcher Mallard Anas platyrhynchos Double-crested Cormorant Stilts and Avocets (Recurvirostridae) Northern Shoveler Phalacrocorax auritus Black-necked Stilt Green-winged Teal Darters (Anhingida) American Avocet Recurvirostra Canvasback Anhinga Anhinga anhinga americana Hooded Merganser Frigatebirds (Fregatidae) Sandpipers, Phalaropes,
    [Show full text]
  • Like an Earthworm: Chalk-Browed Mockingbird (Mimus Saturninus) Kills and Eats a Juvenile Watersnake
    470NOTA Ivan Sazima Revista Brasileira de Ornitologia 15(3):470-471 setembro de 2007 Like an earthworm: Chalk-browed Mockingbird (Mimus saturninus) kills and eats a juvenile watersnake Ivan Sazima Departamento de Zoologia e Museu de História Natural, Caixa Postal 6109, Universidade Estadual de Campinas, CEP 13083‑970, Brasil. E‑mail: [email protected] Recebido em 20 de janeiro de 2007; aceito em 11 de maio de 2007. RESUMO: Como uma minhoca: o sabiá-do-campo (Mimus saturninus) mata e ingere uma cobra d’água juvenil. Diversas espécies de Passeriformes neotropicais apresam vertebrados, embora serpentes sejam presas raramente registradas. Apresento aqui um registro de sabiá‑do‑campo (Mimus saturninus) apresando uma cobra‑d’água juvenil. Uma vez que serpentes são presas perigosas, é aqui proposta a hipótese de que serpentes apresadas por Passeriformes sejam principalmente juvenis de espécies não‑venenosas e não‑constritoras. Também, sugiro que o apresamento de serpentes de pequeno porte e relativamente inofensivas representa uma alteração simples no comportamento de caça de Passeriformes que tenham o hábito de apresar minhocas e artrópodes alongados como lagartas e diplópodes. PALAVRAS-CHAVE: Ofiofagia, comportamento predatório, presas alongadas. KEY-WORDS: Ophiophagy, predatory behaviour, elongate prey In a recent study of Neotropical passerine birds as vertebrate pecked at the mid body and even at the tail. After about 3 predators (Lopes et al. 2005) a surprising number of species min, the snake laid still on the ground and the bird began to (206) was found to prey on this animal type, although the swallow it. One juvenile individual from the group begged for number of stomachs with vertebrate remains was very low food and seemed to make attempts to steal the prey from the (0.3% out of 5,221 samples).
    [Show full text]
  • Earth History and the Passerine Superradiation
    Earth history and the passerine superradiation Carl H. Oliverosa,1, Daniel J. Fieldb,c, Daniel T. Ksepkad, F. Keith Barkere,f, Alexandre Aleixog, Michael J. Andersenh,i, Per Alströmj,k,l, Brett W. Benzm,n,o, Edward L. Braunp, Michael J. Braunq,r, Gustavo A. Bravos,t,u, Robb T. Brumfielda,v, R. Terry Chesserw, Santiago Claramuntx,y, Joel Cracraftm, Andrés M. Cuervoz, Elizabeth P. Derryberryaa, Travis C. Glennbb, Michael G. Harveyaa, Peter A. Hosnerq,cc, Leo Josephdd, Rebecca T. Kimballp, Andrew L. Mackee, Colin M. Miskellyff, A. Townsend Petersongg, Mark B. Robbinsgg, Frederick H. Sheldona,v, Luís Fábio Silveirau, Brian Tilston Smithm, Noor D. Whiteq,r, Robert G. Moylegg, and Brant C. Fairclotha,v,1 aDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803; bDepartment of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom; cDepartment of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom; dBruce Museum, Greenwich, CT 06830; eDepartment of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108; fBell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108; gDepartment of Zoology, Museu Paraense Emílio Goeldi, São Braz, 66040170 Belém, PA, Brazil; hDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; iMuseum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131; jDepartment of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre,
    [Show full text]
  • Mimus Polyglottos)
