Theta Functions

Total Page:16

File Type:pdf, Size:1020Kb

Theta Functions Theta Functions Lukas Lewark Seminar on Modular Forms, 31. Januar 2007 Abstract Theta functions are introduced, associated to lattices or quadratic forms. Their transformation property is proven and the conditions discussed under which theta functions are modular forms. As an application it is shown how theta functions can be used to analyse lattice sphere packings. The relation to the represantation number of natural numbers as sums of squares is mentioned. 1 Definition of the theta functions 1.1 The theta function of a lattice Let V be a n-dimensional real vector space equipped with an inner product (a bilinear, symmetric, positive definite form) , . Let µ be an invariant measure on V , i.e.h· ·i for any measurable subset U V, v V : µ(v + U) = µ(U) and λ R : µ(λU) = λ nµ(U). Furthermore⊂ ∀ ∈ ∀ ∈ | | µ is to be scaled so that for a basis (ε1,...εn) of V which is orthonormal with respect to , : µ( λ ε 0 λ 1 ) = 1. h· ·i { j j j | ≤ j ≤ } P Definitions A lattice Γ is a subset of V which can be written in the form Γ = e1Z + . + enZ where (e1,...en) is a basis of V , which is then called a basis of Γ. Equivalently it can be defined as a discrete subgroup which does not lie in a hyperplane. The volume of Γ is vol(Γ) := µ(V/Γ) = µ( λ e 0 λ 1 ). { j j j | ≤ j ≤ } The dual lattice Γ0 of Γ is a subset of the dualP space V 0 defined by h Γ0 : g Γ : h(g) Z ∈ ⇔ ∀ ∈ ∈ To the lattice Γ one assigns the theta function θ : H C, Γ → τ eπiτhg,gi (1) 7→ gX∈Γ 0 0 0 0 Remarks To verify that Γ is itself a lattice, let (e1,...,en) V denote ⊂ 0 0 the dual basis of (e1,...en), i.e. ej (ek) = δjk (Kronecker delta). (e1,...,en) is a basis of V 0 and a subset of Γ0 and any h Γ0 can be decomposed to h = h(e ) e0 e0 Z + . + e0 Z. So (e0 ,...e0 )∈ is a basis of Γ0. j j · j ∈ 1 n 1 n P V can be identified with V 0 via the inner product: v (w v, w ). Γ0 will also denote the image of Γ under this isomorphism, which7→ is another7→ h latticei in V . Lemma (1) converges uniformly on every compact subset and it converges absolutely. Thus θΓ is holomorphic. Proof (Sketch) Since τ H Re iτ < 0 and g, g > 0 g = 0, the exponent’s real part is negative.∈ The⇒ Lemma can thush bei proven∀ by6 finding a bound for the number of lattice points with g, g x which is polynomial in x. h i ≤ 1 1.2 Theta function of a quadratic form Definitions A quadratic form is a map S : V 2 R so that (v, w) S[v + w] S[v] S[w] is an inner product. → 7→ −Let Pos(− n, R) be the set of symmetric, positive definite n n-matrices and let S Pos(n, R). Such an S defines a quadratic form by ×v S[v] where S[v] :=∈v>Sv. All quadratic forms are given in such a way. 7→ One associates the theta function θ : H C to S, which is given by S → τ eπiτS[g] 7→ gX∈Zn Remark Let A be the Gram matrix of (e1,...en) with respect to , , i.e. A = e , e . h· ·i ij h i j i It follows that θΓ = θA because: n λ1 g = λ e g, g = (λ λ )A . j j ⇒ h i 1 · · · n . Xj=1 λ n So defining a theta function via a lattice or a quadratic form is just a difference of perspective. Lemma µ(V/Γ) = det(A) p > Proof Let B := (e1 en) be a n n matrix the rows of which are the basis vectors written in· terms · · of a basis× orthonormal with respect to , . B is called a generator matrix of the lattice. h· ·i det(B) = µ( λ e 0 λ 1 ) and { j j j | ≤ j ≤ } P B>B = A det(A) = det(B>) det(B) = det(B)2 = µ(V/Γ)2 ⇒ because the absolute value of the determinant of a matrix is the volume of the parallelepiped spanned by its row vectors. ¤ Lemma The inverse matrix A−1 is a Gram matrix of the dual lattice Γ0. 0 −1 0 0 Proof Let ej = A ej . Then (e1,...,en) is the dual basis (which is a basis of Γ0) because e0 , e = (A−1e )>Ae = e>e = δ . h j ki j k j k jk So indeed e0 , e0 = (A−1e )>A(A−1e ) = e A−1e . ¤ h j ki j k j k 2 2 The Transformation Formula Theorem Let Γ be a lattice. Then n 1 τ 2 τ H : θΓ0 = µ(V/Γ)θΓ(τ) (2) ∀ ∈ µ−τ ¶ ³ i ´ where that branch of √ is to be chosen that maps positive reals to positive reals. To prove the theorem one requires the following Lemma (Poisson formula) A bounded function f : V R is called rapidly decreasing if it can be partially differentiated arbitrarily→ often and all these derivatives are bounded. The Fourier transform f of such a function is defined as b f : V 0 R, h e−2πih(g)f(g) dµ(g) → 7→ Z b V For any such f and lattice Ω the Poisson formula states that µ(V/Ω) f(g) = f(h) gX∈Ω hX∈Ω0 b Proof Use a basis of Ω to identify V with the Rn; Ω is mapped to Zn, a lattice with volume 1. Identify µ with the product measure dx1 . dxn. Then use Rn0 = Rn and Zn0 = Zn and notice that the fourier transform as defined above is identified with the known fourier transform (using the right scaling of µ with respect to , ). So this more generalh· ·i form of the Poisson formula follows from the classical f(g) = f(h) gX∈Zn hX∈Zn b ¤ Proof of the Transformation Formula By the identity theorem, for two holomorphic functions defined on a open connected set – such as H – to be equal it is sufficient that they agree on a subset which has an accumulation point contained in that subset. So it is sufficient to prove the transformation formula for τ = iy with y R+, that is to prove ∈ −1 yn/2µ(V/Γ) e−πyhg,gi = e−πy hh,hi gX∈Γ hX∈Γ0 Let f : V R, g e−πhg,gi. f is rapidly decreasing and f = f if you identify V with V 0→using ,7→. This can be proven by doing the same identifications as in h· ·i b 3 \2 2 the proof of the Poisson formula, thus reducing the claim to e−πkxk = e−πkxk for x Rn, a known analytic result. Let∈ Ω = y1/2Γ. Then Ω0 = y−1/2Γ0 and µ(V/Ω) = yn/2µ(V/Γ). The Poisson formula, applied to f and Ω yields yn/2µ(V/Γ) e−πhg,gi = e−πhh,hi g∈Xy1/2Γ h∈yX−1/2Γ0 −1 yn/2µ(V/Γ) e−πyhg,gi = e−πy hh,hi ⇔ gX∈Γ hX∈Γ0 And that was to be proven. ¤ 3 The theta functions as modular forms The transformation property of θΓ is similar, but not equal to that of a modular form. What conditions has Γ to satisfy for θ to be a modular form? If g, g is an even integer g Γ, say, for a given g, g, g = 2c, then h i ∀ ∈ h i eπi(τ+1)hg,gi = e2πi(τ+1)c = e2πiτc = eπiτhg,gi i.e. θ would have period 1: θΓ(τ + 1) = θΓ(τ) (3) From the matrix point of view this means that the diagonal entries are even; such matrices are called even. If Γ is selfdual, i.e. Γ = Γ0, its theta function satisfies the modified transfor- mation property n 1 τ 2 θΓ = µ(V/Γ)θΓ(τ) (4) µ−τ ¶ ³ i ´ Lemma If Γ is selfdual and even then 8 n. | 1 1 Proof The modular group is generated by the matrices T = 0 1 and S = 0 −1 1 0 . ¡ ¢ ¡ To¢ prove the lemma, one makes use of (ST )3i = i: 4 Choose τ = i and apply alternatingly (3) and (4): (3) θΓ(i) = θΓ(i + 1) n/2 (4) i + 1 1 = θ µ i ¶ Γ µ−i + 1¶ i 1 = (1 i)n/2θ − − Γ µ 2 ¶ (3) i + 1 = (1 i)n/2θ − Γ µ 2 ¶ n/2 (4) 1 i + 1 2 = (1 i) θ µ i 2 − ¶ Γ µ−i + 1¶ = ( i)n/2θ (i 1) − Γ − (3) = ( i)n/2θ (i) − Γ n/2 Because θΓ(i) is a sum of positive terms it is non-zero. So ( i) = 1 8 n follows. − ⇒ |¤ Lemma Γ=Γ0 det(A) = 1 and j, k : A Z. ⇔ ∀ jk ∈ Proof ” ”: Γ=Γ0 det(A) = det(A−1) det(A) = 1. And A = ⇒ ⇒ ⇔ jk ej , ek Z. p p h ” i”: ∈ Let g,h Γ, then g,h = g>Ah Z Γ Γ0. A−1 is itself a matrix with⇐ determinant∈ 1 and integralh i entries, so∈ switching⇒ ⊂ the roles of Γ = Γ00 and Γ0 one deduces Γ0 Γ Γ=Γ0. ¤ ⊂ ⇒ Corollary The theta function of a selfdual, even lattice Γ is a modular form n of weight 2 . Proof θΓ is 1-periodic and using the two prior lemmas the transformation property (4) of a selfdual lattice becomes 1 n θ = τ 2 θ (τ) Γ µ−τ ¶ Γ ¤ 4 Sphere packings A sphere packing is a set of non-overlapping balls of same radius in the Rn.