    J. Field Ornithol., 58(3):297-305 FLUCTUATIONS IN FALL AND WINTER TERRITORY SIZE IN THE NORTHERN MOCKINGBIRD (MIMUS POLYGLOTTOS) CHERYL A. LOGAN Departmentof Psychology Universityof North Carolina,Greensboro Greensboro,North Carolina 27412 USA Abstract.--Many speciesof birdstrack resourcescontained in their feedingterritory. Ob- servationsreported here illustratefluctuations in territory sizefrom fall to winter in peren- niallyterritorial mockingbirds in the piedmontof North Carolina.In coldweather, territory size decreasedfrom fall to winter. The decreasewas neither a competitiveloss of spaceto intrudingconspecifics, nor a directresponse to the competitivethreat posed by otherspecies relying heavily on winter fruit. During the unusuallywarm winter of 1984, territory size decreasedlittle if at all. The decreaseobserved in coldweather may, therefore, be a response to alteredenergetic demands imposed by cold weather in which decreasedterritory size minimizesenergy expenditure. These observationsstress the flexibility of the mockingbird's perennialterritoriality in the face of environmentalvariation. FLUCTUACIONES EN EL TAMAlqlO DEL TERRITORIO DE SINSONTES ~ (MIMUS POLYGLOTTOS) DURANTE EL OTONO Y EL INVIERNO Sinopsis.--Muchasespecies de aveseva16an los recursosque hay en su territorio de ali- mentaci6n.Las observacionesque hice en sinsontesen Carolina del Norte, ilustran fluc- tuacionesen el tamafiodel territorioperemne de estasaves durante el otofioy el invierno. E1 territorio disminuy6en tamafio del otofioal invierno.La disminuci6nno estuvoasociada a perdida de espaciopor competenciacon otros sinsonteso comorespuesta a la amenaza competitivapor otras especiesde avesque dependenen gran medida de frutas durante el invierno.Durante el "tibio" inviernode 1984, losterritorios apenas se redujeron en tama•o. Por endela disminuci6ndel territorioobservada durante inviernos fr•os muy bien pudiera ser una respuestaa la demandaenerg6tica impuesta por las bajastemperaturas en donde la reducci6ndel tamafio del territorio reduce tambi6n el gastoenerg6tico.
    [Show full text]
  • Light Pollution & Biodiversity: What Are the Levers of Action to Limit the Impact of Artificial Lighting on Nocturnal Fauna
    MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2018 N°attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Biologie de la Conservation Présentée publiquement par Julie Pauwels Le 11 octobre 2018 Light pollution & biodiversity: What are the levers of action to limit the impact of artificial lighting on nocturnal fauna? Sous la direction de : Dr. Isabelle Le Viol, Dr. Christian Kerbiriou et Pr. Emmanuelle Porcher (HDR) JURY : M. Jean-Christophe Foltête Professeur, Université de Bourgogne Franche-Comté Rapporteur M. Jean Secondi Maître de Conférences, Université d’Angers Rapporteur Mme. Françoise Burel Directrice de recherche, Université de Rennes 1 Examinatrice M. John Thompson Directeur de recherche, CEFE, Montpellier Examinateur Mme. Isabelle Le Viol Maître de Conférences, Muséum national d’Histoire naturelle, Paris Directrice de thèse M. Christian Kerbiriou Maître de Conférences, Sorbonne Université, Paris Directeur de thèse M. Kamiel Spoelstra Docteur, Netherlands institute of Ecology, Wagenigen Invité M. Romain Sordello Chef de projet, AFB - Muséum national d’Histoire naturelle, Paris Invité M. Nicolas Valet Auddicé Environnement, Roost-Warendin Co-encadrant ABSTRACT The spatial extent of artificial light is increasing rapidly and significantly on Earth surface hence changing the nocturnal lightscape and threatening an important part of ecosystems. The rise in nighttime light levels induces a perturbation of the circadian rhythm and thus a modification of nocturnal, but also some diurnal, species behavior and interactions between species. Despite the spread of light pollution being of major concern, the knowledge gaps in this field limit the creation of regulations to reduce the impact of nighttime lighting on biodiversity.
    [Show full text]