Recommended publications
  • Lectures on Modular Forms. Fall 1997/98
    Lectures on Modular Forms. Fall 1997/98 Igor V. Dolgachev October 26, 2017 ii Contents 1 Binary Quadratic Forms1 2 Complex Tori 13 3 Theta Functions 25 4 Theta Constants 43 5 Transformations of Theta Functions 53 6 Modular Forms 63 7 The Algebra of Modular Forms 83 8 The Modular Curve 97 9 Absolute Invariant and Cross-Ratio 115 10 The Modular Equation 121 11 Hecke Operators 133 12 Dirichlet Series 147 13 The Shimura-Tanyama-Weil Conjecture 159 iii iv CONTENTS Lecture 1 Binary Quadratic Forms 1.1 The theory of modular form originates from the work of Carl Friedrich Gauss of 1831 in which he gave a geometrical interpretation of some basic no- tions of number theory. Let us start with choosing two non-proportional vectors v = (v1; v2) and w = 2 (w1; w2) in R The set of vectors 2 Λ = Zv + Zw := fm1v + m2w 2 R j m1; m2 2 Zg forms a lattice in R2, i.e., a free subgroup of rank 2 of the additive group of the vector space R2. We picture it as follows: • • • • • • •Gv • ••• •• • w • • • • • • • • Figure 1.1: Lattice in R2 1 2 LECTURE 1. BINARY QUADRATIC FORMS Let v v B(v; w) = 1 2 w1 w2 and v · v v · w G(v; w) = = B(v; w) · tB(v; w): v · w w · w be the Gram matrix of (v; w). The area A(v; w) of the parallelogram formed by the vectors v and w is given by the formula v · v v · w A(v; w)2 = det G(v; w) = (det B(v; w))2 = det : v · w w · w Let x = mv + nw 2 Λ.
    [Show full text]
  • Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
    Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve.
    [Show full text]
  • Mirror Symmetry of Abelian Variety and Multi Theta Functions
    1 Mirror symmetry of Abelian variety and Multi Theta functions by Kenji FUKAYA (深谷賢治) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto Japan Table of contents § 0 Introduction. § 1 Moduli spaces of Lagrangian submanifolds and construction of a mirror torus. § 2 Construction of a sheaf from an affine Lagrangian submanifold. § 3 Sheaf cohomology and Floer cohomology 1 (Construction of a homomorphism). § 4 Isogeny. § 5 Sheaf cohomology and Floer cohomology 2 (Proof of isomorphism). § 6 Extension and Floer cohomology 1 (0 th cohomology). § 7 Moduli space of holomorphic vector bundles on a mirror torus. § 8 Nontransversal or disconnected Lagrangian submanifolds. ∞ § 9 Multi Theta series 1 (Definition and A formulae.) § 10 Multi Theta series 2 (Calculation of the coefficients.) § 11 Extension and Floer cohomology 2 (Higher cohomology). § 12 Resolution and Lagrangian surgery. 2 § 0 Introduction In this paper, we study mirror symmetry of complex and symplectic tori as an example of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom- mutative” generalization. In this paper, we concentrate on the case of a commutative (usual) torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who studied the case of elliptic curve. The main results of this paper establish a dictionary of mirror symmetry between symplectic geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this dictionary in the introduction of [12]. We present the argument in a way so that it suggests a possibility of its generalization.
    [Show full text]
  • Theta Function Review G = 1 Case
    The genus 1 case - review Theta Function Review g = 1 case We recall the main de¯nitions of theta functions in the 1-dim'l case: De¯nition 0 Let· ¿ 2¸C such that Im¿ > 0: For "; " real numbers and z 2 C then: " £ (z;¿) = "0 n ¡ ¢ ¡ ¢ ¡ ¢ ³ ´o P 1 " " ² t ²0 l²Z2 exp2¼i 2 l + 2 ¿ l + 2 + l + 2 z + 2 The series· is uniformly¸ and absolutely convergent on compact subsets " C £ H: are called Theta characteristics "0 The genus 1 case - review Theta Function Properties Review for g = 1 case the following properties of theta functions can be obtained by manipulation of the series : · ¸ · ¸ " + 2m " 1. £ (z;¿) = exp¼i f"eg £ (z;¿) and e; m 2 Z "0 + 2e "0 · ¸ · ¸ " " 2. £ (z;¿) = £ (¡z;¿) ¡"0 "0 · ¸ " 3. £ (z + n + m¿; ¿) = "0 n o · ¸ t t 0 " exp 2¼i n "¡m " ¡ mz ¡ m2¿ £ (z;¿) 2 "0 The genus 1 case - review Remarks on the properties of Theta functions g=1 1. Property number 3 describes the transformation properties of theta functions under an element of the lattice L¿ generated by f1;¿g. 2. The same property implies that that the zeros of theta functions are well de¯ned on the torus given· ¸ by C=L¿ : In fact there is only a " unique such 0 for each £ (z;¿): "0 · ¸ · ¸ "i γj 3. Let 0 ; i = 1:::k and 0 ; j = 1:::l and "i γj 2 3 Q "i k θ4 5(z;¿) ³P ´ ³P ´ i=1 "0 k 0 l 0 2 i 3 "i + " ¿ ¡ γj + γ ¿ 2 L¿ Then i=1 i j=1 j Q l 4 γj 5 j=1 θ 0 (z;¿) γj is a meromorphic function on the elliptic curve de¯ned by C=L¿ : The genus 1 case - review Analytic vs.
    [Show full text]
  • Theta Function Identities
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 147, 97-121 (1990) Theta Function Identities RONALD J. EVANS Deparlment of Mathematics, University of California, San Diego, La Jolla, California 92093 Submitted by Bruce C. Berndt Received June 3. 1988 1. INTR~D~JcTI~N By 1986, all but one of the identities in the 21 chapters of Ramanujan’s Second Notebook [lo] had been proved; see Berndt’s books [Z-4]. The remaining identity, which we will prove in Theorem 5.1 below, is [ 10, Chap. 20, Entry 8(i)] 1 1 1 V2(Z/P) (1.1) G,(z) G&l + G&J G&J + G&l G,(z) = 4 + dz) ’ where q(z) is the classical eta function given by (2.5) and 2 f( _ q2miP, - q1 - WP) G,(z) = G,,,(z) = (- 1)” qm(3m-p)‘(2p) f(-qm,p, -q,-m,p) 9 (1.2) with q = exp(2niz), p = 13, and Cl(k2+k)/2 (k2pkV2 B . (1.3) k=--13 The author is grateful to Bruce Berndt for bringing (1.1) to his attention. The quotients G,(z) in (1.2) for odd p have been the subject of interest- ing investigations by Ramanujan and others. Ramanujan [ 11, p. 2071 explicitly wrote down a version of the famous quintuple product identity, f(-s’, +)J-(-~*q3, -w?+qfF~, -A2q9) (1.4) f(-43 -Q2) f(-Aq3, -Pq6) ’ which yields as a special case a formula for q(z) G,(z) as a linear combina- tion of two theta functions; see (1.7). In Chapter 16 of his Second 97 0022-247X/90 $3.00 Copyright % 1993 by Academc Press, Inc.
    [Show full text]
  • An Addition Formula for the Jacobian Theta Function and Its Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Mathematics 212 (2007) 389–406 www.elsevier.com/locate/aim An addition formula for the Jacobian theta function and its applications Zhi-Guo Liu 1 East China Normal University, Department of Mathematics, Shanghai 200062, People’s Republic of China Received 13 July 2005; accepted 17 October 2006 Available online 28 November 2006 Communicated by Alain Lascoux Abstract In this paper, we prove an addition formula for the Jacobian theta function using the theory of elliptic functions. It turns out to be a fundamental identity in the theory of theta functions and elliptic function, and unifies many important results about theta functions and elliptic functions. From this identity we can derive the Ramanujan cubic theta function identity, Winquist’s identity, a theta function identities with five parameters, and many other interesting theta function identities; and all of which are as striking as Winquist’s identity. This identity allows us to give a new proof of the addition formula for the Weierstrass sigma function. A new identity about the Ramanujan cubic elliptic function is given. The proofs are self contained and elementary. © 2006 Elsevier Inc. All rights reserved. MSC: 11F11; 11F12; 11F27; 33E05 Keywords: Weierstrass sigma function; Addition formula; Elliptic functions; Jacobi’s theta function; Winquist’s identity; Ramanujan’s cubic theta function theory E-mail addresses: [email protected], [email protected]. 1 The author was supported in part by the National Science Foundation of China. 0001-8708/$ – see front matter © 2006 Elsevier Inc.
    [Show full text]
  • Transformation Groups for Soliton Equations V —
    Publ. RIMS, Kyoto Univ. 18 (1982), 1111-1119 Quasi- Periodic Solutions of the Orthogonal KP Equation — Transformation Groups for Soliton Equations V — By Etsuro DATE*, Michio JIMBO?, Masaki KASHIWARAI and Tetsuji MiWAf § 0. Introduction In this note we study quasi-periodic solutions of the BKP hierarchy in- troduced in [1]. Our main result is the Theorem in Section 2, which states that quasi-periodic T-functions for the BKP hierarchy are the theta functions on the Prym varieties of algebraic curves admitting involutions with two fixed points. The rational and soliton solutions of the BKP hierarchy were studied in part IV [2] together with its operator formalism. We also showed that the BKP hierarchy is the compatibility condition for the following system of linear equations for w(x), x = (xl9 x3, .T5,...)^ (1) ^7=B'W' '='.3,5,... where 5, is a linear ordinary differential operator with respect to XL without constant term. dl l~2 dm One of the specific properties of the BKP hierarchy is the fact that squares of T-functions for the BKP hierarchy are T-functions for the KP hierarchy with x2j- = 0. Now we explain why the Prym varieties and the theta functions on them ap- pear in our present study. Received November 20, 1981. Faculty of General Education, Kyoto University, Kyoto 606, Japan. Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. 1112 ETSURO DATE, MICHIO JIMBO, MASAKI KASHIWARA AND TETSUJI MIWA One derivation is given through the examination of the geometrical prop- erties of the wave functions associated with soliton solutions.
    [Show full text]
  • 2D Theta Functions and Crystallization Among Bravais Lattices Laurent Bétermin
    2D Theta Functions and Crystallization among Bravais Lattices Laurent Bétermin To cite this version: Laurent Bétermin. 2D Theta Functions and Crystallization among Bravais Lattices. 2015. hal- 01116262v2 HAL Id: hal-01116262 https://hal.archives-ouvertes.fr/hal-01116262v2 Preprint submitted on 9 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License 2D Theta Functions and Crystallization among Bravais Lattices Laurent B´etermin∗ Universit´eParis-Est Cr´eteil LAMA - CNRS UMR 8050 61, Avenue du G´en´eral de Gaulle, 94010 Cr´eteil, France April 9, 2015 Abstract In this paper, we study minimization problems among Bravais lattices for finite energy per point. We prove – as claimed by Cohn and Kumar – that if a function is completely monotonic, then the triangular lattice minimizes energy per particle among Bravais lattices with density fixed for any density. Furthermore we give an example of convex decreasing positive potential for which triangular lattice is not a minimizer for some densities. We use the Montgomery method presented in our previous work to prove minimality of triangular lattice among Bravais lattices at high density for some general potentials.
    [Show full text]
  • The Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
    Math 259: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler's identity: 1 1 1 s 0 cps1 [ζ(s) :=] n− = p− = s : (1) X Y X Y 1 p− n=1 p prime @cp=1 A p prime − We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann's insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it: s σ We already observed that for all real n > 0 we have n− = n− , because j j s σ it log n n− = exp( s log n) = n− e − and eit log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the \Riemann zeta function"), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula n+1 n+1 1 1 s s 1 s s ζ(s) = n− Z x− dx = Z (n− x− ) dx; − s 1 X − X − − n=1 n n=1 n since for x [n; n + 1] (n 1) and σ > 0 we have 2 ≥ x s s 1 s 1 σ n− x− = s Z y− − dy s n− − j − j ≤ j j n so the formula for ζ(s) (1=(s 1)) is a sum of analytic functions converging absolutely in compact subsets− of− σ + it : σ > 0 and thus gives an analytic function there.
    [Show full text]
  • RIEMANN's FUNCTIONAL EQUATION 1. Deriving The
    RIEMANN’S FUNCTIONAL EQUATION KEVIN ZHU Abstract. This paper investigates the functional equation of the Riemann zeta function ζ (s). The functional equation is useful for a few reasons. It allows us to immediately conclude that the function has zeros at the negative even integers. In the process of a proof we shall follow, the analytic continuation of the zeta function also falls out as a consequence. Furthermore, having established the functional equation, we can find formulas for the derivatives of the zeta function. The functional equation has close ties with the Riemann hypothesis, playing a role in empirically searching for zeros on the critical line. 1. Deriving the Functional Equation The aim of the first paper we shall review is to present a short proof of Riemann’s functional equation, [3] Γ(s) πs (1.1) ζ (1 − s) = 2 cos ζ (s) : (2π)s 2 In fact, the method the paper undertakes is to prove the slightly more general functional equation on the Hurwitz zeta function. Riemann’s functional equation follows directly from this relation. The proof is based upon the Lipschitz summation formula, which itself is proved using Poisson summation, a technique from Fourier analysis. The meromorphic continuation of both the periodized zeta function (an- other component of the proofs) and the Hurwitz zeta function to the whole complex plane is a corollary of the results in this paper. Riemann’s original proofs for the relation, on the other hand, use either the theta function and its Mellin transform or contour integration. Comparatively, the proof we shall follow mostly gets away with manipulating infinite series and reasoning about the analytic functions that pop out.
    [Show full text]
  • Fourier Analysis Notes, Spring 2020
    Fourier Analysis Notes, Spring 2020 Peter Woit Department of Mathematics, Columbia University [email protected] September 3, 2020 2 Contents 1 Introduction 5 1.1 Fourier series . .5 1.2 The Fourier transform . .7 2 The Poisson Summation Formula, Theta Functions, and the Zeta Function 9 2.1 The Poisson summation formula and some applications . .9 2.1.1 The heat kernel . 10 2.1.2 The Poisson kernel . 11 2.2 Theta functions . 12 2.2.1 The Jacobi theta function . 13 2.3 The Riemann zeta function . 15 2.3.1 The Mellin transform . 16 2.3.2 The zeta function and the Mellin transform of the theta function . 18 2.3.3 The functional equation for the zeta function . 19 3 Distributions 23 3.1 Introduction . 23 3.2 Distributions: definition . 24 3.3 Distributions: examples . 25 3.4 The derivative of a distribution . 28 3.4.1 The transpose of a linear transformation . 29 3.4.2 Translations . 29 3.4.3 The derivative . 30 3.5 The Fourier transform of a distribution . 33 3.6 Convolution of a function and a distribution . 38 3.7 Distributional solutions of differential equations . 41 4 Higher dimensions 43 4.1 Introduction . 43 4.2 Fourier series and the Fourier transform for d > 1 . 43 4.2.1 Fourier series for d > 1.................... 43 4.2.2 The Fourier transform for d > 1............... 44 3 4.3 Rotations and the Fourier transform . 45 4.3.1 Two dimensions . 47 4.3.2 Three dimensions . 48 5 Wave Equations 53 5.1 Introduction .
    [Show full text]
  • Riemann's Theta Function
    Riemann’s theta function Ching-Li Chai∗ version 12/02/2014 Riemann’s theta function q(z;W) was born in the famous memoir [13] on abelian functions. Its a cousins, theta functions with characteristics q b (z;W), are essentially translates of q(z;W). These theta functions can be viewed in several ways: (a) They were first introduced and studied as holomorphic function in the z and/or the W variable. (b) Geometrically these theta functions can be identified with sections of ample line bundles on abelian varieties and can be thought of as projective coordinates of abelian varieties. There values at the zero, known as thetanullwerte, give projective coordinates of moduli of abelian varieties. (c) They are matrix coefficients, for the Schrodinger¨ representation of the Heisenberg group and the oscillator (or Segal-Shale-Weil) representation of the metaplectic group. The geometric point of view will be summarized in x1 and the group theoretic viewpoint in x2. x1. Theta functions as sections of line bundles For any positive integer g, denote by Hg the Siegel upper-half space of genus g, consisting of all g × g symmetric complex matrices with positivep definite imaginary part. We will use the following version of exponential function: e(z) := exp(2p −1 · z) for any z 2 C. (1.1) DEFINITION. (i) The Riemann theta function q(z;W) of genus g is the holomorphic func- g tion in two variables (z;W) 2 C × Hg, defined by the theta series 1 t t q(z;W) := ∑ e( 2 n · W · n=2) · e( n · z): g m2Z g a (ii) Let a;b 2 R .
    [Show full text]